Example #1
0
int main(int argc, char ** argv) {

int i,x=0;
   
//getchar();

printf("size of int: %lu\n", sizeof(int));
printf("size of long: %lu\n", sizeof(long));
printf("size of long long: %lu\n", sizeof(long long));
   
printf("ptr: %u bits\n", 8*sizeof(void*));
printf("factorial(6): %i\n", factorial(6));
//printf("factorial(3): %i\n", factorial(3));

varfunc(2, 20, 30);
varfunc(4, 99, 567, 11, 444);
varfunc(2, 80, 90);

a();



for (i=1; i <= 3; i++) {
	printf("x=%i\n",x);
	x+=i;
}
//exceptionFunc();
//exceptionFunc();
//exceptionFunc();


if (!setjmp(jump_buffer)) {

	//printf("main, before testJmp(1)\n");
	testJmp(1);
	//printf("main, AFTER testJmp(1)\n");

} else {

	//printf("main, LONG JUMP avvenuto\n");

	//printf("main, before testJmp(0)\n");
	testJmp(0, 434, 24324, 23411);
	//printf("main, AFTER testJmp(0)\n");

}



printf("4\n");

//for (int i=0; i < 10; i++)
//	foo();

return 0;
}
Example #2
0
File: 41.c Project: Jerry11111/C
int main(int argc, char *argv[])
{
  int i;
  for (i=0; i<3; i++)
    {
      varfunc();
    }
  return 0;
}
Example #3
0
int varfunc(int num, ...) {

	if (!num)
		goto end;

	varfunc(num-1, 0, 0);
	
	end:
	return 23;
}
Example #4
0
static const char *modperl_cmd_modvar(modperl_var_modify_t varfunc,
                                      cmd_parms *parms,
                                      modperl_config_dir_t *dcfg,
                                      const char *arg1, const char *arg2)
{
    varfunc(dcfg->configvars, dcfg->setvars, arg1, arg2);

    MP_TRACE_d(MP_FUNC, "%s DIR: arg1 = %s, arg2 = %s",
               parms->cmd->name, arg1, arg2);

    /* make available via Apache2->server->dir_config */
    if (!parms->path) {
        MP_dSCFG(parms->server);
        varfunc(scfg->configvars, scfg->setvars, arg1, arg2);

        MP_TRACE_d(MP_FUNC, "%s SRV: arg1 = %s, arg2 = %s",
                   parms->cmd->name, arg1, arg2);
    }

    return NULL;
}
Example #5
0
double PoissonGlm::getDisper( unsigned int id, double th )const
{
    unsigned int i, df, nNonZero=0;
    double ss2, yij, mij, chi2=0;

    gsl_vector_view yj = gsl_matrix_column (Yref, id);
    gsl_vector_view mj = gsl_matrix_column (Mu, id);
    for (i=0; i<nRows; i++) {
        yij = gsl_vector_get (&yj.vector, i);
        mij = gsl_vector_get (&mj.vector, i);
        ss2 = (yij-mij)*(yij-mij); // ss = (y-mu)^2
        if ( mij<mintol ) mij = 1;
        else  nNonZero++;      
        if ( varfunc(mij, th)>eps )
            chi2 = chi2 + ss2/varfunc(mij, th); // dist dependant
    }
    if (nNonZero > nParams) 
        df = nNonZero - nParams; 
    else df = 1;
//    df = nRows - nParams;    
    return chi2/df;
}
Example #6
0
int NBinGlm::nbinfit(gsl_matrix *Y, gsl_matrix *X, gsl_matrix *O, gsl_matrix *B)
{   
    gsl_set_error_handler_off();

    initialGlm(Y, X, O, B);

    gsl_rng *rnd=gsl_rng_alloc(gsl_rng_mt19937);
    unsigned int i, j; //, isConv;
    double yij, mij, vij, hii, uij, wij, wei;
    double th, tol, dev_th_b_old;
    int status;
 //   gsl_vector_view b0j, m0j, e0j, v0j;
    gsl_matrix *WX = gsl_matrix_alloc(nRows, nParams);   
    gsl_matrix *TMP = gsl_matrix_alloc(nRows, nParams);   
    gsl_matrix *XwX = gsl_matrix_alloc(nParams, nParams);   
    gsl_vector_view Xwi, Xi, vj, dj, hj;

    for (j=0; j<nVars; j++) {  
        betaEst(j, maxiter, &tol, maxtol); //poisson
        // Get initial theta estimates
        iterconv[j]=0.0;  
        if (mmRef->estiMethod==CHI2) {
           th = getDisper(j, 1.0); 
           while ( iterconv[j]<maxiter ) {
//printf("th=%.2f, iterconv[%d]=%d\n", th, j, iterconv[j]);
               iterconv[j]++;
               dev_th_b_old = dev[j];
               betaEst(j, 1.0, &tol, th);  // 1-step beta
               th = getDisper(j, th)/th; 
               tol = ABS((dev[j]-dev_th_b_old)/(ABS(dev[j])+0.1));
               if (tol<eps) break;
         }  }
        else if (mmRef->estiMethod==NEWTON) {
            th = thetaML(0.0, j, maxiter);
            while ( iterconv[j]<maxiter ) {
               iterconv[j]++;
               dev_th_b_old = dev[j];
               th = thetaML(th, j, maxiter2);
               betaEst(j, maxiter2, &tol, th);  
               tol=ABS((dev[j]-dev_th_b_old)/(ABS(dev[j])+0.1));
               if (tol<eps) break;
        }  } 
       else {
           th = getfAfAdash(0.0, j, maxiter);
/*           lm=0;
           for (i=0; i<nRows; i++) {
               yij = gsl_matrix_get(Y, i, j);
               mij = gsl_matrix_get(Mu, i, j);
               lm = lm + llfunc( yij, mij, th);
           } */
           while ( iterconv[j]<maxiter ) {
               iterconv[j]++;
               dev_th_b_old = dev[j];
               betaEst(j, maxiter2, &tol, th);  
               th = getfAfAdash(th, j, 1.0);
               tol=ABS((dev[j]-dev_th_b_old)/(ABS(dev[j])+0.1));
               if (tol<eps) break;
           }
       }       
       if ((iterconv[j]==maxiter)&(mmRef->warning==TRUE)) 
           printf("Warning: reached maximum itrations - negative binomial may NOT converge in the %d-th variable (dev=%.4f, err=%.4f, theta=%.4f)!\n", j, dev[j], tol, th);

       // other properties based on mu and phi
       theta[j] = th;
       gsl_matrix_memcpy(WX, Xref);  
       ll[j]=0;
       for (i=0; i<nRows; i++) {
           yij = gsl_matrix_get(Y, i, j);
           mij = gsl_matrix_get(Mu, i, j);
           vij = varfunc( mij, th);
           gsl_matrix_set(Var, i, j, vij); 
           wij = sqrt(weifunc(mij, th));
           gsl_matrix_set(wHalf, i, j, wij); 
           gsl_matrix_set(Res, i, j, (yij-mij)/sqrt(vij));        
           ll[j] = ll[j] + llfunc( yij, mij, th);
           // get PIT residuals for discrete data
           wei = gsl_rng_uniform_pos (rnd); // wei ~ U(0, 1)
           uij=wei*cdf(yij, mij, th);
           if (yij>0) uij=uij+(1-wei)*cdf((yij-1),mij,th);
           gsl_matrix_set(PitRes, i, j, uij);
           // W^1/2 X
           Xwi = gsl_matrix_row (WX, i);
           gsl_vector_scale(&Xwi.vector, wij);
       }
       aic[j]=-ll[j]+2*(nParams+1);

       // X^T * W * X
       gsl_matrix_set_identity (XwX);
       gsl_blas_dsyrk (CblasLower, CblasTrans, 1.0, WX, 0.0, XwX);
       status=gsl_linalg_cholesky_decomp (XwX);
       if (status==GSL_EDOM) {
          if (mmRef->warning==TRUE)
             printf("Warning: singular matrix in calculating pit-residuals. An eps*I is added to the singular matrix.\n");
          gsl_matrix_set_identity (XwX);
          gsl_blas_dsyrk (CblasLower, CblasTrans, 1.0, WX, mintol, XwX);
          gsl_linalg_cholesky_decomp (XwX);
       }
       gsl_linalg_cholesky_invert (XwX); // (X'WX)^-1

       // Calc varBeta
       vj = gsl_matrix_column (varBeta, j);
       dj = gsl_matrix_diagonal (XwX);
       gsl_vector_memcpy (&vj.vector, &dj.vector);

       // hii is diagonal element of H=X*(X'WX)^-1*X'*W
       hj = gsl_matrix_column (sqrt1_Hii, j);
       gsl_blas_dsymm(CblasRight,CblasLower,1.0,XwX,Xref,0.0,TMP); // X*(X'WX)^-1
       for (i=0; i<nRows; i++) {
           Xwi=gsl_matrix_row(TMP, i);
           Xi=gsl_matrix_row(Xref, i);
           wij=gsl_matrix_get(wHalf, i, j);
           gsl_blas_ddot(&Xwi.vector, &Xi.vector, &hii);
           gsl_vector_set(&hj.vector, i, MAX(mintol, sqrt(MAX(0, 1-wij*wij*hii))));
//printf("hii=%.4f, wij=%.4f, sqrt(1-wij*wij*hii)=%.4f\n", hii, wij, sqrt(1-wij*wij*hii));
       }
   } // end nVar for j loop
//   gsl_matrix_div_elements (Res, sqrt1_Hii);
//   subtractMean(Res);

   gsl_matrix_free(XwX);
   gsl_matrix_free(WX);
   gsl_matrix_free(TMP);
   gsl_rng_free(rnd);

   return SUCCESS;    
}
Example #7
0
int PoissonGlm::EstIRLS(gsl_matrix *Y, gsl_matrix *X, gsl_matrix *O, gsl_matrix *B, double *a)
{
    initialGlm(Y, X, O, B);

    gsl_set_error_handler_off();
    gsl_rng *rnd=gsl_rng_alloc(gsl_rng_mt19937);
    unsigned int i, j;   
    int status;
    double yij, mij, vij, wij, tol, hii, uij, wei;
    gsl_vector_view Xwi, Xi, vj, hj, dj;

    gsl_matrix *WX = gsl_matrix_alloc(nRows, nParams);   
    gsl_matrix *TMP = gsl_matrix_alloc(nRows, nParams);   
    gsl_matrix *XwX = gsl_matrix_alloc(nParams, nParams);   

    for (j=0; j<nVars; j++) {
       if ( a!=NULL ) theta[j]=a[j]; 
       // estimate mu and beta   
       iterconv[j] = betaEst(j, maxiter, &tol, theta[j]); 
       if ((mmRef->warning==TRUE)&(iterconv[j]==maxiter)) 
           printf("Warning: EstIRLS reached max iterations, may not converge in the %d-th variable (dev=%.4f, err=%.4f)!\n", j, dev[j], tol);
       gsl_matrix_memcpy (WX, X);
       for (i=0; i<nRows; i++) {
            mij = gsl_matrix_get(Mu, i, j);
            // get variance
            vij = varfunc( mij, theta[j] );
            gsl_matrix_set(Var, i, j, vij); 
            // get weight
            wij = sqrt(weifunc(mij, theta[j]));  
            gsl_matrix_set(wHalf, i, j, wij);             
            // get (Pearson) residuals
            yij = gsl_matrix_get(Y, i, j);
            gsl_matrix_set(Res, i, j, (yij-mij)/sqrt(vij));        
            // get PIT residuals for discrete data
            wei = gsl_rng_uniform_pos (rnd); // wei ~ U(0, 1)
            uij = wei*cdf(yij, mij, theta[j]);
            if (yij>0) uij=uij+(1-wei)*cdf((yij-1),mij,theta[j]);
            gsl_matrix_set(PitRes, i, j, uij);
            // get elementry log-likelihood    
            ll[j] = ll[j] + llfunc( yij, mij, theta[j]);
            // W^1/2 X
            Xwi = gsl_matrix_row (WX, i);
            gsl_vector_scale(&Xwi.vector, wij);            
       }      
       aic[j]=-ll[j]+2*(nParams);

       // X^T * W * X
       gsl_matrix_set_identity(XwX);
       gsl_blas_dsyrk (CblasLower, CblasTrans, 1.0, WX, 0.0, XwX);
       status=gsl_linalg_cholesky_decomp (XwX);
       if (status==GSL_EDOM) {
          if (mmRef->warning==TRUE)
             printf("Warning: singular matrix in calculating pit-residuals. An eps*I is added to the singular matrix.\n");
          gsl_matrix_set_identity(XwX);
          gsl_blas_dsyrk (CblasLower, CblasTrans, 1.0, WX, mintol, XwX);
          gsl_linalg_cholesky_decomp (XwX);
       }
       gsl_linalg_cholesky_invert (XwX);

       // Calc varBeta
       dj = gsl_matrix_diagonal (XwX);
       vj = gsl_matrix_column (varBeta, j);       
       gsl_vector_memcpy (&vj.vector, &dj.vector);

       // hii is diagonal element of H=X*(X'WX)^-1*X'*W
       hj = gsl_matrix_column (sqrt1_Hii, j);
       gsl_blas_dsymm(CblasRight,CblasLower,1.0,XwX,Xref,0.0,TMP); // X*(X'WX)^-1
       for (i=0; i<nRows; i++) {
           Xwi=gsl_matrix_row(TMP, i);
           Xi=gsl_matrix_row(Xref, i);
           wij=gsl_matrix_get(wHalf, i, j);
           gsl_blas_ddot(&Xwi.vector, &Xi.vector, &hii);
           gsl_vector_set(&hj.vector, i, MAX(mintol, sqrt(MAX(0, 1-wij*wij*hii))));
       } 
   } 
   // standardize perason residuals by rp/sqrt(1-hii) 
//   gsl_matrix_div_elements (Res, sqrt1_Hii);
//   subtractMean(Res);  // have mean subtracted

   gsl_matrix_free(XwX);
   gsl_matrix_free(WX);
   gsl_matrix_free(TMP);
   gsl_rng_free(rnd);

   return SUCCESS;    
}
Example #8
0
int main(int argc, char** argv){

printf("%d\n", varfunc(1,2,3,4));


}