// out: o = |x-y| < a
static inline vec_u8_t diff_lt_altivec( register vec_u8_t x, register vec_u8_t y, register vec_u8_t a )
{
    register vec_u8_t diff = vec_subs(x, y);
    register vec_u8_t diffneg = vec_subs(y, x);
    register vec_u8_t o = vec_or(diff, diffneg); /* |x-y| */
    o = (vec_u8_t)vec_cmplt(o, a);
    return o;
}
Example #2
0
// out: o = |x-y| < a
static inline vector unsigned char diff_lt_altivec ( register vector unsigned char x,
                                                     register vector unsigned char y,
                                                     register vector unsigned char a) {

    register vector unsigned char diff = vec_subs(x, y);
    register vector unsigned char diffneg = vec_subs(y, x);
    register vector unsigned char o = vec_or(diff, diffneg); /* |x-y| */
    o = (vector unsigned char)vec_cmplt(o, a);
    return o;
}
Example #3
0
void _SIMD_cmplt_pd(__SIMDd a, __SIMDd b, void** resultPtr)
{
  __SIMDd* result = (__SIMDd*)malloc(sizeof(__SIMDd));
  *resultPtr = result;
#ifdef  USE_SSE
  *result = _mm_cmplt_pd(a,b);
#elif defined USE_AVX
  *result = _mm256_cmp(a,b,17);
#elif defined USE_IBM
  *result = vec_cmplt(a,b);
#endif
}
Example #4
0
void pix_background :: processYUVAltivec(imageStruct &image)
{
register int h,w,i,j,width;
int pixsize = image.xsize * image.ysize * image.csize;
    h = image.ysize;
    w = image.xsize/8;
    width = image.xsize/8;
    
    //check to see if the buffer isn't 16byte aligned (highly unlikely)
    if (image.ysize*image.xsize % 16 != 0){
        error("image not properly aligned for Altivec - try something SD or HD maybe?");
        return;
        }
    
    union{
        unsigned short		s[8];
        vector unsigned short	v;
    }shortBuffer;

    if(m_savedImage.xsize!=image.xsize ||
       m_savedImage.ysize!=image.ysize ||
       m_savedImage.format!=image.format)m_reset=1;

    m_savedImage.xsize=image.xsize;
    m_savedImage.ysize=image.ysize;
    m_savedImage.setCsizeByFormat(image.format);
    m_savedImage.reallocate();
    
    if (m_reset){
    memcpy(m_savedImage.data,image.data,pixsize);
    m_reset = 0; 
    }
    
    register vector unsigned short	UVres1, Yres1, UVres2, Yres2;//interleave;
    register vector unsigned short	hiImage, loImage;
    register vector unsigned short	Yrange, UVrange, Yblank,UVblank,blank;
    register vector bool short		Ymasklo,Ymaskhi,  UVmaskhi;
    register vector unsigned short	Yhi,Ylo,UVhi,UVlo; 
    register vector unsigned char	one = vec_splat_u8(1);
    register vector unsigned short	sone = vec_splat_u16(1);
    register vector unsigned int			Uhi, Ulo, Vhi, Vlo,Ures,Vres;
    register vector bool int 			Umasklo, Umaskhi, Vmaskhi, Vmasklo;

    vector unsigned char	*inData = (vector unsigned char*) image.data;
    vector unsigned char	*rightData = (vector unsigned char*) m_savedImage.data;
    
    shortBuffer.s[0] =  m_Yrange;
    Yrange = shortBuffer.v;
    Yrange = vec_splat(Yrange,0);
    
    shortBuffer.s[0] = 128;
    shortBuffer.s[1] = 0;
    shortBuffer.s[2] = 128;
    shortBuffer.s[3] = 0;
    shortBuffer.s[4] = 128;
    shortBuffer.s[5] = 0;
    shortBuffer.s[6] = 128;
    shortBuffer.s[7] = 0;
    blank = shortBuffer.v;
    
    shortBuffer.s[0] =  0;
    Yblank = shortBuffer.v;
    Yblank = vec_splat(Yblank,0);
    
    shortBuffer.s[0] =  128;
    UVblank = shortBuffer.v;
    UVblank = vec_splat(UVblank,0);
    
    shortBuffer.s[0] = m_Urange;
    shortBuffer.s[1] = m_Vrange;
    shortBuffer.s[2] = m_Urange;
    shortBuffer.s[3] = m_Vrange;
    shortBuffer.s[4] = m_Urange;
    shortBuffer.s[5] = m_Vrange;
    shortBuffer.s[6] = m_Urange;
    shortBuffer.s[7] = m_Vrange;
    UVrange = shortBuffer.v;
    
    
    //setup the cache prefetch -- A MUST!!!
    UInt32			prefetchSize = GetPrefetchConstant( 16, 1, 256 );
    #ifndef PPC970 
    vec_dst( inData, prefetchSize, 0 );
    vec_dst( rightData, prefetchSize, 1 );
    vec_dst( inData+32, prefetchSize, 2 );
    vec_dst( rightData+32, prefetchSize, 3 );
    #endif //PPC970
    
    for ( i=0; i<h; i++){
        for (j=0; j<w; j++)
        {
        #ifndef PPC970
        //this function is probably memory bound on most G4's -- what else is new?
            vec_dst( inData, prefetchSize, 0 );
            vec_dst( rightData, prefetchSize, 1 );
            vec_dst( inData+32, prefetchSize, 2 );
            vec_dst( rightData+32, prefetchSize, 3 );
        #endif
        //separate the U and V from Y
        UVres1 = (vector unsigned short)vec_mule(one,inData[0]);
        UVres2 = (vector unsigned short)vec_mule(one,rightData[0]);
            
        //vec_mulo Y * 1 to short vector Y Y Y Y shorts
        Yres1 = (vector unsigned short)vec_mulo(one,inData[0]);
        Yres2 = (vector unsigned short)vec_mulo(one,rightData[0]);
        
        Yhi = vec_adds(Yres2,Yrange);
        Ylo = vec_subs(Yres2,Yrange);
        
        //go to ints for comparison
        UVhi = vec_adds(UVres2,UVrange);
        UVlo = vec_subs(UVres2,UVrange);
        
        Uhi = vec_mule(sone,UVhi);
        Ulo = vec_mule(sone,UVlo);
        
        Vhi = vec_mulo(sone,UVhi);
        Vlo = vec_mulo(sone,UVlo);
        
        Ures = vec_mule(sone,UVres1);
         Vres = vec_mulo(sone,UVres1);
         
         Umasklo = vec_cmpgt(Ures,Ulo);
         Umaskhi = vec_cmplt(Ures,Uhi);
         
         Vmasklo = vec_cmpgt(Vres,Vlo);
         Vmaskhi = vec_cmplt(Vres,Vhi);
         
         Umaskhi = vec_and(Umaskhi,Umasklo);
         
         Vmaskhi = vec_and(Vmaskhi,Vmasklo);
         
         Umasklo = vec_and(Umaskhi,Vmaskhi);
         Vmasklo = vec_and(Umaskhi,Vmaskhi);
         
         hiImage = (vector unsigned short)vec_mergeh(Umasklo,Vmasklo);
         loImage = (vector unsigned short)vec_mergel(Umasklo,Vmasklo);
         
         //pack it back down to bool short
         UVmaskhi = (vector bool short)vec_packsu(hiImage,loImage);
         
         Ymasklo = vec_cmpgt(Yres1,Ylo);
         Ymaskhi = vec_cmplt(Yres1,Yhi);
         
         Ymaskhi = vec_and(Ymaskhi,Ymasklo);
         
         Ymaskhi = vec_and(Ymaskhi,UVmaskhi);
         UVmaskhi = vec_and(Ymaskhi,UVmaskhi);
         
         //bitwise comparison and move using the result of the comparison as a mask
         Yres1 = vec_sel(Yres1,Yblank,Ymaskhi);
         
         //UVres1 = vec_sel(UVres1,UVres2,UVmaskhi);
         UVres1 = vec_sel(UVres1,UVblank,UVmaskhi);
         
         //merge the Y and UV back together
         hiImage = vec_mergeh(UVres1,Yres1);
         loImage = vec_mergel(UVres1,Yres1);
         
         //pack it back down to unsigned char to store
         inData[0] = vec_packsu(hiImage,loImage);
         
         inData++;
         rightData++;
        
        }
        #ifndef PPC970
        vec_dss(0);
        vec_dss(1);
        vec_dss(2);
        vec_dss(3);
        #endif
    }
}
Example #5
0
void test1() {
// CHECK-LABEL: define void @test1
// CHECK-LE-LABEL: define void @test1

  res_vf = vec_abs(vf);
// CHECK: call <4 x float> @llvm.fabs.v4f32(<4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x float> @llvm.fabs.v4f32(<4 x float> %{{[0-9]*}})

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_add(vd, vd);
// CHECK: fadd <2 x double>
// CHECK-LE: fadd <2 x double>

  res_vd = vec_and(vbll, vd);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  res_vd = vec_and(vd, vbll);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  res_vd = vec_and(vd, vd);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_andc(vbll, vd);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK-LE: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_andc(vd, vbll);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK-LE: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_andc(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_ceil(vd);
// CHECK: call <2 x double> @llvm.ceil.v2f64(<2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x double> @llvm.ceil.v2f64(<2 x double> %{{[0-9]*}})

  res_vf = vec_ceil(vf);
// CHECK: call <4 x float> @llvm.ceil.v4f32(<4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x float> @llvm.ceil.v4f32(<4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpeq(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpeqdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpeqdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpeq(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpeqsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpeqsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpge(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpge(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpgt(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpgt(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmple(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmple(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmplt(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmplt(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  /* vec_cpsgn */
  res_vf = vec_cpsgn(vf, vf);
// CHECK: call <4 x float> @llvm.copysign.v4f32(<4 x float> %{{.+}}, <4 x float> %{{.+}})
// CHECK-LE: call <4 x float> @llvm.copysign.v4f32(<4 x float> %{{.+}}, <4 x float> %{{.+}})

  res_vd = vec_cpsgn(vd, vd);
// CHECK: call <2 x double> @llvm.copysign.v2f64(<2 x double> %{{.+}}, <2 x double> %{{.+}})
// CHECK-LE: call <2 x double> @llvm.copysign.v2f64(<2 x double> %{{.+}}, <2 x double> %{{.+}})

  /* vec_div */
  res_vsll = vec_div(vsll, vsll);
// CHECK: sdiv <2 x i64>
// CHECK-LE: sdiv <2 x i64>

  res_vull = vec_div(vull, vull);
// CHECK: udiv <2 x i64>
// CHECK-LE: udiv <2 x i64>

  res_vf = vec_div(vf, vf);
// CHECK: fdiv <4 x float>
// CHECK-LE: fdiv <4 x float>

  res_vd = vec_div(vd, vd);
// CHECK: fdiv <2 x double>
// CHECK-LE: fdiv <2 x double>

  /* vec_max */
  res_vf = vec_max(vf, vf);
// CHECK: @llvm.ppc.vsx.xvmaxsp
// CHECK-LE: @llvm.ppc.vsx.xvmaxsp

  res_vd = vec_max(vd, vd);
// CHECK: @llvm.ppc.vsx.xvmaxdp
// CHECK-LE: @llvm.ppc.vsx.xvmaxdp

  res_vf = vec_vmaxfp(vf, vf);
// CHECK: @llvm.ppc.vsx.xvmaxsp
// CHECK-LE: @llvm.ppc.vsx.xvmaxsp

  /* vec_min */
  res_vf = vec_min(vf, vf);
// CHECK: @llvm.ppc.vsx.xvminsp
// CHECK-LE: @llvm.ppc.vsx.xvminsp

  res_vd = vec_min(vd, vd);
// CHECK: @llvm.ppc.vsx.xvmindp
// CHECK-LE: @llvm.ppc.vsx.xvmindp

  res_vf = vec_vminfp(vf, vf);
// CHECK: @llvm.ppc.vsx.xvminsp
// CHECK-LE: @llvm.ppc.vsx.xvminsp

  res_d = __builtin_vsx_xsmaxdp(d, d);
// CHECK: @llvm.ppc.vsx.xsmaxdp
// CHECK-LE: @llvm.ppc.vsx.xsmaxdp

  res_d = __builtin_vsx_xsmindp(d, d);
// CHECK: @llvm.ppc.vsx.xsmindp
// CHECK-LE: @llvm.ppc.vsx.xsmindp

  /* vec_perm */
  res_vsll = vec_perm(vsll, vsll, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_perm(vull, vull, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vbll = vec_perm(vbll, vbll, vuc);
// CHECK: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vf = vec_round(vf);
// CHECK: call <4 x float> @llvm.round.v4f32(<4 x float>
// CHECK-LE: call <4 x float> @llvm.round.v4f32(<4 x float>

  res_vd = vec_round(vd);
// CHECK: call <2 x double> @llvm.round.v2f64(<2 x double>
// CHECK-LE: call <2 x double> @llvm.round.v2f64(<2 x double>

  res_vd = vec_perm(vd, vd, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vd = vec_splat(vd, 1);
// CHECK: [[T1:%.+]] = bitcast <2 x double> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x double> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x double> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x double> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vbll = vec_splat(vbll, 1);
// CHECK: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vsll =  vec_splat(vsll, 1);
// CHECK: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vull =  vec_splat(vull, 1);
// CHECK: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vsi = vec_pack(vsll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vui = vec_pack(vull, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vbi = vec_pack(vbll, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_vperm(vsll, vsll, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_vperm(vull, vull, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vd = vec_vperm(vd, vd, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  /* vec_vsx_ld */

  res_vsi = vec_vsx_ld(0, &vsi);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vui = vec_vsx_ld(0, &vui);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vf = vec_vsx_ld (0, &vf);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vsll = vec_vsx_ld(0, &vsll);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vull = vec_vsx_ld(0, &vull);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vd = vec_vsx_ld(0, &vd);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vull = vec_vsx_ld(0, &vull);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vd = vec_vsx_ld(0, &vd);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vss = vec_vsx_ld(0, &vss);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vss = vec_vsx_ld(0, &ss);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vus = vec_vsx_ld(0, &vus);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vus = vec_vsx_ld(0, &us);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vbc = vec_vsx_ld(0, &vbc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vsc = vec_vsx_ld(0, &vsc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vuc = vec_vsx_ld(0, &vuc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vsc = vec_vsx_ld(0, &sc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vuc = vec_vsx_ld(0, &uc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  /* vec_vsx_st */

  vec_vsx_st(vsi, 0, &res_vsi);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsi, 0, &res_si);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vui, 0, &res_vui);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vui, 0, &res_ui);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vf, 0, &res_vf);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsll, 0, &res_vsll);
// CHECK: @llvm.ppc.vsx.stxvd2x
// CHECK-LE: @llvm.ppc.vsx.stxvd2x

  vec_vsx_st(vull, 0, &res_vull);
// CHECK: @llvm.ppc.vsx.stxvd2x
// CHECK-LE: @llvm.ppc.vsx.stxvd2x

  vec_vsx_st(vd, 0, &res_vd);
// CHECK: @llvm.ppc.vsx.stxvd2x
// CHECK-LE: @llvm.ppc.vsx.stxvd2x

  vec_vsx_st(vss, 0, &res_vss);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vss, 0, &res_ss);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vus, 0, &res_vus);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vus, 0, &res_us);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsc, 0, &res_vsc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsc, 0, &res_sc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vuc, 0, &res_vuc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vuc, 0, &res_uc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vbc, 0, &res_vbc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vbc, 0, &res_sc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vbc, 0, &res_uc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  /* vec_and */
  res_vsll = vec_and(vsll, vsll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_and(vbll, vsll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_and(vsll, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_and(vull, vull);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_and(vbll, vull);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_and(vull, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vbll = vec_and(vbll, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  /* vec_vand */
  res_vsll = vec_vand(vsll, vsll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_vand(vbll, vsll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_vand(vsll, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_vand(vull, vull);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_vand(vbll, vull);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_vand(vull, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vbll = vec_vand(vbll, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  /* vec_andc */
  res_vsll = vec_andc(vsll, vsll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_andc(vbll, vsll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_andc(vsll, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_andc(vull, vull);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_andc(vbll, vull);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_andc(vull, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vbll = vec_andc(vbll, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vf = vec_floor(vf);
// CHECK: call <4 x float> @llvm.floor.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.floor.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_floor(vd);
// CHECK: call <2 x double> @llvm.floor.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.floor.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_madd(vf, vf, vf);
// CHECK: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})

  res_vd = vec_madd(vd, vd, vd);
// CHECK: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})

  /* vec_mergeh */
  res_vsll = vec_mergeh(vsll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_mergeh(vsll, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_mergeh(vbll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergeh(vull, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergeh(vull, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergeh(vbll, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  /* vec_mergel */
  res_vsll = vec_mergel(vsll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_mergel(vsll, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_mergel(vbll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergel(vull, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergel(vull, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergel(vbll, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  /* vec_msub */
  res_vf = vec_msub(vf, vf, vf);
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>
// CHECK-LE: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>

  res_vd = vec_msub(vd, vd, vd);
// CHECK: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>
// CHECK-LE: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE-NEXT: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>

  res_vsll = vec_mul(vsll, vsll);
// CHECK: mul <2 x i64>
// CHECK-LE: mul <2 x i64>

  res_vull = vec_mul(vull, vull);
// CHECK: mul <2 x i64>
// CHECK-LE: mul <2 x i64>

  res_vf = vec_mul(vf, vf);
// CHECK: fmul <4 x float> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: fmul <4 x float> %{{[0-9]+}}, %{{[0-9]+}}

  res_vd = vec_mul(vd, vd);
// CHECK: fmul <2 x double> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: fmul <2 x double> %{{[0-9]+}}, %{{[0-9]+}}

  res_vf = vec_nearbyint(vf);
// CHECK: call <4 x float> @llvm.round.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.round.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_nearbyint(vd);
// CHECK: call <2 x double> @llvm.round.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.round.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_nmadd(vf, vf, vf);
// CHECK: [[FM:[0-9]+]] = call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})
// CHECK-NEXT: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %[[FM]]
// CHECK-LE: [[FM:[0-9]+]] = call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})
// CHECK-LE-NEXT: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %[[FM]]

  res_vd = vec_nmadd(vd, vd, vd);
// CHECK: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})
// CHECK-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]
// CHECK-LE: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})
// CHECK-LE-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]

  res_vf = vec_nmsub(vf, vf, vf);
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>
// CHECK-LE: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}

  res_vd = vec_nmsub(vd, vd, vd);
// CHECK: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>
// CHECK-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]
// CHECK-LE: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE-NEXT: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>
// CHECK-LE-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]

  /* vec_nor */
  res_vsll = vec_nor(vsll, vsll);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>
// CHECK-LE: or <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_nor(vull, vull);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>
// CHECK-LE: or <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_nor(vbll, vbll);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>
// CHECK-LE: or <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vd = vec_nor(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: [[OR:%.+]] = or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-NEXT: xor <2 x i64> [[OR]], <i64 -1, i64 -1>
// CHECK-LE: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK-LE: [[OR:%.+]] = or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE-NEXT: xor <2 x i64> [[OR]], <i64 -1, i64 -1>

  /* vec_or */
  res_vsll = vec_or(vsll, vsll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vsll = vec_or(vbll, vsll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vsll = vec_or(vsll, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_or(vull, vull);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_or(vbll, vull);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_or(vull, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vbll = vec_or(vbll, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vd = vec_or(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK-LE: or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}

  res_vd = vec_or(vbll, vd);
// CHECK: [[T1:%.+]] = bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: [[T2:%.+]] = or <2 x i64> %{{[0-9]+}}, [[T1]]
// CHECK: bitcast <2 x i64> [[T2]] to <2 x double>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK-LE: [[T2:%.+]] = or <2 x i64> %{{[0-9]+}}, [[T1]]
// CHECK-LE: bitcast <2 x i64> [[T2]] to <2 x double>

  res_vd = vec_or(vd, vbll);
// CHECK: [[T1:%.+]] = bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: [[T2:%.+]] = or <2 x i64> [[T1]], %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[T2]] to <2 x double>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK-LE: [[T2:%.+]] = or <2 x i64> [[T1]], %{{[0-9]+}}
// CHECK-LE: bitcast <2 x i64> [[T2]] to <2 x double>

  res_vf = vec_re(vf);
// CHECK: call <4 x float> @llvm.ppc.vsx.xvresp(<4 x float>
// CHECK-LE: call <4 x float> @llvm.ppc.vsx.xvresp(<4 x float>

  res_vd = vec_re(vd);
// CHECK: call <2 x double> @llvm.ppc.vsx.xvredp(<2 x double>
// CHECK-LE: call <2 x double> @llvm.ppc.vsx.xvredp(<2 x double>

  res_vf = vec_rint(vf);
// CHECK: call <4 x float> @llvm.nearbyint.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.nearbyint.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_rint(vd);
// CHECK: call <2 x double> @llvm.nearbyint.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.nearbyint.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_rsqrte(vf);
// CHECK: call <4 x float> @llvm.ppc.vsx.xvrsqrtesp(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.ppc.vsx.xvrsqrtesp(<4 x float> %{{[0-9]+}})

  res_vd = vec_rsqrte(vd);
// CHECK: call <2 x double> @llvm.ppc.vsx.xvrsqrtedp(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.ppc.vsx.xvrsqrtedp(<2 x double> %{{[0-9]+}})

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vf = vec_sel(vd, vd, vbll);
// CHECK: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64> %{{[0-9]+}},
// CHECK: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: or <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>
// CHECK-LE: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK-LE: and <2 x i64> %{{[0-9]+}},
// CHECK-LE: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: or <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_sel(vd, vd, vull);
// CHECK: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64> %{{[0-9]+}},
// CHECK: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: or <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>
// CHECK-LE: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK-LE: and <2 x i64> %{{[0-9]+}},
// CHECK-LE: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: or <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>

  res_vf = vec_sqrt(vf);
// CHECK: call <4 x float> @llvm.sqrt.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.sqrt.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_sqrt(vd);
// CHECK: call <2 x double> @llvm.sqrt.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.sqrt.v2f64(<2 x double> %{{[0-9]+}})

  res_vd = vec_sub(vd, vd);
// CHECK: fsub <2 x double> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: fsub <2 x double> %{{[0-9]+}}, %{{[0-9]+}}

  res_vf = vec_trunc(vf);
// CHECK: call <4 x float> @llvm.trunc.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.trunc.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_trunc(vd);
// CHECK: call <2 x double> @llvm.trunc.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.trunc.v2f64(<2 x double> %{{[0-9]+}})

  /* vec_vor */
  res_vsll = vec_vor(vsll, vsll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vsll = vec_vor(vbll, vsll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vsll = vec_vor(vsll, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_vor(vull, vull);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_vor(vbll, vull);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_vor(vull, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vbll = vec_vor(vbll, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  /* vec_xor */
  res_vsll = vec_xor(vsll, vsll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_xor(vbll, vsll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_xor(vsll, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_xor(vull, vull);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_xor(vbll, vull);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_xor(vull, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vbll = vec_xor(vbll, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_xor(vd, vd);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>
// CHECK-LE: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: bitcast <2 x i64> [[X1]] to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_xor(vd, vbll);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>
// CHECK-LE: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: bitcast <2 x i64> [[X1]] to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_xor(vbll, vd);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>
// CHECK-LE: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: bitcast <2 x i64> [[X1]] to <2 x double>

  /* vec_vxor */
  res_vsll = vec_vxor(vsll, vsll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_vxor(vbll, vsll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_vxor(vsll, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_vxor(vull, vull);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_vxor(vbll, vull);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_vxor(vull, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vbll = vec_vxor(vbll, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_cts(vd, 0);
// CHECK: fmul <2 x double>
// CHECK: fptosi <2 x double> %{{.*}} to <2 x i64>
// CHECK-LE: fmul <2 x double>
// CHECK-LE: fptosi <2 x double> %{{.*}} to <2 x i64>

  res_vsll = vec_cts(vd, 31);
// CHECK: fmul <2 x double>
// CHECK: fptosi <2 x double> %{{.*}} to <2 x i64>
// CHECK-LE: fmul <2 x double>
// CHECK-LE: fptosi <2 x double> %{{.*}} to <2 x i64>

  res_vsll = vec_ctu(vd, 0);
// CHECK: fmul <2 x double>
// CHECK: fptoui <2 x double> %{{.*}} to <2 x i64>
// CHECK-LE: fmul <2 x double>
// CHECK-LE: fptoui <2 x double> %{{.*}} to <2 x i64>

  res_vsll = vec_ctu(vd, 31);
// CHECK: fmul <2 x double>
// CHECK: fptoui <2 x double> %{{.*}} to <2 x i64>
// CHECK-LE: fmul <2 x double>
// CHECK-LE: fptoui <2 x double> %{{.*}} to <2 x i64>

  res_vd = vec_ctf(vsll, 0);
// CHECK: sitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK: fmul <2 x double>
// CHECK-LE: sitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK-LE: fmul <2 x double>

  res_vd = vec_ctf(vsll, 31);
// CHECK: sitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK: fmul <2 x double>
// CHECK-LE: sitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK-LE: fmul <2 x double>

  res_vd = vec_ctf(vull, 0);
// CHECK: uitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK: fmul <2 x double>
// CHECK-LE: uitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK-LE: fmul <2 x double>

  res_vd = vec_ctf(vull, 31);
// CHECK: uitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK: fmul <2 x double>
// CHECK-LE: uitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK-LE: fmul <2 x double>
}
Example #6
0
/* AltiVec version of dct_unquantize_h263
   this code assumes `block' is 16 bytes-aligned */
static void dct_unquantize_h263_altivec(MpegEncContext *s,
                                 DCTELEM *block, int n, int qscale)
{
    int i, level, qmul, qadd;
    int nCoeffs;

    assert(s->block_last_index[n]>=0);

    qadd = (qscale - 1) | 1;
    qmul = qscale << 1;

    if (s->mb_intra) {
        if (!s->h263_aic) {
            if (n < 4)
                block[0] = block[0] * s->y_dc_scale;
            else
                block[0] = block[0] * s->c_dc_scale;
        }else
            qadd = 0;
        i = 1;
        nCoeffs= 63; //does not always use zigzag table
    } else {
        i = 0;
        nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
    }

    {
        register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
        DECLARE_ALIGNED(16, short, qmul8) = qmul;
        DECLARE_ALIGNED(16, short, qadd8) = qadd;
        register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
        register vector bool short blockv_null, blockv_neg;
        register short backup_0 = block[0];
        register int j = 0;

        qmulv = vec_splat((vec_s16)vec_lde(0, &qmul8), 0);
        qaddv = vec_splat((vec_s16)vec_lde(0, &qadd8), 0);
        nqaddv = vec_sub(vczero, qaddv);

#if 0   // block *is* 16 bytes-aligned, it seems.
        // first make sure block[j] is 16 bytes-aligned
        for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
            level = block[j];
            if (level) {
                if (level < 0) {
                    level = level * qmul - qadd;
                } else {
                    level = level * qmul + qadd;
                }
                block[j] = level;
            }
        }
#endif

        // vectorize all the 16 bytes-aligned blocks
        // of 8 elements
        for(; (j + 7) <= nCoeffs ; j+=8) {
            blockv = vec_ld(j << 1, block);
            blockv_neg = vec_cmplt(blockv, vczero);
            blockv_null = vec_cmpeq(blockv, vczero);
            // choose between +qadd or -qadd as the third operand
            temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
            // multiply & add (block{i,i+7} * qmul [+-] qadd)
            temp1 = vec_mladd(blockv, qmulv, temp1);
            // put 0 where block[{i,i+7} used to have 0
            blockv = vec_sel(temp1, blockv, blockv_null);
            vec_st(blockv, j << 1, block);
        }

        // if nCoeffs isn't a multiple of 8, finish the job
        // using good old scalar units.
        // (we could do it using a truncated vector,
        // but I'm not sure it's worth the hassle)
        for(; j <= nCoeffs ; j++) {
            level = block[j];
            if (level) {
                if (level < 0) {
                    level = level * qmul - qadd;
                } else {
                    level = level * qmul + qadd;
                }
                block[j] = level;
            }
        }

        if (i == 1) {
            // cheat. this avoid special-casing the first iteration
            block[0] = backup_0;
        }
    }
}
Example #7
0
void iquant_intra_m1_altivec(IQUANT_INTRA_PDECL)
{
    int i;
    vector signed short vsrc;
    uint16_t *qmat;
    vector unsigned short vqmat;
    vector unsigned short vmquant;
    vector bool short eqzero, ltzero;
    vector signed short val, t0;
    vector signed short zero, one;
    vector unsigned int four;
    vector signed short min, max;
    int offset, offset2;
    int16_t dst0;
    union {
	vector unsigned short vu16;
	unsigned short mquant;
	vector signed int vs32;
	struct {
	    signed int pad[3];
	    signed int sum;
	} s;
    } vu;
#ifdef ALTIVEC_DST
    DataStreamControl dsc;
#endif

#ifdef ALTIVEC_VERIFY /* {{{ */
    if (NOT_VECTOR_ALIGNED(wsp->intra_q_mat))
	mjpeg_error_exit1("iquant_intra_m1: wsp->intra_q_mat %% 16 != 0, (%d)",
	    wsp->intra_q_mat);

    if (NOT_VECTOR_ALIGNED(src))
	mjpeg_error_exit1("iquant_intra_m1: src %% 16 != 0, (%d)", src);

    if (NOT_VECTOR_ALIGNED(dst))
	mjpeg_error_exit1("iquant_intra_m1: dst %% 16 != 0, (%d)", dst);

    for (i = 0; i < 64; i++)
	if (src[i] < -256 || src[i] > 255)
	    mjpeg_error_exit1("iquant_intra_m2: -256 > src[%i] > 255, (%d)",
		i, src[i]);
#endif /* }}} */

    AMBER_START;

    dst0 = src[0] << (3 - dc_prec);

    qmat = (uint16_t*)wsp->intra_q_mat;

#ifdef ALTIVEC_DST
    dsc.control = DATA_STREAM_CONTROL(64/8,1,0);
    vec_dst(src, dsc.control, 0);
    vec_dst(qmat, dsc.control, 1);
#endif

    /* vmquant = (vector unsigned short)(mquant); */
    vu.mquant = (unsigned short)mquant;
    vmquant = vec_splat(vu.vu16, 0);

    zero = vec_splat_s16(0);
    one = vec_splat_s16(1);
    four = vec_splat_u32(4);
    /* max = (2047); min = (-2048); {{{ */
    vu8(max) = vec_splat_u8(0x7);
    t0 = vec_splat_s16(-1); /* 0xffff */
    vu8(max) = vec_mergeh(vu8(max), vu8(t0)); /* 0x07ff == 2047 */
    min = vec_sub(t0, max);
    /* }}} */
    offset = 0;

#if 1
    vsrc = vec_ld(offset, (signed short*)src);
    vqmat = vec_ld(offset, (unsigned short*)qmat);
    i = (64/8) - 1;
    do {
	/* intra_q[i] * mquant */
	vu16(vqmat) = vec_mulo(vu8(vqmat), vu8(vmquant));

	/* save sign */
	ltzero = vec_cmplt(vsrc, zero);
	eqzero = vec_cmpeq(vsrc, zero);

	/* val = abs(src) */
	t0 = vec_sub(zero, vsrc);
	val = vec_max(t0, vsrc);

	/* val = (src * quant) >> 4 */
	vs32(t0) = vec_mule(val, vs16(vqmat));
	vs32(val) = vec_mulo(val, vs16(vqmat));
	vs32(t0) = vec_sra(vs32(t0), four);
	vs16(t0) = vec_pack(vs32(t0), vs32(t0));
	vs32(val) = vec_sra(vs32(val), four);
	vs16(val) = vec_pack(vs32(val), vs32(val));
	val = vec_mergeh(vs16(t0), vs16(val));

	offset2 = offset;
	offset += 8*sizeof(int16_t);
	vsrc = vec_ld(offset, (signed short*)src);
	vqmat = vec_ld(offset, (unsigned short*)qmat);

	/* val = val - 1&~(val|val==0) */
	t0 = vec_or(val, eqzero);
	t0 = vec_andc(one, t0);
	val = vec_sub(val, t0);

	/* restore sign */
	t0 = vec_sub(zero, val);
	val = vec_sel(val, t0, ltzero);

	/* val = (val > 2047) ? ((val < -2048) ? -2048 : val); */
	val = vec_min(val, max);
	val = vec_max(val, min);

	vec_st(val, offset2, dst);
    } while (--i);
    /* intra_q[i] * mquant */
    vu16(vqmat) = vec_mulo(vu8(vqmat), vu8(vmquant));

    /* save sign */
    ltzero = vec_cmplt(vsrc, zero);
    eqzero = vec_cmpeq(vsrc, zero);

    /* val = abs(src) */
    t0 = vec_sub(zero, vsrc);
    val = vec_max(t0, vsrc);

    /* val = (src * quant) >> 4 */
    vs32(t0) = vec_mule(val, vs16(vqmat));
    vs32(val) = vec_mulo(val, vs16(vqmat));
    vs32(t0) = vec_sra(vs32(t0), four);
    vs16(t0) = vec_pack(vs32(t0), vs32(t0));
    vs32(val) = vec_sra(vs32(val), four);
    vs16(val) = vec_pack(vs32(val), vs32(val));
    val = vec_mergeh(vs16(t0), vs16(val));

    /* val = val - 1&~(val|val==0) */
    t0 = vec_or(val, eqzero);
    t0 = vec_andc(one, t0);
    val = vec_sub(val, t0);

    /* restore sign */
    t0 = vec_sub(zero, val);
    val = vec_sel(val, t0, ltzero);

    /* val = (val > 2047) ? ((val < -2048) ? -2048 : val); */
    val = vec_min(val, max);
    val = vec_max(val, min);

    vec_st(val, offset, dst);
#else
    /* {{{ */
    i = (64/8);
    do {
	vsrc = vec_ld(offset, (signed short*)src);
	vqmat = vec_ld(offset, (unsigned short*)qmat);

	/* intra_q[i] * mquant */
	vu16(vqmat) = vec_mulo(vu8(vqmat), vu8(vmquant));

	/* save sign */
	ltzero = vec_cmplt(vsrc, zero);
	eqzero = vec_cmpeq(vsrc, zero);

	/* val = abs(src) */
	t0 = vec_sub(zero, vsrc);
	val = vec_max(t0, vsrc);

	/* val = (src * quant) >> 4 */
	vs32(t0) = vec_mule(val, vs16(vqmat));
	vs32(val) = vec_mulo(val, vs16(vqmat));
	vs32(t0) = vec_sra(vs32(t0), four);
	vs16(t0) = vec_pack(vs32(t0), vs32(t0));
	vs32(val) = vec_sra(vs32(val), four);
	vs16(val) = vec_pack(vs32(val), vs32(val));
	val = vec_mergeh(vs16(t0), vs16(val));

	/* val = val - 1&~(val|val==0) */
	t0 = vec_or(val, eqzero);
	t0 = vec_andc(one, t0);
	val = vec_sub(val, t0);

	/* restore sign */
	t0 = vec_sub(zero, val);
	val = vec_sel(val, t0, ltzero);

	/* val = (val > 2047) ? ((val < -2048) ? -2048 : val); */
	val = vec_min(val, max);
	val = vec_max(val, min);

	vec_st(val, offset, dst);

	offset += 8*sizeof(int16_t);
    } while (--i);
    /* }}} */
#endif

    dst[0] = dst0;

    AMBER_STOP;
}
Example #8
0
void test1() {
// CHECK-LABEL: define void @test1

  res_vd = vec_add(vd, vd);
// CHECK: fadd <2 x double>

  res_vd = vec_and(vbll, vd);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  res_vd = vec_and(vd, vbll);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  res_vd = vec_and(vd, vd);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_andc(vbll, vd);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_andc(vd, vbll);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_andc(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_ceil(vd);
// CHECK: call <2 x double> @llvm.ceil.v2f64(<2 x double> %{{[0-9]*}})

  res_vf = vec_ceil(vf);
// CHECK: call <4 x float> @llvm.ceil.v4f32(<4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpeq(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpeqdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpeq(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpeqsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpge(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpge(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpgt(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpgt(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmple(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmple(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmplt(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmplt(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  /* vec_div */
  res_vf = vec_div(vf, vf);
// CHECK: @llvm.ppc.vsx.xvdivsp

  res_vd = vec_div(vd, vd);
// CHECK: @llvm.ppc.vsx.xvdivdp

  /* vec_max */
  res_vf = vec_max(vf, vf);
// CHECK: @llvm.ppc.vsx.xvmaxsp

  res_vd = vec_max(vd, vd);
// CHECK: @llvm.ppc.vsx.xvmaxdp

  res_vf = vec_vmaxfp(vf, vf);
// CHECK: @llvm.ppc.vsx.xvmaxsp

  /* vec_min */
  res_vf = vec_min(vf, vf);
// CHECK: @llvm.ppc.vsx.xvminsp

  res_vd = vec_min(vd, vd);
// CHECK: @llvm.ppc.vsx.xvmindp

  res_vf = vec_vminfp(vf, vf);
// CHECK: @llvm.ppc.vsx.xvminsp

  res_d = __builtin_vsx_xsmaxdp(d, d);
// CHECK: @llvm.ppc.vsx.xsmaxdp

  res_d = __builtin_vsx_xsmindp(d, d);
// CHECK: @llvm.ppc.vsx.xsmindp

  /* vec_perm */
  res_vsll = vec_perm(vsll, vsll, vuc);
// CHECK: @llvm.ppc.altivec.vperm

  res_vull = vec_perm(vull, vull, vuc);
// CHECK: @llvm.ppc.altivec.vperm

  res_vd = vec_perm(vd, vd, vuc);
// CHECK: @llvm.ppc.altivec.vperm

  res_vsll = vec_vperm(vsll, vsll, vuc);
// CHECK: @llvm.ppc.altivec.vperm

  res_vull = vec_vperm(vull, vull, vuc);
// CHECK: @llvm.ppc.altivec.vperm

  res_vd = vec_vperm(vd, vd, vuc);
// CHECK: @llvm.ppc.altivec.vperm

  /* vec_vsx_ld */

  res_vsi = vec_vsx_ld(0, &vsi);
// CHECK: @llvm.ppc.vsx.lxvw4x

  res_vui = vec_vsx_ld(0, &vui);
// CHECK: @llvm.ppc.vsx.lxvw4x

  res_vf = vec_vsx_ld (0, &vf);
// CHECK: @llvm.ppc.vsx.lxvw4x

  res_vsll = vec_vsx_ld(0, &vsll);
// CHECK: @llvm.ppc.vsx.lxvd2x

  res_vull = vec_vsx_ld(0, &vull);
// CHECK: @llvm.ppc.vsx.lxvd2x

  res_vd = vec_vsx_ld(0, &vd);
// CHECK: @llvm.ppc.vsx.lxvd2x

  /* vec_vsx_st */

  vec_vsx_st(vsi, 0, &res_vsi);
// CHECK: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vui, 0, &res_vui);
// CHECK: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vf, 0, &res_vf);
// CHECK: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsll, 0, &res_vsll);
// CHECK: @llvm.ppc.vsx.stxvd2x

  vec_vsx_st(vull, 0, &res_vull);
// CHECK: @llvm.ppc.vsx.stxvd2x

  vec_vsx_st(vd, 0, &res_vd);
// CHECK: @llvm.ppc.vsx.stxvd2x

  /* vec_and */
  res_vsll = vec_and(vsll, vsll);
// CHECK: and <2 x i64>

  res_vsll = vec_and(vbll, vsll);
// CHECK: and <2 x i64>

  res_vsll = vec_and(vsll, vbll);
// CHECK: and <2 x i64>

  res_vull = vec_and(vull, vull);
// CHECK: and <2 x i64>

  res_vull = vec_and(vbll, vull);
// CHECK: and <2 x i64>

  res_vull = vec_and(vull, vbll);
// CHECK: and <2 x i64>

  res_vbll = vec_and(vbll, vbll);
// CHECK: and <2 x i64>

  /* vec_vand */
  res_vsll = vec_vand(vsll, vsll);
// CHECK: and <2 x i64>

  res_vsll = vec_vand(vbll, vsll);
// CHECK: and <2 x i64>

  res_vsll = vec_vand(vsll, vbll);
// CHECK: and <2 x i64>

  res_vull = vec_vand(vull, vull);
// CHECK: and <2 x i64>

  res_vull = vec_vand(vbll, vull);
// CHECK: and <2 x i64>

  res_vull = vec_vand(vull, vbll);
// CHECK: and <2 x i64>

  res_vbll = vec_vand(vbll, vbll);
// CHECK: and <2 x i64>

  /* vec_andc */
  res_vsll = vec_andc(vsll, vsll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>

  res_vsll = vec_andc(vbll, vsll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>

  res_vsll = vec_andc(vsll, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>

  res_vull = vec_andc(vull, vull);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>

  res_vull = vec_andc(vbll, vull);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>

  res_vull = vec_andc(vull, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>

  res_vbll = vec_andc(vbll, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>

  res_vf = vec_floor(vf);
// CHECK: call <4 x float> @llvm.floor.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_floor(vd);
// CHECK: call <2 x double> @llvm.floor.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_madd(vf, vf, vf);
// CHECK: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})

  res_vd = vec_madd(vd, vd, vd);
// CHECK: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})

  res_vf = vec_msub(vf, vf, vf);
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>

  res_vd = vec_msub(vd, vd, vd);
// CHECK: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>

  res_vf = vec_mul(vf, vf);
// CHECK: fmul <4 x float> %{{[0-9]+}}, %{{[0-9]+}}

  res_vd = vec_mul(vd, vd);
// CHECK: fmul <2 x double> %{{[0-9]+}}, %{{[0-9]+}}

  res_vf = vec_nearbyint(vf);
// CHECK: call <4 x float> @llvm.round.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_nearbyint(vd);
// CHECK: call <2 x double> @llvm.round.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_nmadd(vf, vf, vf);
// CHECK: [[FM:[0-9]+]] = call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})
// CHECK-NEXT: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %[[FM]]

  res_vd = vec_nmadd(vd, vd, vd);
// CHECK: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})
// CHECK-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]

  res_vf = vec_nmsub(vf, vf, vf);
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}

  res_vd = vec_nmsub(vd, vd, vd);
// CHECK: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>
// CHECK-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]

  /* vec_nor */
  res_vsll = vec_nor(vsll, vsll);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>

  res_vull = vec_nor(vull, vull);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>

  res_vull = vec_nor(vbll, vbll);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>

  res_vd = vec_nor(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: [[OR:%.+]] = or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-NEXT: xor <2 x i64> [[OR]], <i64 -1, i64 -1>

  /* vec_or */
  res_vsll = vec_or(vsll, vsll);
// CHECK: or <2 x i64>

  res_vsll = vec_or(vbll, vsll);
// CHECK: or <2 x i64>

  res_vsll = vec_or(vsll, vbll);
// CHECK: or <2 x i64>

  res_vull = vec_or(vull, vull);
// CHECK: or <2 x i64>

  res_vull = vec_or(vbll, vull);
// CHECK: or <2 x i64>

  res_vull = vec_or(vull, vbll);
// CHECK: or <2 x i64>

  res_vbll = vec_or(vbll, vbll);
// CHECK: or <2 x i64>

  res_vd = vec_or(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}

  res_vf = vec_rint(vf);
// CHECK: call <4 x float> @llvm.nearbyint.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_rint(vd);
// CHECK: call <2 x double> @llvm.nearbyint.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_rsqrte(vf);
// CHECK: call <4 x float> @llvm.ppc.vsx.xvrsqrtesp(<4 x float> %{{[0-9]+}})

  res_vd = vec_rsqrte(vd);
// CHECK: call <2 x double> @llvm.ppc.vsx.xvrsqrtedp(<2 x double> %{{[0-9]+}})

  dummy();
// CHECK: call void @dummy()

  res_vf = vec_sel(vd, vd, vbll);
// CHECK: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64> %{{[0-9]+}},
// CHECK: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: or <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_sel(vd, vd, vull);
// CHECK: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64> %{{[0-9]+}},
// CHECK: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: or <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>

  res_vf = vec_sqrt(vf);
// CHECK: call <4 x float> @llvm.sqrt.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_sqrt(vd);
// CHECK: call <2 x double> @llvm.sqrt.v2f64(<2 x double> %{{[0-9]+}})

  res_vd = vec_sub(vd, vd);
// CHECK: fsub <2 x double> %{{[0-9]+}}, %{{[0-9]+}}

  res_vf = vec_trunc(vf);
// CHECK: call <4 x float> @llvm.trunc.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_trunc(vd);
// CHECK: call <2 x double> @llvm.trunc.v2f64(<2 x double> %{{[0-9]+}})

  /* vec_vor */
  res_vsll = vec_vor(vsll, vsll);
// CHECK: or <2 x i64>

  res_vsll = vec_vor(vbll, vsll);
// CHECK: or <2 x i64>

  res_vsll = vec_vor(vsll, vbll);
// CHECK: or <2 x i64>

  res_vull = vec_vor(vull, vull);
// CHECK: or <2 x i64>

  res_vull = vec_vor(vbll, vull);
// CHECK: or <2 x i64>

  res_vull = vec_vor(vull, vbll);
// CHECK: or <2 x i64>

  res_vbll = vec_vor(vbll, vbll);
// CHECK: or <2 x i64>

  /* vec_xor */
  res_vsll = vec_xor(vsll, vsll);
// CHECK: xor <2 x i64>

  res_vsll = vec_xor(vbll, vsll);
// CHECK: xor <2 x i64>

  res_vsll = vec_xor(vsll, vbll);
// CHECK: xor <2 x i64>

  res_vull = vec_xor(vull, vull);
// CHECK: xor <2 x i64>

  res_vull = vec_xor(vbll, vull);
// CHECK: xor <2 x i64>

  res_vull = vec_xor(vull, vbll);
// CHECK: xor <2 x i64>

  res_vbll = vec_xor(vbll, vbll);
// CHECK: xor <2 x i64>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_xor(vd, vd);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_xor(vd, vbll);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_xor(vbll, vd);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>

  /* vec_vxor */
  res_vsll = vec_vxor(vsll, vsll);
// CHECK: xor <2 x i64>

  res_vsll = vec_vxor(vbll, vsll);
// CHECK: xor <2 x i64>

  res_vsll = vec_vxor(vsll, vbll);
// CHECK: xor <2 x i64>

  res_vull = vec_vxor(vull, vull);
// CHECK: xor <2 x i64>

  res_vull = vec_vxor(vbll, vull);
// CHECK: xor <2 x i64>

  res_vull = vec_vxor(vull, vbll);
// CHECK: xor <2 x i64>

  res_vbll = vec_vxor(vbll, vbll);
// CHECK: xor <2 x i64>

}
Example #9
0
void pix_compare :: processYUV_Altivec(imageStruct &image, imageStruct &right)
{
register int h,w,i,j,width;

    h = image.ysize;
    w = image.xsize/8;
    width = image.xsize/8;

    //check to see if the buffer isn't 16byte aligned (highly unlikely)
    if (image.ysize*image.xsize % 16 != 0){
        error("image not properly aligned for Altivec");
        return;
        }

    register vector unsigned short	UVres1, Yres1, UVres2, Yres2;//interleave;
    register vector unsigned short	hiImage, loImage;
    register vector bool short		Ymask1;
    register vector unsigned char	one = vec_splat_u8(1);

    vector unsigned char	*inData = (vector unsigned char*) image.data;
    vector unsigned char	*rightData = (vector unsigned char*) right.data;

    #ifndef PPC970
    //setup the cache prefetch -- A MUST!!!
    UInt32			prefetchSize = GetPrefetchConstant( 16, 1, 256 );
    vec_dst( inData, prefetchSize, 0 );
    vec_dst( rightData, prefetchSize, 1 );
    #endif
    if (m_direction) {

    for ( i=0; i<h; i++){
        for (j=0; j<w; j++)
        {
        #ifndef PPC970
        //this function is probably memory bound on most G4's -- what else is new?
        vec_dst( inData, prefetchSize, 0 );
        vec_dst( rightData, prefetchSize, 1 );
        #endif

        //separate the U and V from Y
        UVres1 = (vector unsigned short)vec_mule(one,inData[0]);
        UVres2 = (vector unsigned short)vec_mule(one,rightData[0]);

        //vec_mulo Y * 1 to short vector Y Y Y Y shorts
        Yres1 = (vector unsigned short)vec_mulo(one,inData[0]);
        Yres2 = (vector unsigned short)vec_mulo(one,rightData[0]);

         //compare the Y values
         Ymask1 = vec_cmpgt(Yres1,Yres2);

         //bitwise comparison and move using the result of the comparison as a mask
         Yres1 = vec_sel(Yres2,Yres1,Ymask1);

         UVres1 = vec_sel(UVres2,UVres1,Ymask1);

         //merge the Y and UV back together
         hiImage = vec_mergeh(UVres1,Yres1);
         loImage = vec_mergel(UVres1,Yres1);

         //pack it back down to unsigned char to store
         inData[0] = vec_packsu(hiImage,loImage);

            inData++;
            rightData++;

        }
        #ifndef PPC970
        vec_dss(1);
        vec_dss(0);
        #endif

    }
    }else{

    for ( i=0; i<h; i++){
        for (j=0; j<w; j++)
        {
        #ifndef PPC970
        vec_dst( inData, prefetchSize, 0 );
        vec_dst( rightData, prefetchSize, 1 );
        #endif

        UVres1 = (vector unsigned short)vec_mule(one,inData[0]);
        UVres2 = (vector unsigned short)vec_mule(one,rightData[0]);

        //vec_mulo Y * 1 to short vector Y Y Y Y shorts
        Yres1 = (vector unsigned short)vec_mulo(one,inData[0]);
        Yres2 = (vector unsigned short)vec_mulo(one,rightData[0]);

         Ymask1 = vec_cmplt(Yres1,Yres2);

         Yres1 = vec_sel(Yres2,Yres1,Ymask1);

         UVres1 = vec_sel(UVres2,UVres1,Ymask1);

         hiImage = vec_mergeh(UVres1,Yres1);
         loImage = vec_mergel(UVres1,Yres1);

         inData[0] = vec_packsu(hiImage,loImage);

            inData++;
            rightData++;

        }
        #ifndef PPC970
        vec_dss(1);
        vec_dss(0);
        #endif
    }
    }
}
Example #10
0
/* a vectorized version of the Voigt function using Altivec / VMX instructions */
void my_voigt(const float *damping, const float *frequency_offset, float *voigt_value, int N)
{
   // coefficients of the rational approximation formula
   // to the complementary error function
   const vector float A0 = (vector float) (122.607931777104326f);
   const vector float A1 = (vector float) (214.382388694706425f);
   const vector float A2 = (vector float) (181.928533092181549f);
   const vector float A3 = (vector float) (93.155580458138441f);
   const vector float A4 = (vector float) (30.180142196210589f);
   const vector float A5 = (vector float) (5.912626209773153f);
   const vector float A6 = (vector float) (0.564189583562615f);
   const vector float B0 = (vector float) (122.60793177387535f);
   const vector float B1 = (vector float) (352.730625110963558f);
   const vector float B2 = (vector float) (457.334478783897737f);
   const vector float B3 = (vector float) (348.703917719495792f);
   const vector float B4 = (vector float) (170.354001821091472f);
   const vector float B5 = (vector float) (53.992906912940207f);
   const vector float B6 = (vector float) (10.479857114260399f);

   vector float ivsigno;
   vector float V;
   vector float Z1_real;
   vector float Z1_imag;
   vector float Z2_real;
   vector float Z2_imag;
   vector float Z3_real;
   vector float Z3_imag;
   vector float Z4_real;
   vector float Z4_imag;
   vector float Z5_real;
   vector float Z5_imag;
   vector float Z6_real;
   vector float Z6_imag;
   vector float ZZ1_real;
   vector float ZZ1_imag;
   vector float ZZ2_real;
   vector float ZZ2_imag;
   vector float ZZ3_real;
   vector float ZZ3_imag;
   vector float ZZ4_real;
   vector float ZZ4_imag;
   vector float ZZ5_real;
   vector float ZZ5_imag;
   vector float ZZ6_real;
   vector float ZZ6_imag;
   vector float ZZ7_real;
   vector float ZZ7_imag;
   vector float division_factor;
   vector float ZZZ_real;

   vector bool int mask;
   const vector float one = (vector float) (1.0f);
   const vector float zero = (vector float) (-0.0f);
   const vector float mone = (vector float) (-1.0f);

   vector float damp;
   vector float offs;

   for(int i=0; i<N; i+=4){
      damp = vec_ld(0,(float *) &damping[i]);
      offs = vec_ld(0,(float *) &frequency_offset[i]);
      mask = vec_cmplt(offs,zero);
      ivsigno = vec_sel(mone, one, mask);
      //ivsigno = (vector float) (1.0f);
      V = vec_madd(ivsigno, offs, zero);
      Z1_real = vec_madd(A6, damp, A5);
      Z1_imag = vec_nmsub(A6, V, zero);
      Z2_real = vec_add(vec_madd(Z1_real,damp,zero),vec_madd(Z1_imag,V,A4)); 
      Z2_imag = vec_add(vec_nmsub(Z1_real,V,zero),vec_madd(Z1_imag,damp,zero));
      Z3_real = vec_add(vec_madd(Z2_real,damp,zero),vec_madd(Z2_imag,V,A3));
      Z3_imag = vec_add(vec_nmsub(Z2_real,V,zero),vec_madd(Z2_imag,damp,zero));
      Z4_real = vec_add(vec_madd(Z3_real,damp,zero),vec_madd(Z3_imag,V,A2));
      Z4_imag = vec_add(vec_nmsub(Z3_real,V,zero),vec_madd(Z3_imag,damp,zero));
      Z5_real = vec_add(vec_madd(Z4_real,damp,zero),vec_madd(Z4_imag,V,A1));
      Z5_imag = vec_add(vec_nmsub(Z4_real,V,zero),vec_madd(Z4_imag,damp,zero));
      Z6_real = vec_add(vec_madd(Z5_real,damp,zero),vec_madd(Z5_imag,V,A0));
      Z6_imag = vec_add(vec_nmsub(Z5_real,V,zero),vec_madd(Z5_imag,damp,zero));
      ZZ1_real = vec_add(damp,B6); 
      ZZ1_imag = vec_madd(mone,V,zero);
      ZZ2_real = vec_add(vec_madd(ZZ1_real,damp,zero),vec_madd(ZZ1_imag,V,B5));
      ZZ2_imag = vec_add(vec_nmsub(ZZ1_real,V,zero),vec_madd(ZZ1_imag,damp,zero));
      ZZ3_real = vec_add(vec_madd(ZZ2_real,damp,zero),vec_madd(ZZ2_imag,V,B4));
      ZZ3_imag = vec_add(vec_nmsub(ZZ2_real,V,zero),vec_madd(ZZ2_imag,damp,zero));
      ZZ4_real = vec_add(vec_madd(ZZ3_real,damp,zero),vec_madd(ZZ3_imag,V,B3));
      ZZ4_imag = vec_add(vec_nmsub(ZZ3_real,V,zero),vec_madd(ZZ3_imag,damp,zero));
      ZZ5_real = vec_add(vec_madd(ZZ4_real,damp,zero),vec_madd(ZZ4_imag,V,B2));
      ZZ5_imag = vec_add(vec_nmsub(ZZ4_real,V,zero),vec_madd(ZZ4_imag,damp,zero));
      ZZ6_real = vec_add(vec_madd(ZZ5_real,damp,zero),vec_madd(ZZ5_imag,V,B1));
      ZZ6_imag = vec_add(vec_nmsub(ZZ5_real,V,zero),vec_madd(ZZ5_imag,damp,zero));
      ZZ7_real = vec_add(vec_madd(ZZ6_real,damp,zero),vec_madd(ZZ6_imag,V,B0));
      ZZ7_imag = vec_add(vec_nmsub(ZZ6_real,V,zero),vec_madd(ZZ6_imag,damp,zero));
      division_factor = vec_div(one,vec_madd(ZZ7_real,ZZ7_real,vec_madd(ZZ7_imag,ZZ7_imag,zero)));
      ZZZ_real = vec_madd(vec_madd(Z6_real,ZZ7_real,vec_madd(Z6_imag,ZZ7_imag,zero)),division_factor,zero); 
      vec_st(ZZZ_real,0,(float *)&voigt_value[i]);
   }
}
Example #11
0
void
mandel_altivec(unsigned char *image, const struct spec *s)
{
    vector float xmin, ymin, xscale, yscale, iter_scale, depth_scale;
    vector float threshold = VF_ALL(4.0);
    vector float one = VF_ALL(1.0);
    vector float zero = VF_ALL(0.0);

    xmin = VF_ALL(s->xlim[0]);
    ymin = VF_ALL(s->ylim[0]);
    xscale = VF_ALL((s->xlim[1] - s->xlim[0]) / s->width);
    yscale = VF_ALL((s->ylim[1] - s->ylim[0]) / s->height);
    iter_scale = VF_ALL(1.0f / s->iterations);
    depth_scale = VF_ALL(s->depth - 1);

    #pragma omp parallel for schedule(dynamic, 1)
    for (int y = 0; y < s->height; y++) {
        for (int x = 0; x < s->width; x += 4) {
            vector float mx = (vector float) { x, x + 1, x + 2, x + 3 };
            vector float my = VF_ALL(y);
            vector float cr = vec_madd(mx, xscale, xmin);
            vector float ci = vec_madd(my, yscale, ymin);
            vector float zr = cr;
            vector float zi = ci;

            int k = 1;
            vector float mk = VF_ALL(1);
            while (++k < s->iterations) {
                /* Compute z1 from z0 */
                vector float zr2cr = vec_madd(zr, zr, cr);
                vector float zi2 = vec_madd(zi, zi, zero);
                vector float zrzi = vec_madd(zr, zi, zero);

                /* zr1 = zr0 * zr0 - zi0 * zi0 + cr */
                /* zi1 = zr0 * zi0 + zr0 * zi0 + ci */
                zr = vec_sub(zr2cr, zi2);
                zi = vec_add(vec_add(zrzi, zrzi), ci);

                /* Increment k */
                vector float zr2 = vec_madd(zr, zr, zero);
                vector float mag2 = vec_madd(zi, zi, zr2);
                vector bool int mask = vec_cmplt(mag2, threshold);
                mk = vec_add(mk, vec_and(one, mask));

                if(vec_all_ge(mag2, threshold))
                    break;
            }

            mk = vec_madd(mk, iter_scale, zero);
            mk = vec_madd(vec_rsqrte(mk), mk, zero);
            mk = vec_madd(mk, depth_scale, zero);

            vector int pixels = vec_cts(mk, 0);

            unsigned char *dst = image + y * s->width * 3 + x * 3;
            unsigned char *src = (unsigned char *)&pixels;

            for (int i = 0; i < 4; i++) {
                dst[i * 3 + 0] = src[(i * 4) + 3];
                dst[i * 3 + 1] = src[(i * 4) + 3];
                dst[i * 3 + 2] = src[(i * 4) + 3];
            }
        }
    }
}