Example #1
0
static int pop_vlan(struct sk_buff *skb)
{
	__be16 tci;
	int err;

	if (likely(vlan_tx_tag_present(skb))) {
		vlan_set_tci(skb, 0);
	} else {
		if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
			     skb->len < VLAN_ETH_HLEN))
			return 0;

		err = __pop_vlan_tci(skb, &tci);
		if (err)
			return err;
	}
	/* move next vlan tag to hw accel tag */
	if (likely(skb->protocol != htons(ETH_P_8021Q) ||
		   skb->len < VLAN_ETH_HLEN))
		return 0;

	err = __pop_vlan_tci(skb, &tci);
	if (unlikely(err))
		return err;

	__vlan_hwaccel_put_tag(skb, ntohs(tci));
	return 0;
}
Example #2
0
/**
 *	ovs_tnl_rcv - ingress point for generic tunnel code
 *
 * @vport: port this packet was received on
 * @skb: received packet
 * @tos: ToS from encapsulating IP packet, used to copy ECN bits
 *
 * Must be called with rcu_read_lock.
 *
 * Packets received by this function are in the following state:
 * - skb->data points to the inner Ethernet header.
 * - The inner Ethernet header is in the linear data area.
 * - skb->csum does not include the inner Ethernet header.
 * - The layer pointers are undefined.
 */
void ovs_tnl_rcv(struct vport *vport, struct sk_buff *skb,
		 struct ovs_key_ipv4_tunnel *tun_key)
{
	struct ethhdr *eh;

	skb_reset_mac_header(skb);
	eh = eth_hdr(skb);

	if (likely(ntohs(eh->h_proto) >= ETH_P_802_3_MIN))
		skb->protocol = eh->h_proto;
	else
		skb->protocol = htons(ETH_P_802_2);

	skb_dst_drop(skb);
	nf_reset(skb);
	skb_clear_rxhash(skb);
	secpath_reset(skb);
	vlan_set_tci(skb, 0);

	if (unlikely(compute_ip_summed(skb, false))) {
		kfree_skb(skb);
		return;
	}

	ovs_vport_receive(vport, skb, tun_key);
}
Example #3
0
int iptunnel_pull_header(struct sk_buff *skb, int hdr_len, __be16 inner_proto)
{
	if (unlikely(!pskb_may_pull(skb, hdr_len)))
		return -ENOMEM;

	skb_pull_rcsum(skb, hdr_len);

	if (inner_proto == htons(ETH_P_TEB)) {
		struct ethhdr *eh;

		if (unlikely(!pskb_may_pull(skb, ETH_HLEN)))
			return -ENOMEM;

		eh = (struct ethhdr *)skb->data;

		if (likely(ntohs(eh->h_proto) >= ETH_P_802_3_MIN))
			skb->protocol = eh->h_proto;
		else
			skb->protocol = htons(ETH_P_802_2);

	} else {
		skb->protocol = inner_proto;
	}

	nf_reset(skb);
	secpath_reset(skb);
	skb_clear_hash(skb);
	skb_dst_drop(skb);
	vlan_set_tci(skb, 0);
	skb_set_queue_mapping(skb, 0);
	skb->pkt_type = PACKET_HOST;
	return 0;
}
Example #4
0
int rpl_dev_queue_xmit(struct sk_buff *skb)
{
#undef dev_queue_xmit
	int err = -ENOMEM;

	if (vlan_tx_tag_present(skb) && !dev_supports_vlan_tx(skb->dev)) {
		int features;

		features = netif_skb_features(skb);

		if (!vlan_tso)
			features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
				      NETIF_F_UFO | NETIF_F_FSO);

		skb = __vlan_put_tag(skb, skb->vlan_proto, vlan_tx_tag_get(skb));
		if (unlikely(!skb))
			return err;
		vlan_set_tci(skb, 0);

		if (netif_needs_gso(skb, features)) {
			struct sk_buff *nskb;

			nskb = skb_gso_segment(skb, features);
			if (!nskb) {
				if (unlikely(skb_cloned(skb) &&
				    pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
					goto drop;

				skb_shinfo(skb)->gso_type &= ~SKB_GSO_DODGY;
				goto xmit;
			}

			if (IS_ERR(nskb)) {
				err = PTR_ERR(nskb);
				goto drop;
			}
			consume_skb(skb);
			skb = nskb;

			do {
				nskb = skb->next;
				skb->next = NULL;
				err = dev_queue_xmit(skb);
				skb = nskb;
			} while (skb);

			return err;
		}
	}
xmit:
	return dev_queue_xmit(skb);

drop:
	kfree_skb(skb);
	return err;
}
Example #5
0
int vxlan_xmit_skb(struct vxlan_sock *vs,
		   struct rtable *rt, struct sk_buff *skb,
		   __be32 src, __be32 dst, __u8 tos, __u8 ttl, __be16 df,
		   __be16 src_port, __be16 dst_port, __be32 vni)
{
	struct vxlanhdr *vxh;
	struct udphdr *uh;
	int min_headroom;
	int err;

	min_headroom = LL_RESERVED_SPACE(rt_dst(rt).dev) + rt_dst(rt).header_len
			+ VXLAN_HLEN + sizeof(struct iphdr)
			+ (vlan_tx_tag_present(skb) ? VLAN_HLEN : 0);

	/* Need space for new headers (invalidates iph ptr) */
	err = skb_cow_head(skb, min_headroom);
	if (unlikely(err)) {
		kfree_skb(skb);
		return err;
	}

	if (vlan_tx_tag_present(skb)) {
		if (unlikely(!vlan_insert_tag_set_proto(skb,
							skb->vlan_proto,
							vlan_tx_tag_get(skb))))
			return -ENOMEM;

		vlan_set_tci(skb, 0);
	}

	skb_reset_inner_headers(skb);

	vxh = (struct vxlanhdr *) __skb_push(skb, sizeof(*vxh));
	vxh->vx_flags = htonl(VXLAN_FLAGS);
	vxh->vx_vni = vni;

	__skb_push(skb, sizeof(*uh));
	skb_reset_transport_header(skb);
	uh = udp_hdr(skb);

	uh->dest = dst_port;
	uh->source = src_port;

	uh->len = htons(skb->len);
	uh->check = 0;

	vxlan_set_owner(vs->sock->sk, skb);

	skb = handle_offloads(skb);
	if (IS_ERR(skb))
		return PTR_ERR(skb);

	return iptunnel_xmit(vs->sock->sk, rt, skb, src, dst, IPPROTO_UDP,
			     tos, ttl, df, false);
}
Example #6
0
static int internal_dev_recv(struct vport *vport, struct sk_buff *skb)
{
	struct net_device *netdev = netdev_vport_priv(vport)->dev;
	int len;

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37)
	if (vlan_tx_tag_present(skb)) {
		if (unlikely(!__vlan_put_tag(skb,
					     skb->vlan_proto,
					     vlan_tx_tag_get(skb))))
			return 0;

		if (skb->ip_summed == CHECKSUM_COMPLETE)
			skb->csum = csum_add(skb->csum,
					     csum_partial(skb->data + (2 * ETH_ALEN),
							  VLAN_HLEN, 0));

		vlan_set_tci(skb, 0);
	}
#endif

	len = skb->len;

	skb_dst_drop(skb);
	nf_reset(skb);
	secpath_reset(skb);

	skb->dev = netdev;
	skb->pkt_type = PACKET_HOST;
	skb->protocol = eth_type_trans(skb, netdev);
	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);

	netif_rx(skb);

	return len;
}
Example #7
0
static int netdev_send(struct vport *vport, struct sk_buff *skb)
{
	struct netdev_vport *netdev_vport = netdev_vport_priv(vport);
	int mtu = netdev_vport->dev->mtu;
	int len;

	if (unlikely(packet_length(skb) > mtu && !skb_is_gso(skb))) {
		if (net_ratelimit())
			pr_warn("%s: dropped over-mtu packet: %d > %d\n",
				ovs_dp_name(vport->dp), packet_length(skb), mtu);
		goto error;
	}

	if (unlikely(skb_warn_if_lro(skb)))
		goto error;

	skb->dev = netdev_vport->dev;
	forward_ip_summed(skb, true);

	if (vlan_tx_tag_present(skb) && !dev_supports_vlan_tx(skb->dev)) {
		int features;

		features = netif_skb_features(skb);

		if (!vlan_tso)
			features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
				      NETIF_F_UFO | NETIF_F_FSO);

		if (netif_needs_gso(skb, features)) {
			struct sk_buff *nskb;

			nskb = skb_gso_segment(skb, features);
			if (!nskb) {
				if (unlikely(skb_cloned(skb) &&
				    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) {
					kfree_skb(skb);
					return 0;
				}

				skb_shinfo(skb)->gso_type &= ~SKB_GSO_DODGY;
				goto tag;
			}

			if (IS_ERR(nskb)) {
				kfree_skb(skb);
				return 0;
			}
			consume_skb(skb);
			skb = nskb;

			len = 0;
			do {
				nskb = skb->next;
				skb->next = NULL;

				skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
				if (likely(skb)) {
					len += skb->len;
					vlan_set_tci(skb, 0);
					dev_queue_xmit(skb);
				}

				skb = nskb;
			} while (skb);

			return len;
		}

tag:
		skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
		if (unlikely(!skb))
			return 0;
		vlan_set_tci(skb, 0);
	}

	len = skb->len;
	dev_queue_xmit(skb);

	return len;

error:
	kfree_skb(skb);
	ovs_vport_record_error(vport, VPORT_E_TX_DROPPED);
	return 0;
}
Example #8
0
int rpl_dev_queue_xmit(struct sk_buff *skb)
{
#undef dev_queue_xmit
	int err = -ENOMEM;
	bool vlan, mpls;

	vlan = mpls = false;

	/* Avoid traversing any VLAN tags that are present to determine if
	 * the ethtype is MPLS. Instead compare the mac_len (end of L2) and
	 * skb_network_offset() (beginning of L3) whose inequality will
	 * indicate the presence of an MPLS label stack. */
	if (skb->mac_len != skb_network_offset(skb) && !supports_mpls_gso())
		mpls = true;

	if (vlan_tx_tag_present(skb) && !dev_supports_vlan_tx(skb->dev))
		vlan = true;

	if (vlan || mpls) {
		int features;

		features = netif_skb_features(skb);

		if (vlan) {
			if (!vlan_tso)
				features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
					      NETIF_F_UFO | NETIF_F_FSO);

			skb = __vlan_put_tag(skb, skb->vlan_proto,
					     vlan_tx_tag_get(skb));
			if (unlikely(!skb))
				return err;
			vlan_set_tci(skb, 0);
		}

		/* As of v3.11 the kernel provides an mpls_features field in
		 * struct net_device which allows devices to advertise which
		 * features its supports for MPLS. This value defaults to
		 * NETIF_F_SG and as of v3.16.
		 *
		 * This compatibility code is intended for kernels older
		 * than v3.16 that do not support MPLS GSO and do not
		 * use mpls_features. Thus this code uses NETIF_F_SG
		 * directly in place of mpls_features.
		 */
		if (mpls)
			features &= NETIF_F_SG;

		if (netif_needs_gso(skb, features)) {
			struct sk_buff *nskb;

			nskb = skb_gso_segment(skb, features);
			if (!nskb) {
				if (unlikely(skb_cloned(skb) &&
				    pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
					goto drop;

				skb_shinfo(skb)->gso_type &= ~SKB_GSO_DODGY;
				goto xmit;
			}

			if (IS_ERR(nskb)) {
				err = PTR_ERR(nskb);
				goto drop;
			}
			consume_skb(skb);
			skb = nskb;

			do {
				nskb = skb->next;
				skb->next = NULL;
				err = dev_queue_xmit(skb);
				skb = nskb;
			} while (skb);

			return err;
		}
	}
xmit:
	return dev_queue_xmit(skb);

drop:
	kfree_skb(skb);
	return err;
}