void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_ENABLED = 0} ; enum {OUT_ENABLED = 0} ; vl_bool wasEnabled = vl_get_simd_enabled() ; if (nout > 1) { vlmxError(vlmxErrInvalidArgument, "at most one output argument") ; } OUT(ENABLED) = vlmxCreatePlainScalar (wasEnabled) ; if (nin == 0) { return ; } if (nin > 1) { vlmxError(vlmxErrInvalidArgument, "At most one argument") ; } if (!vlmxIsScalar(IN(ENABLED))) { vlmxError(vlmxErrInvalidArgument, "ENABLED must be a scalar") ; } vl_set_simd_enabled ((vl_bool) mxGetScalar(IN(ENABLED))) ; }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_FOREST = 0, IN_DATA, IN_QUERY, IN_END} ; enum {OUT_INDEX = 0, OUT_DISTANCE} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; VlKDForest * forest ; mxArray const * forest_array = in[IN_FOREST] ; mxArray const * data_array = in[IN_DATA] ; mxArray const * query_array = in[IN_QUERY] ; mxArray * index_array ; mxArray * distance_array ; void * query ; vl_uint32 * index ; void * distance ; vl_size numNeighbors = 1 ; vl_size numQueries ; vl_uindex qi, ni; unsigned int numComparisons = 0 ; unsigned int maxNumComparisons = 0 ; VlKDForestNeighbor * neighbors ; mxClassID dataClass ; VL_USE_MATLAB_ENV ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < 3) { vlmxError(vlmxErrNotEnoughInputArguments, NULL) ; } if (nout > 2) { vlmxError(vlmxErrTooManyOutputArguments, NULL) ; } forest = new_kdforest_from_array (forest_array, data_array) ; dataClass = mxGetClassID (data_array) ; if (mxGetClassID (query_array) != dataClass) { vlmxError(vlmxErrInvalidArgument, "QUERY must have the same storage class as DATA.") ; } if (! vlmxIsReal (query_array)) { vlmxError(vlmxErrInvalidArgument, "QUERY must be real.") ; } if (! vlmxIsMatrix (query_array, forest->dimension, -1)) { vlmxError(vlmxErrInvalidArgument, "QUERY must be a matrix with TREE.NUMDIMENSIONS rows.") ; } while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { switch (opt) { case opt_num_neighs : if (! vlmxIsScalar(optarg) || (numNeighbors = mxGetScalar(optarg)) < 1) { vlmxError(vlmxErrInvalidArgument, "NUMNEIGHBORS must be a scalar not smaller than one.") ; } break; case opt_max_num_comparisons : if (! vlmxIsScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "MAXNUMCOMPARISONS must be a scalar.") ; } maxNumComparisons = mxGetScalar(optarg) ; break; case opt_verbose : ++ verbose ; break ; } } vl_kdforest_set_max_num_comparisons (forest, maxNumComparisons) ; neighbors = vl_malloc (sizeof(VlKDForestNeighbor) * numNeighbors) ; query = mxGetData (query_array) ; numQueries = mxGetN (query_array) ; out[OUT_INDEX] = index_array = mxCreateNumericMatrix (numNeighbors, numQueries, mxUINT32_CLASS, mxREAL) ; out[OUT_DISTANCE] = distance_array = mxCreateNumericMatrix (numNeighbors, numQueries, dataClass, mxREAL) ; index = mxGetData (index_array) ; distance = mxGetData (distance_array) ; if (verbose) { VL_PRINTF ("vl_kdforestquery: number of queries: %d\n", numQueries) ; VL_PRINTF ("vl_kdforestquery: number of neighbors per query: %d\n", numNeighbors) ; VL_PRINTF ("vl_kdforestquery: max num of comparisons per query: %d\n", vl_kdforest_get_max_num_comparisons (forest)) ; } for (qi = 0 ; qi < numQueries ; ++ qi) { numComparisons += vl_kdforest_query (forest, neighbors, numNeighbors, query) ; switch (dataClass) { case mxSINGLE_CLASS: { float * distance_ = (float*) distance ; for (ni = 0 ; ni < numNeighbors ; ++ni) { *index++ = neighbors[ni].index + 1 ; *distance_++ = neighbors[ni].distance ; } query = (float*)query + vl_kdforest_get_data_dimension (forest) ; distance = distance_ ; break ; } case mxDOUBLE_CLASS: { double * distance_ = (double*) distance ; for (ni = 0 ; ni < numNeighbors ; ++ni) { *index++ = neighbors[ni].index + 1 ; *distance_++ = neighbors[ni].distance ; } query = (double*)query + vl_kdforest_get_data_dimension (forest) ; distance = distance_ ; break ; } default: abort() ; } } if (verbose) { VL_PRINTF ("vl_kdforestquery: number of comparisons per query: %.3f\n", ((double) numComparisons) / numQueries) ; VL_PRINTF ("vl_kdforestquery: number of comparisons per neighbor: %.3f\n", ((double) numComparisons) / (numQueries * numNeighbors)) ; } vl_kdforest_delete (forest) ; vl_free (neighbors) ; }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_DATA = 0, IN_END} ; enum {OUT_TREE = 0} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; VlKDForest * forest ; void * data ; vl_size numData ; vl_size dimension ; mxClassID dataClass ; vl_type dataType ; int thresholdingMethod = VL_KDTREE_MEDIAN ; vl_size numTrees = 1 ; VL_USE_MATLAB_ENV ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < 1) { vlmxError(vlmxErrInvalidArgument, "At least one argument required") ; } else if (nout > 2) { vlmxError(vlmxErrInvalidArgument, "Too many output arguments"); } dataClass = mxGetClassID(IN(DATA)) ; if (! vlmxIsMatrix (IN(DATA), -1, -1) || ! vlmxIsReal (IN(DATA))) { vlmxError(vlmxErrInvalidArgument, "DATA must be a real matrix ") ; } switch (dataClass) { case mxSINGLE_CLASS : dataType = VL_TYPE_FLOAT ; break ; case mxDOUBLE_CLASS : dataType = VL_TYPE_DOUBLE ; break ; default: vlmxError(vlmxErrInvalidArgument, "DATA must be either SINGLE or DOUBLE") ; } while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { char buffer [1024] ; switch (opt) { case opt_threshold_method : mxGetString (optarg, buffer, sizeof(buffer)/sizeof(buffer[0])) ; if (! vlmxIsString(optarg, -1)) { vlmxError(vlmxErrInvalidOption, "THRESHOLDMETHOD must be a string") ; } if (vl_string_casei_cmp(buffer, "median") == 0) { thresholdingMethod = VL_KDTREE_MEDIAN ; } else if (vl_string_casei_cmp(buffer, "mean") == 0) { thresholdingMethod = VL_KDTREE_MEAN ; } else { vlmxError(vlmxErrInvalidOption, "Unknown thresholding method %s", buffer) ; } break ; case opt_num_trees : if (! vlmxIsScalar(optarg) || (numTrees = mxGetScalar(optarg)) < 1) { vlmxError(vlmxErrInvalidOption, "NUMTREES must be not smaller than one") ; } break ; case opt_verbose : ++ verbose ; break ; } } data = mxGetData (IN(DATA)) ; numData = mxGetN (IN(DATA)) ; dimension = mxGetM (IN(DATA)) ; forest = vl_kdforest_new (dataType, dimension, numTrees) ; vl_kdforest_set_thresholding_method (forest, thresholdingMethod) ; if (verbose) { char const * str = 0 ; mexPrintf("vl_kdforestbuild: data %s [%d x %d]\n", vl_get_type_name (dataType), dimension, numData) ; switch (vl_kdforest_get_thresholding_method(forest)) { case VL_KDTREE_MEAN : str = "mean" ; break ; case VL_KDTREE_MEDIAN : str = "median" ; break ; default: abort() ; } mexPrintf("vl_kdforestbuild: threshold selection method: %s\n", str) ; mexPrintf("vl_kdforestbuild: number of trees: %d\n", vl_kdforest_get_num_trees(forest)) ; } /* ----------------------------------------------------------------- * Do job * -------------------------------------------------------------- */ vl_kdforest_build (forest, numData, data) ; if (verbose) { vl_uindex ti ; for (ti = 0 ; ti < vl_kdforest_get_num_trees(forest) ; ++ ti) { mexPrintf("vl_kdforestbuild: tree %d: depth %d, num nodes %d\n", ti, vl_kdforest_get_depth_of_tree(forest, ti), vl_kdforest_get_num_nodes_of_tree(forest, ti)) ; } } out[OUT_TREE] = new_array_from_kdforest (forest) ; vl_kdforest_delete (forest) ; }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_FOREST = 0, IN_DATA, IN_QUERY, IN_END} ; enum {OUT_INDEX = 0, OUT_DISTANCE} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; VlKDForest * forest ; mxArray const * forest_array = in[IN_FOREST] ; mxArray const * data_array = in[IN_DATA] ; mxArray const * query_array = in[IN_QUERY] ; void * query ; vl_uint32 * index ; void * distance ; vl_size numNeighbors = 1 ; vl_size numQueries ; unsigned int numComparisons = 0 ; unsigned int maxNumComparisons = 0 ; mxClassID dataClass ; vl_index i ; VL_USE_MATLAB_ENV ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < 3) { vlmxError(vlmxErrNotEnoughInputArguments, NULL) ; } if (nout > 2) { vlmxError(vlmxErrTooManyOutputArguments, NULL) ; } forest = new_kdforest_from_array (forest_array, data_array) ; dataClass = mxGetClassID (data_array) ; if (mxGetClassID (query_array) != dataClass) { vlmxError(vlmxErrInvalidArgument, "QUERY must have the same storage class as DATA.") ; } if (! vlmxIsReal (query_array)) { vlmxError(vlmxErrInvalidArgument, "QUERY must be real.") ; } if (! vlmxIsMatrix (query_array, forest->dimension, -1)) { vlmxError(vlmxErrInvalidArgument, "QUERY must be a matrix with TREE.NUMDIMENSIONS rows.") ; } while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { switch (opt) { case opt_num_neighs : if (! vlmxIsScalar(optarg) || (numNeighbors = mxGetScalar(optarg)) < 1) { vlmxError(vlmxErrInvalidArgument, "NUMNEIGHBORS must be a scalar not smaller than one.") ; } break; case opt_max_num_comparisons : if (! vlmxIsScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "MAXNUMCOMPARISONS must be a scalar.") ; } maxNumComparisons = mxGetScalar(optarg) ; break; case opt_verbose : ++ verbose ; break ; } } vl_kdforest_set_max_num_comparisons (forest, maxNumComparisons) ; query = mxGetData (query_array) ; numQueries = mxGetN (query_array) ; out[OUT_INDEX] = mxCreateNumericMatrix (numNeighbors, numQueries, mxUINT32_CLASS, mxREAL) ; out[OUT_DISTANCE] = mxCreateNumericMatrix (numNeighbors, numQueries, dataClass, mxREAL) ; index = mxGetData (out[OUT_INDEX]) ; distance = mxGetData (out[OUT_DISTANCE]) ; if (verbose) { VL_PRINTF ("vl_kdforestquery: number of queries: %d\n", numQueries) ; VL_PRINTF ("vl_kdforestquery: number of neighbors per query: %d\n", numNeighbors) ; VL_PRINTF ("vl_kdforestquery: max num of comparisons per query: %d\n", vl_kdforest_get_max_num_comparisons (forest)) ; } numComparisons = vl_kdforest_query_with_array (forest, index, numNeighbors, numQueries, distance, query) ; vl_kdforest_delete(forest) ; /* adjust for MATLAB indexing */ for (i = 0 ; i < (signed) (numNeighbors * numQueries) ; ++i) { index[i] ++ ; } if (verbose) { VL_PRINTF ("vl_kdforestquery: number of comparisons per query: %.3f\n", ((double) numComparisons) / numQueries) ; VL_PRINTF ("vl_kdforestquery: number of comparisons per neighbor: %.3f\n", ((double) numComparisons) / (numQueries * numNeighbors)) ; } }