Example #1
0
/* s32x4 mm mul */
void mw_neon_mm_mul_s32x4(int * A, int Row, int T, int * B, int Col, int * C)
{
	int i, k, j;

	int32x4_t neon_b, neon_c;
	int32x4_t neon_a0, neon_a1, neon_a2, neon_a3;
	int32x4_t neon_b0, neon_b1, neon_b2, neon_b3;

	for (i = 0; i < Row; i+=4)
	{

		for (k = 0; k < Col; k+=1)
		{
			neon_c = vmovq_n_s32(0);

			for (j = 0; j < T; j+=4)
			{

				int j_T = j * T + i;
				int k_Row = k * Row;

				neon_a0 = vld1q_s32(A + j_T);
				j_T+=Row;
				neon_a1 = vld1q_s32(A + j_T);
				j_T+=Row;
				neon_a2 = vld1q_s32(A + j_T);
				j_T+=Row;
				neon_a3 = vld1q_s32(A + j_T);

				neon_b = vld1q_s32(B + k_Row + j);
				neon_b0 = vdupq_n_s32(vgetq_lane_s32(neon_b, 0));
				neon_b1 = vdupq_n_s32(vgetq_lane_s32(neon_b, 1));
				neon_b2 = vdupq_n_s32(vgetq_lane_s32(neon_b, 2));
				neon_b3 = vdupq_n_s32(vgetq_lane_s32(neon_b, 3));

				neon_c = vaddq_s32(vmulq_s32(neon_a0, neon_b0), neon_c);
				neon_c = vaddq_s32(vmulq_s32(neon_a1, neon_b1), neon_c);
				neon_c = vaddq_s32(vmulq_s32(neon_a2, neon_b2), neon_c);
				neon_c = vaddq_s32(vmulq_s32(neon_a3, neon_b3), neon_c);

				vst1q_lane_s32(C + k_Row + i, neon_c, 0);
				vst1q_lane_s32(C + k_Row + i + 1, neon_c, 1);
				vst1q_lane_s32(C + k_Row + i + 2, neon_c, 2);
				vst1q_lane_s32(C + k_Row + i + 3, neon_c, 3);

			}
		}
	}
}
Example #2
0
void test_vst1Q_lanes32 (void)
{
  int32_t *arg0_int32_t;
  int32x4_t arg1_int32x4_t;

  vst1q_lane_s32 (arg0_int32_t, arg1_int32x4_t, 1);
}
Example #3
0
int main(int, char**)
{
    int32x4_t null = vdupq_n_s32(0x0);

    int result;
    vst1q_lane_s32(&result, null, 0);
    return result;
}
Example #4
0
void test_ld1st1(int8x8_t small, int8x16_t big, void *addr) {
  vld1_lane_s8(addr, small, 7);
  vld1_lane_s16(addr, small, 3);
  vld1_lane_s32(addr, small, 1);
  vld1_lane_s64(addr, small, 0);

  vld1q_lane_s8(addr, big, 15);
  vld1q_lane_s16(addr, big, 7);
  vld1q_lane_s32(addr, big, 3);
  vld1q_lane_s64(addr, big, 1);

  vld1_lane_s8(addr, small, 8); // expected-error {{argument should be a value from 0 to 7}}
  vld1_lane_s16(addr, small, 4); // expected-error {{argument should be a value from 0 to 3}}
  vld1_lane_s32(addr, small, 2); // expected-error {{argument should be a value from 0 to 1}}
  vld1_lane_s64(addr, small, 1); // expected-error {{argument should be a value from 0 to 0}}

  vld1q_lane_s8(addr, big, 16); // expected-error {{argument should be a value from 0 to 15}}
  vld1q_lane_s16(addr, big, 8); // expected-error {{argument should be a value from 0 to 7}}
  vld1q_lane_s32(addr, big, 4); // expected-error {{argument should be a value from 0 to 3}}
  vld1q_lane_s64(addr, big, 2); // expected-error {{argument should be a value from 0 to 1}}

  vst1_lane_s8(addr, small, 7);
  vst1_lane_s16(addr, small, 3);
  vst1_lane_s32(addr, small, 1);
  vst1_lane_s64(addr, small, 0);

  vst1q_lane_s8(addr, big, 15);
  vst1q_lane_s16(addr, big, 7);
  vst1q_lane_s32(addr, big, 3);
  vst1q_lane_s64(addr, big, 1);

  vst1_lane_s8(addr, small, 8); // expected-error {{argument should be a value from 0 to 7}}
  vst1_lane_s16(addr, small, 4); // expected-error {{argument should be a value from 0 to 3}}
  vst1_lane_s32(addr, small, 2); // expected-error {{argument should be a value from 0 to 1}}
  vst1_lane_s64(addr, small, 1); // expected-error {{argument should be a value from 0 to 0}}

  vst1q_lane_s8(addr, big, 16); // expected-error {{argument should be a value from 0 to 15}}
  vst1q_lane_s16(addr, big, 8); // expected-error {{argument should be a value from 0 to 7}}
  vst1q_lane_s32(addr, big, 4); // expected-error {{argument should be a value from 0 to 3}}
  vst1q_lane_s64(addr, big, 2); // expected-error {{argument should be a value from 0 to 1}}
}
Example #5
0
void silk_biquad_alt_stride2_neon(
    const opus_int16            *in,                /* I     input signal                                               */
    const opus_int32            *B_Q28,             /* I     MA coefficients [3]                                        */
    const opus_int32            *A_Q28,             /* I     AR coefficients [2]                                        */
    opus_int32                  *S,                 /* I/O   State vector [4]                                           */
    opus_int16                  *out,               /* O     output signal                                              */
    const opus_int32            len                 /* I     signal length (must be even)                               */
)
{
    /* DIRECT FORM II TRANSPOSED (uses 2 element state vector) */
    opus_int        k            = 0;
    const int32x2_t offset_s32x2 = vdup_n_s32( (1<<14) - 1 );
    const int32x4_t offset_s32x4 = vcombine_s32( offset_s32x2, offset_s32x2 );
    int16x4_t       in_s16x4  = vdup_n_s16( 0 );
    int16x4_t       out_s16x4;
    int32x2_t       A_Q28_s32x2, A_L_s32x2, A_U_s32x2, B_Q28_s32x2, t_s32x2;
    int32x4_t       A_L_s32x4, A_U_s32x4, B_Q28_s32x4, S_s32x4, out32_Q14_s32x4;
    int32x2x2_t     t0_s32x2x2, t1_s32x2x2, t2_s32x2x2, S_s32x2x2;

#ifdef OPUS_CHECK_ASM
    opus_int32 S_c[ 4 ];
    VARDECL( opus_int16, out_c );
    SAVE_STACK;
    ALLOC( out_c, 2 * len, opus_int16 );

    silk_memcpy( &S_c, S, sizeof( S_c ) );
    silk_biquad_alt_stride2_c( in, B_Q28, A_Q28, S_c, out_c, len );
#endif

    /* Negate A_Q28 values and split in two parts */
    A_Q28_s32x2 = vld1_s32( A_Q28 );
    A_Q28_s32x2 = vneg_s32( A_Q28_s32x2 );
    A_L_s32x2   = vshl_n_s32( A_Q28_s32x2, 18 );                                                        /* ( -A_Q28[] & 0x00003FFF ) << 18                                                     */
    A_L_s32x2   = vreinterpret_s32_u32( vshr_n_u32( vreinterpret_u32_s32( A_L_s32x2 ), 3 ) );           /* ( -A_Q28[] & 0x00003FFF ) << 15                                                     */
    A_U_s32x2   = vshr_n_s32( A_Q28_s32x2, 14 );                                                        /* silk_RSHIFT( -A_Q28[], 14 )                                                         */
    A_U_s32x2   = vshl_n_s32( A_U_s32x2, 16 );                                                          /* silk_RSHIFT( -A_Q28[], 14 ) << 16 (Clip two leading bits to conform to C function.) */
    A_U_s32x2   = vshr_n_s32( A_U_s32x2, 1 );                                                           /* silk_RSHIFT( -A_Q28[], 14 ) << 15                                                   */

    B_Q28_s32x2  = vld1_s32( B_Q28 );
    t_s32x2      = vld1_s32( B_Q28 + 1 );
    t0_s32x2x2   = vzip_s32( A_L_s32x2, A_L_s32x2 );
    t1_s32x2x2   = vzip_s32( A_U_s32x2, A_U_s32x2 );
    t2_s32x2x2   = vzip_s32( t_s32x2, t_s32x2 );
    A_L_s32x4    = vcombine_s32( t0_s32x2x2.val[ 0 ], t0_s32x2x2.val[ 1 ] );                            /* A{0,0,1,1}_L_Q28          */
    A_U_s32x4    = vcombine_s32( t1_s32x2x2.val[ 0 ], t1_s32x2x2.val[ 1 ] );                            /* A{0,0,1,1}_U_Q28          */
    B_Q28_s32x4  = vcombine_s32( t2_s32x2x2.val[ 0 ], t2_s32x2x2.val[ 1 ] );                            /* B_Q28[ {1,1,2,2} ]        */
    S_s32x4      = vld1q_s32( S );                                                                      /* S0 = S[ 0 ]; S3 = S[ 3 ]; */
    S_s32x2x2    = vtrn_s32( vget_low_s32( S_s32x4 ), vget_high_s32( S_s32x4 ) );                       /* S2 = S[ 1 ]; S1 = S[ 2 ]; */
    S_s32x4      = vcombine_s32( S_s32x2x2.val[ 0 ], S_s32x2x2.val[ 1 ] );

    for( ; k < len - 1; k += 2 ) {
        int32x4_t in_s32x4[ 2 ], t_s32x4;
        int32x2_t out32_Q14_s32x2[ 2 ];

        /* S[ 2 * i + 0 ], S[ 2 * i + 1 ], S[ 2 * i + 2 ], S[ 2 * i + 3 ]: Q12 */
        in_s16x4      = vld1_s16( &in[ 2 * k ] );                                                       /* in{0,1,2,3} = in[ 2 * k + {0,1,2,3} ]; */
        in_s32x4[ 0 ] = vshll_n_s16( in_s16x4, 15 );                                                    /* in{0,1,2,3} << 15                      */
        t_s32x4       = vqdmulhq_lane_s32( in_s32x4[ 0 ], B_Q28_s32x2, 0 );                             /* silk_SMULWB( B_Q28[ 0 ], in{0,1,2,3} ) */
        in_s32x4[ 1 ] = vcombine_s32( vget_high_s32( in_s32x4[ 0 ] ), vget_high_s32( in_s32x4[ 0 ] ) ); /* in{2,3,2,3} << 15                      */
        in_s32x4[ 0 ] = vcombine_s32( vget_low_s32 ( in_s32x4[ 0 ] ), vget_low_s32 ( in_s32x4[ 0 ] ) ); /* in{0,1,0,1} << 15                      */
        silk_biquad_alt_stride2_kernel( A_L_s32x4, A_U_s32x4, B_Q28_s32x4, vget_low_s32 ( t_s32x4 ), in_s32x4[ 0 ], &S_s32x4, &out32_Q14_s32x2[ 0 ] );
        silk_biquad_alt_stride2_kernel( A_L_s32x4, A_U_s32x4, B_Q28_s32x4, vget_high_s32( t_s32x4 ), in_s32x4[ 1 ], &S_s32x4, &out32_Q14_s32x2[ 1 ] );

        /* Scale back to Q0 and saturate */
        out32_Q14_s32x4 = vcombine_s32( out32_Q14_s32x2[ 0 ], out32_Q14_s32x2[ 1 ] );                   /* out32_Q14_{0,1,2,3}                                                                                        */
        out32_Q14_s32x4 = vaddq_s32( out32_Q14_s32x4, offset_s32x4 );                                   /* out32_Q14_{0,1,2,3} + (1<<14) - 1                                                                          */
        out_s16x4       = vqshrn_n_s32( out32_Q14_s32x4, 14 );                                          /* (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_{0,1,2,3} + (1<<14) - 1, 14 ) )                             */
        vst1_s16( &out[ 2 * k ], out_s16x4 );                                                           /* out[ 2 * k + {0,1,2,3} ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_{0,1,2,3} + (1<<14) - 1, 14 ) ); */
    }

    /* Process leftover. */
    if( k < len ) {
        int32x4_t in_s32x4;
        int32x2_t out32_Q14_s32x2;

        /* S[ 2 * i + 0 ], S[ 2 * i + 1 ]: Q12 */
        in_s16x4     = vld1_lane_s16( &in[ 2 * k + 0 ], in_s16x4, 0 );                                  /* in{0,1} = in[ 2 * k + {0,1} ];     */
        in_s16x4     = vld1_lane_s16( &in[ 2 * k + 1 ], in_s16x4, 1 );                                  /* in{0,1} = in[ 2 * k + {0,1} ];     */
        in_s32x4     = vshll_n_s16( in_s16x4, 15 );                                                     /* in{0,1} << 15                      */
        t_s32x2      = vqdmulh_lane_s32( vget_low_s32( in_s32x4 ), B_Q28_s32x2, 0 );                    /* silk_SMULWB( B_Q28[ 0 ], in{0,1} ) */
        in_s32x4     = vcombine_s32( vget_low_s32( in_s32x4 ), vget_low_s32( in_s32x4 ) );              /* in{0,1,0,1} << 15                  */
        silk_biquad_alt_stride2_kernel( A_L_s32x4, A_U_s32x4, B_Q28_s32x4, t_s32x2, in_s32x4, &S_s32x4, &out32_Q14_s32x2 );

        /* Scale back to Q0 and saturate */
        out32_Q14_s32x2 = vadd_s32( out32_Q14_s32x2, offset_s32x2 );                                    /* out32_Q14_{0,1} + (1<<14) - 1                                                              */
        out32_Q14_s32x4 = vcombine_s32( out32_Q14_s32x2, out32_Q14_s32x2 );                             /* out32_Q14_{0,1,0,1} + (1<<14) - 1                                                          */
        out_s16x4       = vqshrn_n_s32( out32_Q14_s32x4, 14 );                                          /* (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_{0,1,0,1} + (1<<14) - 1, 14 ) )             */
        vst1_lane_s16( &out[ 2 * k + 0 ], out_s16x4, 0 );                                               /* out[ 2 * k + 0 ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_0 + (1<<14) - 1, 14 ) ); */
        vst1_lane_s16( &out[ 2 * k + 1 ], out_s16x4, 1 );                                               /* out[ 2 * k + 1 ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_1 + (1<<14) - 1, 14 ) ); */
    }

    vst1q_lane_s32( &S[ 0 ], S_s32x4, 0 );                                                              /* S[ 0 ] = S0; */
    vst1q_lane_s32( &S[ 1 ], S_s32x4, 2 );                                                              /* S[ 1 ] = S2; */
    vst1q_lane_s32( &S[ 2 ], S_s32x4, 1 );                                                              /* S[ 2 ] = S1; */
    vst1q_lane_s32( &S[ 3 ], S_s32x4, 3 );                                                              /* S[ 3 ] = S3; */

#ifdef OPUS_CHECK_ASM
    silk_assert( !memcmp( S_c, S, sizeof( S_c ) ) );
    silk_assert( !memcmp( out_c, out, 2 * len * sizeof( opus_int16 ) ) );
    RESTORE_STACK;
#endif
}
void WebRtcIsacfix_AllpassFilter2FixDec16Neon(
    int16_t* data_ch1,  // Input and output in channel 1, in Q0
    int16_t* data_ch2,  // Input and output in channel 2, in Q0
    const int16_t* factor_ch1,  // Scaling factor for channel 1, in Q15
    const int16_t* factor_ch2,  // Scaling factor for channel 2, in Q15
    const int length,  // Length of the data buffers
    int32_t* filter_state_ch1,  // Filter state for channel 1, in Q16
    int32_t* filter_state_ch2) {  // Filter state for channel 2, in Q16
  assert(length % 2 == 0);
  int n = 0;
  int16x4_t factorv;
  int16x4_t datav;
  int32x4_t statev;
  int32x2_t tmp;

  // Load factor_ch1 and factor_ch2.
  tmp = vld1_dup_s32((int32_t*)factor_ch1);
  tmp = vld1_lane_s32((int32_t*)factor_ch2, tmp, 1);
  factorv = vreinterpret_s16_s32(tmp);
  // Load filter_state_ch1[0] and filter_state_ch2[0].
  statev = vld1q_dup_s32(filter_state_ch1);
  statev = vld1q_lane_s32(filter_state_ch2, statev, 2);

  // Loop unrolling preprocessing.
  int32x4_t a;
  int16x4_t tmp1, tmp2;

  // Load data_ch1[0] and data_ch2[0].
  datav = vld1_dup_s16(data_ch1);
  datav = vld1_lane_s16(data_ch2, datav, 2);

  a = vqdmlal_s16(statev, datav, factorv);
  tmp1 = vshrn_n_s32(a, 16);

  // Update filter_state_ch1[0] and filter_state_ch2[0].
  statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp1, factorv);

  // Load filter_state_ch1[1] and filter_state_ch2[1].
  statev = vld1q_lane_s32(filter_state_ch1 + 1, statev, 1);
  statev = vld1q_lane_s32(filter_state_ch2 + 1, statev, 3);

  // Load data_ch1[1] and data_ch2[1].
  tmp1 = vld1_lane_s16(data_ch1 + 1, tmp1, 1);
  tmp1 = vld1_lane_s16(data_ch2 + 1, tmp1, 3);
  datav = vrev32_s16(tmp1);

  // Loop unrolling processing.
  for (n = 0; n < length - 2; n += 2) {
    a = vqdmlal_s16(statev, datav, factorv);
    tmp1 = vshrn_n_s32(a, 16);
    // Store data_ch1[n] and data_ch2[n].
    vst1_lane_s16(data_ch1 + n, tmp1, 1);
    vst1_lane_s16(data_ch2 + n, tmp1, 3);

    // Update filter_state_ch1[0], filter_state_ch1[1]
    // and filter_state_ch2[0], filter_state_ch2[1].
    statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp1, factorv);

    // Load data_ch1[n + 2] and data_ch2[n + 2].
    tmp1 = vld1_lane_s16(data_ch1 + n + 2, tmp1, 1);
    tmp1 = vld1_lane_s16(data_ch2 + n + 2, tmp1, 3);
    datav = vrev32_s16(tmp1);

    a = vqdmlal_s16(statev, datav, factorv);
    tmp2 = vshrn_n_s32(a, 16);
    // Store data_ch1[n + 1] and data_ch2[n + 1].
    vst1_lane_s16(data_ch1 + n + 1, tmp2, 1);
    vst1_lane_s16(data_ch2 + n + 1, tmp2, 3);

    // Update filter_state_ch1[0], filter_state_ch1[1]
    // and filter_state_ch2[0], filter_state_ch2[1].
    statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp2, factorv);

    // Load data_ch1[n + 3] and data_ch2[n + 3].
    tmp2 = vld1_lane_s16(data_ch1 + n + 3, tmp2, 1);
    tmp2 = vld1_lane_s16(data_ch2 + n + 3, tmp2, 3);
    datav = vrev32_s16(tmp2);
  }

  // Loop unrolling post-processing.
  a = vqdmlal_s16(statev, datav, factorv);
  tmp1 = vshrn_n_s32(a, 16);
  // Store data_ch1[n] and data_ch2[n].
  vst1_lane_s16(data_ch1 + n, tmp1, 1);
  vst1_lane_s16(data_ch2 + n, tmp1, 3);

  // Update filter_state_ch1[0], filter_state_ch1[1]
  // and filter_state_ch2[0], filter_state_ch2[1].
  statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp1, factorv);
  // Store filter_state_ch1[0] and filter_state_ch2[0].
  vst1q_lane_s32(filter_state_ch1, statev, 0);
  vst1q_lane_s32(filter_state_ch2, statev, 2);

  datav = vrev32_s16(tmp1);
  a = vqdmlal_s16(statev, datav, factorv);
  tmp2 = vshrn_n_s32(a, 16);
  // Store data_ch1[n + 1] and data_ch2[n + 1].
  vst1_lane_s16(data_ch1 + n + 1, tmp2, 1);
  vst1_lane_s16(data_ch2 + n + 1, tmp2, 3);

  // Update filter_state_ch1[1] and filter_state_ch2[1].
  statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp2, factorv);
  // Store filter_state_ch1[1] and filter_state_ch2[1].
  vst1q_lane_s32(filter_state_ch1 + 1, statev, 1);
  vst1q_lane_s32(filter_state_ch2 + 1, statev, 3);
}
void silk_warped_autocorrelation_FIX_neon(
          opus_int32                *corr,                                  /* O    Result [order + 1]                                                          */
          opus_int                  *scale,                                 /* O    Scaling of the correlation vector                                           */
    const opus_int16                *input,                                 /* I    Input data to correlate                                                     */
    const opus_int                  warping_Q16,                            /* I    Warping coefficient                                                         */
    const opus_int                  length,                                 /* I    Length of input                                                             */
    const opus_int                  order                                   /* I    Correlation order (even)                                                    */
)
{
    if( ( MAX_SHAPE_LPC_ORDER > 24 ) || ( order < 6 ) ) {
        silk_warped_autocorrelation_FIX_c( corr, scale, input, warping_Q16, length, order );
    } else {
        opus_int       n, i, lsh;
        opus_int64     corr_QC[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; /* In reverse order */
        opus_int64     corr_QC_orderT;
        int64x2_t      lsh_s64x2;
        const opus_int orderT = ( order + 3 ) & ~3;
        opus_int64     *corr_QCT;
        opus_int32     *input_QS;
        VARDECL( opus_int32, input_QST );
        VARDECL( opus_int32, state );
        SAVE_STACK;

        /* Order must be even */
        silk_assert( ( order & 1 ) == 0 );
        silk_assert( 2 * QS - QC >= 0 );

        ALLOC( input_QST, length + 2 * MAX_SHAPE_LPC_ORDER, opus_int32 );

        input_QS = input_QST;
        /* input_QS has zero paddings in the beginning and end. */
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;

        /* Loop over samples */
        for( n = 0; n < length - 7; n += 8, input_QS += 8 ) {
            const int16x8_t t0_s16x4 = vld1q_s16( input + n );
            vst1q_s32( input_QS + 0, vshll_n_s16( vget_low_s16( t0_s16x4 ), QS ) );
            vst1q_s32( input_QS + 4, vshll_n_s16( vget_high_s16( t0_s16x4 ), QS ) );
        }
        for( ; n < length; n++, input_QS++ ) {
            input_QS[ 0 ] = silk_LSHIFT32( (opus_int32)input[ n ], QS );
        }
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS += 4;
        vst1q_s32( input_QS, vdupq_n_s32( 0 ) );
        input_QS = input_QST + MAX_SHAPE_LPC_ORDER - orderT;

        /* The following loop runs ( length + order ) times, with ( order ) extra epilogues.                  */
        /* The zero paddings in input_QS guarantee corr_QC's correctness even with the extra epilogues.       */
        /* The values of state_QS will be polluted by the extra epilogues, however they are temporary values. */

        /* Keep the C code here to help understand the intrinsics optimization. */
        /*
        {
            opus_int32 state_QS[ 2 ][ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 };
            opus_int32 *state_QST[ 3 ];
            state_QST[ 0 ] = state_QS[ 0 ];
            state_QST[ 1 ] = state_QS[ 1 ];
            for( n = 0; n < length + order; n++, input_QS++ ) {
                state_QST[ 0 ][ orderT ] = input_QS[ orderT ];
                for( i = 0; i < orderT; i++ ) {
                    corr_QC[ i ] += silk_RSHIFT64( silk_SMULL( state_QST[ 0 ][ i ], input_QS[ i ] ), 2 * QS - QC );
                    state_QST[ 1 ][ i ] = silk_SMLAWB( state_QST[ 1 ][ i + 1 ], state_QST[ 0 ][ i ] - state_QST[ 0 ][ i + 1 ], warping_Q16 );
                }
                state_QST[ 2 ] = state_QST[ 0 ];
                state_QST[ 0 ] = state_QST[ 1 ];
                state_QST[ 1 ] = state_QST[ 2 ];
            }
        }
        */

        {
            const int32x4_t warping_Q16_s32x4 = vdupq_n_s32( warping_Q16 << 15 );
            const opus_int32 *in = input_QS + orderT;
            opus_int o = orderT;
            int32x4_t state_QS_s32x4[ 3 ][ 2 ];

            ALLOC( state, length + orderT, opus_int32 );
            state_QS_s32x4[ 2 ][ 1 ] = vdupq_n_s32( 0 );

            /* Calculate 8 taps of all inputs in each loop. */
            do {
                state_QS_s32x4[ 0 ][ 0 ] = state_QS_s32x4[ 0 ][ 1 ] =
                state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 1 ][ 1 ] = vdupq_n_s32( 0 );
                n = 0;
                do {
                    calc_corr( input_QS + n, corr_QC, o - 8, state_QS_s32x4[ 0 ][ 0 ] );
                    calc_corr( input_QS + n, corr_QC, o - 4, state_QS_s32x4[ 0 ][ 1 ] );
                    state_QS_s32x4[ 2 ][ 1 ] = vld1q_s32( in + n );
                    vst1q_lane_s32( state + n, state_QS_s32x4[ 0 ][ 0 ], 0 );
                    state_QS_s32x4[ 2 ][ 0 ] = vextq_s32( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 0 ][ 1 ], 1 );
                    state_QS_s32x4[ 2 ][ 1 ] = vextq_s32( state_QS_s32x4[ 0 ][ 1 ], state_QS_s32x4[ 2 ][ 1 ], 1 );
                    state_QS_s32x4[ 0 ][ 0 ] = calc_state( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], state_QS_s32x4[ 1 ][ 0 ], warping_Q16_s32x4 );
                    state_QS_s32x4[ 0 ][ 1 ] = calc_state( state_QS_s32x4[ 0 ][ 1 ], state_QS_s32x4[ 2 ][ 1 ], state_QS_s32x4[ 1 ][ 1 ], warping_Q16_s32x4 );
                    state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 2 ][ 0 ];
                    state_QS_s32x4[ 1 ][ 1 ] = state_QS_s32x4[ 2 ][ 1 ];
                } while( ++n < ( length + order ) );
                in = state;
                o -= 8;
            } while( o > 4 );

            if( o ) {
                /* Calculate the last 4 taps of all inputs. */
                opus_int32 *stateT = state;
                silk_assert( o == 4 );
                state_QS_s32x4[ 0 ][ 0 ] = state_QS_s32x4[ 1 ][ 0 ] = vdupq_n_s32( 0 );
                n = length + order;
                do {
                    calc_corr( input_QS, corr_QC, 0, state_QS_s32x4[ 0 ][ 0 ] );
                    state_QS_s32x4[ 2 ][ 0 ] = vld1q_s32( stateT );
                    vst1q_lane_s32( stateT, state_QS_s32x4[ 0 ][ 0 ], 0 );
                    state_QS_s32x4[ 2 ][ 0 ] = vextq_s32( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], 1 );
                    state_QS_s32x4[ 0 ][ 0 ] = calc_state( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], state_QS_s32x4[ 1 ][ 0 ], warping_Q16_s32x4 );
                    state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 2 ][ 0 ];
                    input_QS++;
                    stateT++;
                } while( --n );
            }
        }

        {
            const opus_int16 *inputT = input;
            int32x4_t t_s32x4;
            int64x1_t t_s64x1;
            int64x2_t t_s64x2 = vdupq_n_s64( 0 );
            for( n = 0; n <= length - 8; n += 8 ) {
                int16x8_t input_s16x8 = vld1q_s16( inputT );
                t_s32x4 = vmull_s16( vget_low_s16( input_s16x8 ), vget_low_s16( input_s16x8 ) );
                t_s32x4 = vmlal_s16( t_s32x4, vget_high_s16( input_s16x8 ), vget_high_s16( input_s16x8 ) );
                t_s64x2 = vaddw_s32( t_s64x2, vget_low_s32( t_s32x4 ) );
                t_s64x2 = vaddw_s32( t_s64x2, vget_high_s32( t_s32x4 ) );
                inputT += 8;
            }
            t_s64x1 = vadd_s64( vget_low_s64( t_s64x2 ), vget_high_s64( t_s64x2 ) );
            corr_QC_orderT = vget_lane_s64( t_s64x1, 0 );
            for( ; n < length; n++ ) {
                corr_QC_orderT += silk_SMULL( input[ n ], input[ n ] );
            }
            corr_QC_orderT = silk_LSHIFT64( corr_QC_orderT, QC );
            corr_QC[ orderT ] = corr_QC_orderT;
        }

        corr_QCT = corr_QC + orderT - order;
        lsh = silk_CLZ64( corr_QC_orderT ) - 35;
        lsh = silk_LIMIT( lsh, -12 - QC, 30 - QC );
        *scale = -( QC + lsh );
        silk_assert( *scale >= -30 && *scale <= 12 );
        lsh_s64x2 = vdupq_n_s64( lsh );
        for( i = 0; i <= order - 3; i += 4 ) {
            int32x4_t corr_s32x4;
            int64x2_t corr_QC0_s64x2, corr_QC1_s64x2;
            corr_QC0_s64x2 = vld1q_s64( corr_QCT + i );
            corr_QC1_s64x2 = vld1q_s64( corr_QCT + i + 2 );
            corr_QC0_s64x2 = vshlq_s64( corr_QC0_s64x2, lsh_s64x2 );
            corr_QC1_s64x2 = vshlq_s64( corr_QC1_s64x2, lsh_s64x2 );
            corr_s32x4     = vcombine_s32( vmovn_s64( corr_QC1_s64x2 ), vmovn_s64( corr_QC0_s64x2 ) );
            corr_s32x4     = vrev64q_s32( corr_s32x4 );
            vst1q_s32( corr + order - i - 3, corr_s32x4 );
        }
        if( lsh >= 0 ) {
            for( ; i < order + 1; i++ ) {
                corr[ order - i ] = (opus_int32)silk_CHECK_FIT32( silk_LSHIFT64( corr_QCT[ i ], lsh ) );
            }
        } else {
            for( ; i < order + 1; i++ ) {
                corr[ order - i ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( corr_QCT[ i ], -lsh ) );
            }
        }
        silk_assert( corr_QCT[ order ] >= 0 ); /* If breaking, decrease QC*/
        RESTORE_STACK;
    }

#ifdef OPUS_CHECK_ASM
    {
        opus_int32 corr_c[ MAX_SHAPE_LPC_ORDER + 1 ];
        opus_int   scale_c;
        silk_warped_autocorrelation_FIX_c( corr_c, &scale_c, input, warping_Q16, length, order );
        silk_assert( !memcmp( corr_c, corr, sizeof( corr_c[ 0 ] ) * ( order + 1 ) ) );
        silk_assert( scale_c == *scale );
    }
#endif
}