Example #1
0
/*
 * This is the main program.
 * The arguments of the main function can be specified by the
 * "controllerArgs" field of the Robot node
 */
int main()
{
  /* necessary to initialize webots stuff */
   initialize();

   //Initially, the puck just heads straight.
   headStraight();
  
  /* main loop
   * Perform simulation steps of TIME_STEP milliseconds
   * and leave the loop when the simulation is over
   */
  while (wb_robot_step(TIME_STEP) != -1) 
  {
      //As long as there is time, keep taking lightTrackerSteps;
      lightTrackerStep();
  };
  
  /* Enter your cleanup code here */
  
  /* This is necessary to cleanup webots resources */
  wb_robot_cleanup();
  
  return 0;
}
Example #2
0
File: sup2.c Project: daydin/maze
int main()
{

	/* necessary to initialize webots stuff */
	wb_robot_init();

	reset();
	int result=0;


	/* main loop
	 * Perform simulation steps of TIME_STEP milliseconds
	 * and leave the loop when the simulation is over
	 */
	while (wb_robot_step(TIME_STEP) != -1) {

		result=run();
		if (result!=TIME_STEP) break;
	};
	closeFiles();
	//	quit the sim
	wb_supervisor_simulation_quit(EXIT_SUCCESS);
	/* This is necessary to cleanup webots resources */
	wb_robot_cleanup();

	return 0;
}
Example #3
0
int main() {
  const char *SERVO_NAMES[NUM_SERVOS] = {
        "servo_r0",
        "servo_r1",
        "servo_r2",
        "servo_l0",
        "servo_l1",
        "servo_l2"};
  WbDeviceTag servos[NUM_SERVOS];
  int elapsed = 0;
  int state, i;
  long double pos = 0,lastPos = 0; // int 害死了  0-6.28
  int flag = 0;
  const int dir[] = {1,1,1,1,1,1};//{1,1,1,-1,-1,-1}
  // 增加在地面上的时间,就会更加稳定
  const double rate = 1.0/6;// 1/4
  
  wb_robot_init();

  for (i = 0; i < NUM_SERVOS; i++) {
    servos[i] = wb_robot_get_device(SERVO_NAMES[i]);
    if (!servos[i]) {
      printf("could not find servo: %s\n",SERVO_NAMES[i]);
    }
  }
  
  pos = M_PI * rate ;
  flag = 0;

  while(wb_robot_step(TIME_STEP)!=-1) {
    elapsed++;
    state = (elapsed / 25 + 1) % NUM_STATES;
	
    lastPos = pos;
    
    
    
    
    if(flag) pos += 2*M_PI * rate;
    else pos += 2*M_PI * (1-rate);
    flag = !flag;
	
    for (i = 0; i < 6; i+=2 ){
      wb_servo_set_position(servos[i], dir[i]*pos);
    }
    for (i = 1; i < 6; i+=2 ) {
      wb_servo_set_position(servos[i], dir[i]*lastPos); 
    }
  }
  
  wb_robot_cleanup();

  return 0;
}
Example #4
0
int main() {
  wb_robot_init();
  
  printf("hello from NAO\n");
  
  time_step = wb_robot_get_basic_time_step();
  

  receiver = wb_robot_get_device("receiver");
  wb_receiver_enable(receiver, time_step);
  
  emitter = wb_robot_get_device("emitter2");
  wb_receiver_enable(emitter, time_step);
  
  
  find_and_enable_devices();
  
  wb_motor_set_position (RShoulderPitch, 1.57079633);
  wb_motor_set_position (LShoulderPitch, 1.57079633);
  wb_motor_set_position (HeadYaw, 0.0);
  //wb_motor_set_position (HeadPitch, 0.1); //10 degrees




  // run until simulation is restarted
  while (wb_robot_step(time_step) != -1) {
  

      //check_for_new_genes();
      //sense_compute_and_actuate();
      //int samples = wb_camera_get_width(LaserHead);
      //double field_of_view = wb_camera_get_fov(LaserHead);
      //const float *values = wb_camera_get_range_image(LaserHead);
      
      report_step_state_to_supervisor();
      
      //printf("%f\n", field_of_view);
      //printf("size: %d\n", sizeof(values));
      //int i;
      //for(i=0; i<samples;i++){
      //  printf("value %d is %f\n",i, values[i]);
      //}
      
      if(wb_robot_step(time_step) == 0){
          //report_step_state_to_supervisor();
      }
  }

  wb_robot_cleanup();

  return 0;
}
Example #5
0
int main() {
  //const char *name;
  int left_speed, right_speed;
  left_speed = 50;
  right_speed = 50;
  wb_robot_init();
  //name = wb_robot_get_name();
wb_differential_wheels_set_speed(left_speed, right_speed);

  wb_robot_cleanup();

  return 0;
}
Example #6
0
int main() {
  wb_robot_init();
  
  reset();
  
  while(wb_robot_step(TIME_STEP) != -1) {
    run();
  }
  
  wb_robot_cleanup();
  
  return 0;
}
int main() {
  int duration = TIME_STEP;

  wb_robot_init(); // controller initialization
  reset();
  
  
  while (wb_robot_step(duration) != -1) {
    duration = run(duration);
  }
  
  wb_robot_cleanup();
  return 0;
}
int main(int argc, char *argv[]) {
  /* define variables */
  WbDeviceTag turret_sensor;
  double perf_data[3];
  double clock = 0;

  /* initialize Webots */
  wb_robot_init();
  
  // read robot id from the robot's name
  char* robot_name;
  robot_name=(char*) wb_robot_get_name(); 
  sscanf(robot_name,"e-puck%d",&robot_id);
  
  emitter = wb_robot_get_device("emitter");
  wb_emitter_set_range(emitter,COM_RANGE);
  receiver = wb_robot_get_device("receiver");
  wb_receiver_set_channel(receiver,0);
  wb_receiver_enable(receiver,TIME_STEP);

  wb_robot_step(TIME_STEP);
  
  turret_sensor = wb_robot_get_device("ts");
  wb_light_sensor_enable(turret_sensor,TIME_STEP);    

  /* main loop */
  while (wb_robot_step(TIME_STEP) != -1) {
    clock += (double)TIME_STEP/1000;
    /* get light sensor value */
    sensor_value = wb_light_sensor_get_value(turret_sensor);

    if(wb_receiver_get_queue_length(receiver) > 0) {
      wb_emitter_set_channel(emitter,3);
      perf_data[0] = (double)robot_id;
      perf_data[1] = (double)(pkt_count-1);
      perf_data[2] = 0;
      wb_emitter_send(emitter,perf_data,3*sizeof(double));
      break; // stop node
    }
    else {
      send_data(clock); // send measurement data
    }
  }
  wb_robot_cleanup();

  return 0;
}
Example #9
0
int main() {

	srand ( time(NULL) );
	wb_robot_init();
	wb_robot_step(TIME_STEP);
	wb_robot_step(TIME_STEP);


	/* main loop */
	while (wb_robot_step(TIME_STEP) != -1) {

		wb_differential_wheels_set_speed(1000,1000);
	}
	wb_robot_cleanup();

	return 0;
}
Example #10
0
int main(int argc, char **argv)
{
  //robot_live(reset);
 // robot_run(run);

  /* necessary to initialize webots stuff */
  wb_robot_init();
  //TIME_STEP = (int)wb_robot_get_basic_time_step();
  int n=reset();
  printf("did reset: %d\n",n);
  /*
   * You should declare here WbDeviceTag variables for storing
   * robot devices like this:
   *  WbDeviceTag my_sensor = wb_robot_get_device("my_sensor");
   *  WbDeviceTag my_actuator = wb_robot_get_device("my_actuator");
   */
  
  /* main loop
   * Perform simulation steps of TIME_STEP milliseconds
   * and leave the loop when the simulation is over
   */
  while (wb_robot_step(TIME_STEP) != -1) {
    
    /* 
     * Read the sensors :
     * Enter here functions to read sensor data, like:
     *  double val = wb_distance_sensor_get_value(my_sensor);
     */
    run(TIME_STEP);
    /* Process sensor data here */
    
    /*
     * Enter here functions to send actuator commands, like:
     * wb_differential_wheels_set_speed(100.0,100.0);
     */
  };
  
  /* Enter your cleanup code here */
  
  /* This is necessary to cleanup webots resources */
  wb_robot_cleanup();
  
  return 0;
}
Example #11
0
// main loop
int main(void)
{
  srand(time(NULL));
  // initialization
  wb_robot_init();
  int i;
  for (i=0;i<ROBOTS;i++) {
    char aux[15];
    sprintf(aux,"%s%d",rob_prefix,i+1);
    rob[i] = wb_supervisor_node_get_from_def(aux);
    loc[i] = wb_supervisor_field_get_sf_vec3f(wb_supervisor_node_get_field(rob[i],"translation"));
    initLoc[i][0] = loc[i][0];
    initLoc[i][1] = loc[i][1];
    initLoc[i][2] = loc[i][2];

    rot[i] = wb_supervisor_field_get_sf_rotation(wb_supervisor_node_get_field(rob[i],"rotation"));
    initRot[i][0] = rot[i][0];
    initRot[i][1] = rot[i][1];
    initRot[i][2] = rot[i][2];
    initRot[i][3] = rot[i][3];
  }

  reset();
  wb_robot_step(2*STEP_SIZE);

  // start the controller
  outfile = fopen("../../../matlab/output.m","w");

  printf("Starting main loop...\n");
  while (wb_robot_step(STEP_SIZE) != -1)
  {
    run(STEP_SIZE);
  }

  wb_robot_cleanup();
  return 0;

}
Example #12
0
int main(int argc, char **argv)
{
  wb_robot_init();
  int time_step = wb_robot_get_basic_time_step();

  WbDeviceTag gps = wb_robot_get_device("GPS");
  wb_gps_enable(gps, time_step);
  WbDeviceTag emitter = wb_robot_get_device("emitter");
  wb_emitter_set_channel(emitter,13);

  double* gps_value;
  char message[32];

  while (wb_robot_step(time_step) != -1){
   gps_value = wb_gps_get_values(gps);
   //Something's wrong with deserialization 
   //So we make a fixed width string here
   sprintf(message,"{%0.3f,%0.3f}",gps_value[0]/2+5.0,-gps_value[2]/2+5.0);
   wb_emitter_send(emitter,message,strlen(message)+1);
//   printf("%s\n",message);
  }
  wb_robot_cleanup();
  return 0;
}
Example #13
0
int main(int argc, char **argv)
{
  wb_robot_init();
  
  int i;
  WbDeviceTag servos[NSERVOS];
  WbDeviceTag head_led;
  
  for (i=0; i<NSERVOS; i++)
    servos[i] = wb_robot_get_device(servo_names[i]);
  head_led = wb_robot_get_device("HeadLed");
  wb_led_set(head_led, 0x40C040);
  
  do {
    double t = wb_robot_get_time();
    for (i=0; i<6; i++)
      wb_servo_set_position(servos[i], amplitudes[i]*sin(frequency*t) + offsets[i]);
    
  } while (wb_robot_step(TIME_STEP) != -1);
  
  wb_robot_cleanup();
  
  return 0;
}
Example #14
0
int main(int argc, char **argv) {

  wb_robot_init();

  // check if roslaunch is properly installed
  if (system("which roslaunch > /dev/null")!=0) {
    fprintf(stderr,"Cannot find roslaunch in PATH. Please check that ROS is properly installed.\n");
    wb_robot_cleanup();
    return 0;
  }

  // launch the joy ROS node
  int roslaunch=fork();
  if (roslaunch==0) { // child process
    execlp("roslaunch","roslaunch","joy.launch",NULL);
    return 0;
  }

  // From this point we assume the ROS_ROOT, ROS_MASTER_URI and
  // ROS_PACKAGE_PATH environment variables are set appropriately.
  // See ROS manuals to set them properly.  
  ros::init(argc, argv, "joystick");
  ros::NodeHandle nh;
  ros::Subscriber sub=nh.subscribe("joy", 10, joy_callback);
//  ros::Subscriber sub=nh.subscribe<int32>("joy", 10, joy_callback);

  double left_speed = 0;
  double right_speed = 0;
  
  ROS_INFO("Joypad connected and running.");
  ROS_INFO("Commands:");
  ROS_INFO("arrow up: move forward, speed up");
  ROS_INFO("arrow down: move backward, slow down");
  ROS_INFO("arrow left: turn left");
  ROS_INFO("arrow right: turn right");
  
  // control loop: simulation steps of 32 ms
  while(wb_robot_step(32) != -1) {

    // get callback called
    ros::spinOnce();

    switch(cmd) {

    case JOYPAD_UP:
      left_speed=SPEED;
      right_speed=SPEED;
      break;

    case JOYPAD_DOWN:
      left_speed=-SPEED;
      right_speed=-SPEED;
      break;
        
    case JOYPAD_LEFT:
      left_speed=-SPEED;
      right_speed=SPEED;
      break;
       
    case JOYPAD_RIGHT:
      left_speed=SPEED;
      right_speed=-SPEED;
      break;
      
    case JOYPAD_STOP:
      left_speed = 0;
      right_speed = 0;
      break;
    }

    // set motor speeds
    wb_differential_wheels_set_speed(left_speed, right_speed);
  }

  ros::shutdown();

  kill(roslaunch,SIGINT); // terminate roslaunch for joy ROS node as with Ctrl-C

  wb_robot_cleanup();

  return 0;
}
Example #15
0
int main() {
  wb_robot_init();

  // do this once only
  WbNodeRef robot_node1 = wb_supervisor_node_get_from_def("epuck1");
  WbFieldRef trans_field1 = wb_supervisor_node_get_field(robot_node1, "translation");
  /*WbNodeRef robot_node2 = wb_supervisor_node_get_from_def("epuck2");
  WbFieldRef trans_field2 = wb_supervisor_node_get_field(robot_node2, "translation");
  WbNodeRef robot_node3 = wb_supervisor_node_get_from_def("epuck3");
  WbFieldRef trans_field3 = wb_supervisor_node_get_field(robot_node3, "translation");
  WbNodeRef robot_node4 = wb_supervisor_node_get_from_def("epuck4");
  WbFieldRef trans_field4 = wb_supervisor_node_get_field(robot_node4, "translation");
  WbNodeRef robot_node5 = wb_supervisor_node_get_from_def("epuck5");
  WbFieldRef trans_field5 = wb_supervisor_node_get_field(robot_node5, "translation");
  WbNodeRef robot_node6 = wb_supervisor_node_get_from_def("epuck6");
  WbFieldRef trans_field6 = wb_supervisor_node_get_field(robot_node6, "translation");
  WbNodeRef robot_node7 = wb_supervisor_node_get_from_def("epuck7");
  WbFieldRef trans_field7 = wb_supervisor_node_get_field(robot_node7, "translation");
  */
  
      time_t now;

    struct tm *today;  
    char date[23];

    //get current date  
    time(&now);  
    today = localtime(&now);

    //print it in DD.MM.YY format.
    strftime(date, 23, "sim%Y%m%d.%H%M%S.txt", today);
    
  FILE *fp;
  fp=fopen(date, "w");
  double time = 0.0;
   for (time = 0.0; time < 3600.0; time += TIME_STEP / 1000.0) {
    // this is done repeatedly
    const double *trans1 = wb_supervisor_field_get_sf_vec3f(trans_field1);
    fprintf(fp, "%g,%g",trans1[0], trans1[2]);
    /*const double *trans2 = wb_supervisor_field_get_sf_vec3f(trans_field2);
    fprintf(fp, ",%g,%g",trans2[0], trans2[2]);
    const double *trans3 = wb_supervisor_field_get_sf_vec3f(trans_field3);
    fprintf(fp, ",%g,%g",trans3[0], trans3[2]);
    const double *trans4 = wb_supervisor_field_get_sf_vec3f(trans_field4);
    fprintf(fp, ",%g,%g",trans4[0], trans4[2]);
    const double *trans5 = wb_supervisor_field_get_sf_vec3f(trans_field5);
    fprintf(fp, ",%g,%g",trans5[0], trans5[2]);
    const double *trans6 = wb_supervisor_field_get_sf_vec3f(trans_field6);
    fprintf(fp, ",%g,%g",trans6[0], trans6[2]);
    const double *trans7 = wb_supervisor_field_get_sf_vec3f(trans_field7);
    fprintf(fp, ",%g,%g",trans7[0], trans7[2]);*/
    fprintf(fp, "\n");
    wb_robot_step(TIME_STEP);
  }
  wb_supervisor_simulation_quit(EXIT_SUCCESS);
fclose(fp);
wb_robot_cleanup();
wb_robot_step(TIME_STEP);
wb_robot_step(TIME_STEP);
wb_robot_step(TIME_STEP);
  return 0;
}
int main(int argc, char **argv)
{
  printf("Comenzo todo\n");
  wb_robot_init();
  printf("Iniciando el sistema\n");
  // Ros initialization
  ros::init(argc, argv, "Simulador");
  ros::init(argc, argv, "Imagenes_de_Simulador");
  ros::NodeHandle n,nh,nh2;
  
 // ros::Subscriber chatter_sub = n.subscribe("/auto_controller/command", 100, chatterCallback);
  
  ros::Subscriber chatter_sub = n.subscribe("/auto_controller/command", 100, chatterCallback);
  image_transport::ImageTransport it(nh);
	
	//OpenCV HighGUI call to destroy a display window on shut-down.
  
  image_transport::ImageTransport it2(nh2);
  image_transport::Publisher pub2 = it.advertise("/webot/camera", 1);
  
  //ros::spin();
  // find front wheels
  left_front_wheel = wb_robot_get_device("left_front_wheel");
  right_front_wheel = wb_robot_get_device("right_front_wheel");
  wb_servo_set_position(left_front_wheel, INFINITY);
  wb_servo_set_position(right_front_wheel, INFINITY);
  
  // get steering motors
  left_steer = wb_robot_get_device("left_steer");
  right_steer = wb_robot_get_device("right_steer");

  // camera device
  camera = wb_robot_get_device("camera");
  wb_camera_enable(camera, TIME_STEP);
  camera_width = wb_camera_get_width(camera);
  camera_height = wb_camera_get_height(camera);
  camera_fov = wb_camera_get_fov(camera);

  
  // initialize gps
  gps = wb_robot_get_device("gps");
  wb_gps_enable(gps, TIME_STEP);
  
 
  
  // initialize display (speedometer)
  display = wb_robot_get_device("display");
  speedometer_image = wb_display_image_load(display, "/root/research/PROYECTOTP/controllers/destiny_controller/speedometer.png");
  wb_display_set_color(display, 0xffffff);
  
  // start engine
  speed=64.0; // km/h

  //print_help();
  
  // allow to switch to manual control
  //wb_robot_keyboard_enable(TIME_STEP);

  // main loop
  printf("Iniciando el ciclo de peticiones\n");
  
 // set_autodrive(false);z
  while (1) {
    
    const unsigned char *camera_image = wb_camera_get_image(camera);
    
    compute_gps_speed();
    update_display();    
    //wb_camera_save_image (camera, "/tmp/imagen.png", 100);
    //cv::WImageBuffer3_b image(cvLoadImage("/tmp/imagen.png", CV_LOAD_IMAGE_COLOR));
    IplImage* imagen=save_camera_image(camera_image);
    sensor_msgs::ImagePtr msg = sensor_msgs::CvBridge::cvToImgMsg(imagen, "bgr8");
    pub2.publish(msg);
    cvReleaseImage(&imagen );
     ros::spinOnce();

    // wb_servo_set_position(left_steer, 0);
    // wb_servo_set_position(right_steer, 0);
     wb_robot_step(TIME_STEP);
  }

  wb_robot_cleanup();

  return 0;  // ignored

}
Example #17
0
// Main function
int main(int argc, char **argv)
{
  // Initialize webots
  wb_robot_init();
  
  // GPS tick data
  int red_line_tick = 0;
  int green_circle_tick = 0;
  
  // Get robot devices
  WbDeviceTag left_wheel  = wb_robot_get_device("left_wheel");
  WbDeviceTag right_wheel = wb_robot_get_device("right_wheel");
  
  // Get robot sensors
  WbDeviceTag forward_left_sensor = wb_robot_get_device("so3");
  wb_distance_sensor_enable(forward_left_sensor, TIME_STEP);
  WbDeviceTag forward_right_sensor = wb_robot_get_device("so4");
  wb_distance_sensor_enable(forward_right_sensor, TIME_STEP);
  WbDeviceTag left_sensor = wb_robot_get_device("so1");
  wb_distance_sensor_enable(left_sensor, TIME_STEP);
  
  // Get the compass
  WbDeviceTag compass = wb_robot_get_device("compass");
  wb_compass_enable(compass, TIME_STEP);
  
  // Get the GPS data
  WbDeviceTag gps = wb_robot_get_device("gps");
  wb_gps_enable(gps, TIME_STEP);
  
  // Prepare robot for velocity commands
  wb_motor_set_position(left_wheel, INFINITY);
  wb_motor_set_position(right_wheel, INFINITY);
  wb_motor_set_velocity(left_wheel, 0.0);
  wb_motor_set_velocity(right_wheel, 0.0);
  
  
  // Begin in mode 0, moving forward
  int mode  = 0;
  
  // Main loop
  while (wb_robot_step(TIME_STEP) != -1) {
  
    // Get the sensor data
    double forward_left_value = wb_distance_sensor_get_value(forward_left_sensor);
    double forward_right_value = wb_distance_sensor_get_value(forward_right_sensor);
    double left_value = wb_distance_sensor_get_value(left_sensor);
      
    // Read compass and convert to angle
    const double *compass_val = wb_compass_get_values(compass);
    double compass_angle = convert_bearing_to_degrees(compass_val);
    
    // Read in the GPS data
    const double *gps_val = wb_gps_get_values(gps);
    
    // Debug
    printf("Sensor input values:\n");
    printf("- Forward left: %.2f.\n",forward_left_value);
    printf("- Forward right: %.2f.\n",forward_right_value);
    printf("- Right: %.2f.\n",left_value);
    printf("- Compass angle (degrees): %.2f.\n", compass_angle);
    printf("- GPS values (x,z): %.2f, %.2f.\n", gps_val[0], gps_val[2]);
    
    // Send acuator commands
    double left_speed, right_speed;
    left_speed = 0;
    right_speed = 0;
    
    // List the current modes
    printf("Mode: %d.\n", mode);
    printf("Action: ");
    
    /*
     * There are four modes for this controller.
     * They are listed as below:
     * 0: Finding initial correct angle
     * 1: Moving forward
     * 2: Wall following
     * 3: Rotating after correct point
     * 4: Finding green circle + moving on
     */
     
    // If it reaches GPS coords past the red line
    if (gps_val[2] > 8.0) {
      
      // Up the GPS tick
      red_line_tick = red_line_tick + 1;
      
    }
    
    // If the red line tick tolerance reaches
    // more than 10 per cycle, begin mode 3
    if (red_line_tick > 10) {
      mode = 3;
    }
    
    if (mode == 0) { // Mode 0: Find correct angle
    
      printf("Finding correct angle\n");
      
      if (compass_angle < (DESIRED_ANGLE - 1.0)) {
      
        // Turn right
        left_speed = MAX_SPEED;
        right_speed = 0;
      
      } else if (compass_angle > (DESIRED_ANGLE + 1.0)) {
        
        // Turn left
        left_speed = 0;
        right_speed = MAX_SPEED;
      
      } else {
      
        // Reached the desired angle, move in a straight line
        mode = 1;
      
      }
    
    } else if(mode == 1) { // Mode 1: Move forward
    
      printf("Moving forward.\n");
    
      left_speed = MAX_SPEED;
      right_speed = MAX_SPEED;
            
      // When sufficiently close to a wall in front of robot, switch mode to wall following
      if ((forward_right_value > 500) || (forward_left_value > 500)) {
        mode = 2;
      }
      
    } 
    else if (mode == 2) { // Mode 2: Wall following
        
      if ((forward_right_value > 200) || (forward_left_value > 200)) {
        printf("Backing up and turning right.\n"); 
        
        left_speed = MAX_SPEED / 4.0;
        right_speed = - MAX_SPEED / 2.0;
      }
      else {
      
        if (left_value > 300) {
          printf("Turning right away from wall.\n"); 
          
          left_speed = MAX_SPEED;
          right_speed = MAX_SPEED / 1.75;
        } 
        else {
        
          if (left_value < 200) {
            printf("Turning left towards wall.\n");
              
            left_speed = MAX_SPEED / 1.75;
            right_speed = MAX_SPEED;
          } 
          else {
            printf("Moving forward along wall.\n");
            
            left_speed = MAX_SPEED;
            right_speed = MAX_SPEED;
          } 
          
        }
        
      }
      
    } else if (mode == 3) {
    
      // Once arrived, turn to the right
      printf("Finding correct angle (again)\n");
      
      if (compass_angle < (90 - 1.0)) {
      
        // Turn right
        left_speed = MAX_SPEED;
        right_speed = MAX_SPEED / 1.75;
      
      } else if (compass_angle > (90 + 1.0)) {
        
        // Turn left
        left_speed = MAX_SPEED / 1.75;
        right_speed = MAX_SPEED;
      
      } else {
      
        // Reached the desired angle, move in a straight line
        if (green_circle_tick > 10) {
          left_speed = 0;
          right_speed = 0;
          
          
        } else {
          left_speed = MAX_SPEED;
          right_speed = MAX_SPEED;
        }
        
        if (gps_val[0] < -3.2) {
          green_circle_tick = green_circle_tick + 1;
        }
      
      }
      
    }
     
    // Set the motor speeds.
    wb_motor_set_velocity(left_wheel, left_speed);
    wb_motor_set_velocity(right_wheel, right_speed);
    
  // Perform simple simulation step
  } while (wb_robot_step(TIME_STEP) != -1);

  
  // Clean up webots
  wb_robot_cleanup();
  
  return 0;
}
Example #18
0
int main() {
  printf("hello from supervisor\n");
  
  const char *robot_name[ROBOTS] = {"NAO"};
  WbNodeRef node;
  WbFieldRef robot_translation_field[ROBOTS],robot_rotation_field[ROBOTS],ball_translation_field;
  //WbDeviceTag emitter, receiver;
  int i,j;
  int score[2] = { 0, 0 };
  double time = 10 * 60;    /* a match lasts for 10 minutes */
  double ball_reset_timer = 0;
  double ball_initial_translation[3] = { -2.5, 0.0324568, 0 };
  double robot_initial_translation[ROBOTS][3] = {
      {-4.49515, 0.234045, -0.0112415},
      {0.000574037, 0.332859, -0.00000133636}};
  double robot_initial_rotation[ROBOTS][4] = {
      {0.0604202, 0.996035, -0.0652942, 1.55047},
      {0.000568956, 0.70711, 0.707104, 3.14045}};
  double packet[ROBOTS * 3 + 2];
  char time_string[64];
  const double *robot_translation[ROBOTS], *robot_rotation[ROBOTS], *ball_translation;

  wb_robot_init();
  
  time_step = wb_robot_get_basic_time_step();
  
  emitter = wb_robot_get_device("emitter");
  wb_receiver_enable(emitter, time_step);
  receiver = wb_robot_get_device("receiver");
  wb_receiver_enable(receiver, time_step);


  for (i = 0; i < ROBOTS; i++) {
    node = wb_supervisor_node_get_from_def(robot_name[i]);
    robot_translation_field[i] = wb_supervisor_node_get_field(node,"translation");
    robot_translation[i] = wb_supervisor_field_get_sf_vec3f(robot_translation_field[i]);
    for(j=0;j<3;j++) robot_initial_translation[i][j]=robot_translation[i][j];
    robot_rotation_field[i] = wb_supervisor_node_get_field(node,"rotation");
    robot_rotation[i] = wb_supervisor_field_get_sf_rotation(robot_rotation_field[i]);
    for(j=0;j<4;j++) robot_initial_rotation[i][j]=robot_rotation[i][j];
  }

  node = wb_supervisor_node_get_from_def("BALL");
  ball_translation_field = wb_supervisor_node_get_field(node,"translation");
  ball_translation = wb_supervisor_field_get_sf_vec3f(ball_translation_field);
  for(j=0;j<3;j++) ball_initial_translation[j]=ball_translation[j];
  /* printf("ball initial translation = %g %g %g\n",ball_translation[0],ball_translation[1],ball_translation[2]); */
  set_scores(0, 0);

  while(wb_robot_step(TIME_STEP)!=-1) {
    //printf("supervisor commands START!\n");
    check_for_slaves_data();
    
    ball_translation = wb_supervisor_field_get_sf_vec3f(ball_translation_field);
    for (i = 0; i < ROBOTS; i++) {
      robot_translation[i]=wb_supervisor_field_get_sf_vec3f(robot_translation_field[i]);
      /* printf("coords for robot %d: %g %g %g\n",i,robot_translation[i][0],robot_translation[i][1],robot_translation[i][2]); */
      packet[3 * i]     = robot_translation[i][0];  /* robot i: X */
      packet[3 * i + 1] = robot_translation[i][2];  /* robot i: Z */

      if (robot_rotation[i][1] > 0) {               /* robot i: rotation Ry axis */
        packet[3 * i + 2] = robot_rotation[i][3];   /* robot i: alpha */
      } else { /* Ry axis was inverted */
        packet[3 * i + 2] = -robot_rotation[i][3];   
      }
    }
    packet[3 * ROBOTS]     = ball_translation[0];  /* ball X */
    packet[3 * ROBOTS + 1] = ball_translation[2];  /* ball Z */
    wb_emitter_send(emitter, packet, sizeof(packet));

    /* Adds TIME_STEP ms to the time */
    time -= (double) TIME_STEP / 1000;
    if (time < 0) {
      time = 10 * 60; /* restart */
    }
    sprintf(time_string, "%02d:%02d", (int) (time / 60), (int) time % 60);
    wb_supervisor_set_label(2, time_string, 0.45, 0.01, 0.1, 0x000000, 0.0);   /* black */

    if (ball_reset_timer == 0) {
      if (ball_translation[0] > GOAL_X_LIMIT) {  /* ball in the blue goal */
        set_scores(++score[0], score[1]);
        ball_reset_timer = 3;   /* wait for 3 seconds before reseting the ball */
      } else if (ball_translation[0] < -GOAL_X_LIMIT) {  /* ball in the yellow goal */
        set_scores(score[0], ++score[1]);
        ball_reset_timer = 3;   /* wait for 3 seconds before reseting the ball */
      }
    } else {
      ball_reset_timer -= (double) TIME_STEP / 1000.0;
      if (ball_reset_timer <= 0) {
        ball_reset_timer = 0;
        wb_supervisor_field_set_sf_vec3f(ball_translation_field, ball_initial_translation);
        for (i = 0; i < ROBOTS; i++) {
          wb_supervisor_field_set_sf_vec3f(robot_translation_field[i], robot_initial_translation[i]);
          wb_supervisor_field_set_sf_rotation(robot_rotation_field[i], robot_initial_rotation[i]);
        }
      }
    }
  }
  
  wb_robot_cleanup();

  return 0;
}
Example #19
0
// entry point of the controller
int main(int argc, char **argv)
{
  // initialize the Webots API
  wb_robot_init();
  // internal variables
  int i;
  WbDeviceTag ps[8];
  char ps_names[8][4] = {
    "ps0", "ps1", "ps2", "ps3",
    "ps4", "ps5", "ps6", "ps7"
  };
  
  // initialize devices
  for (i=0; i<8 ; i++) {
    ps[i] = wb_robot_get_device(ps_names[i]);
    wb_distance_sensor_enable(ps[i], TIME_STEP);
  }
  
  WbDeviceTag ls[8];
  char ls_names[8][4] = {
    "ls0", "ls1", "ls2", "ls3",
    "ls4", "ls5", "ls6", "ls7"
  };
  
  // initialize devices
  for (i=0; i<8 ; i++) {
    ls[i] = wb_robot_get_device(ls_names[i]);
    wb_light_sensor_enable(ls[i], TIME_STEP);
  }
  
  WbDeviceTag led[8];
  char led_names[8][5] = {
    "led0", "led1", "led2", "led3",
    "led4", "led5", "led6", "led7"
  };
  
  // initialize devices
  for (i=0; i<8 ; i++) {
    led[i] = wb_robot_get_device(led_names[i]);
  }
  
  // feedback loop
  while (1) { 
    // step simulation
    int delay = wb_robot_step(TIME_STEP);
    if (delay == -1) // exit event from webots
      break;
 
    // read sensors outputs
    double ps_values[8];
    for (i=0; i<8 ; i++)
      ps_values[i] = wb_distance_sensor_get_value(ps[i]);
    
    update_search_speed(ps_values, 250);
    
    // set speeds
    double left_speed  = get_search_left_wheel_speed();
    double right_speed = get_search_right_wheel_speed();
    
    
    // read IR sensors outputs
    double ls_values[8];
    for (i=0; i<8 ; i++){
        ls_values[i] = wb_light_sensor_get_value(ls[i]);
      }
    
    int active_ir = FALSE;
    for(i=0; i<8; i++){
      if(ls_values[i] < 2275){
        active_ir = TRUE;
      }
    }
    
    if(active_ir == TRUE){
      swarm_retrieval(ls_values, ps_values, 2275);
      left_speed = get_retrieval_left_wheel_speed();
      right_speed = get_retrieval_right_wheel_speed();
    }
    
    if(is_pushing() == TRUE || stagnation == TRUE){
    // check for stagnation
	stagnation_counter = stagnation_counter + 1;
	if(stagnation_counter == min((50 + positive_feedback * 50), 300) && stagnation == FALSE){
		stagnation_counter = 0; // reset counter
		stagnation_check = TRUE;
		for(i=0; i<8; i++)
                      prev_dist_values[i] = ps_values[i];
	}
	
	if(stagnation_check == TRUE){
            left_speed = 0;
            right_speed = 0;	
	}

	if(stagnation_check == TRUE && stagnation_counter == 5){
		stagnation_counter = 0; // reset counter
		reset_stagnation();
		valuate_pushing(ps_values, prev_dist_values);
		stagnation = get_stagnation_state();
		stagnation_check = FALSE;
		if(stagnation == TRUE)
                      positive_feedback = 0;
                   else
                      positive_feedback = positive_feedback + 1;
	}

	if(stagnation == TRUE){
		stagnation_recovery(ps_values, 300);
		left_speed = get_stagnation_left_wheel_speed();
		right_speed = get_stagnation_right_wheel_speed();
		if(get_stagnation_state() == FALSE){
			reset_stagnation();
			stagnation = FALSE;
			stagnation_counter = 0;
		}
	}
    }

    // write actuators inputs
    wb_differential_wheels_set_speed(left_speed, right_speed);
    
    for(i=0; i<8; i++){
      wb_led_set(led[i], get_LED_state(i));
    }
    
  }
  
  // cleanup the Webots API
  wb_robot_cleanup();
  return 0; //EXIT_SUCCESS
}
Example #20
0
int main(int argc, char **argv)
{
  printf("Comenzo todo\n");
  wb_robot_init();
  printf("Iniciando el sistema\n");  
  ros::init(argc, argv, "NEURONAL");  
  ros::NodeHandle n,nh,nh2;  
  ros::Subscriber chatter_sub = n.subscribe("/auto_controller/command", 100, chatterCallback);
  
  
  // find front wheels
  left_front_wheel = wb_robot_get_device("left_front_wheel");
  right_front_wheel = wb_robot_get_device("right_front_wheel");
  wb_servo_set_position(left_front_wheel, INFINITY);
  wb_servo_set_position(right_front_wheel, INFINITY);
  
  // get steering motors
  left_steer = wb_robot_get_device("left_steer");
  right_steer = wb_robot_get_device("right_steer");

  // camera device
  camera = wb_robot_get_device("camera");
  wb_camera_enable(camera, TIME_STEP);
  camera_width = wb_camera_get_width(camera);
  camera_height = wb_camera_get_height(camera);
  camera_fov = wb_camera_get_fov(camera);

  
  // initialize gps
  gps = wb_robot_get_device("gps");
  wb_gps_enable(gps, TIME_STEP);
  
 
  
  // initialize display (speedometer)
  display = wb_robot_get_device("display");
  speedometer_image = wb_display_image_load(display, "/root/research/PROYECTOTP/controllers/destiny_controller/speedometer.png");
  wb_display_set_color(display, 0xffffff);
  
    // SICK sensor
  sick = wb_robot_get_device("lms291");
  wb_camera_enable(sick, TIME_STEP);
  sick_width = wb_camera_get_width(sick);
  sick_range = wb_camera_get_max_range(sick);
  sick_fov = wb_camera_get_fov(sick);
  
  // start engine
  speed=64.0; // km/h
  // main loop
  printf("Iniciando el ciclo de peticiones\n");
  
 // set_autodrive(false);z
  while (1) {
    
    const unsigned char *camera_image = wb_camera_get_image(camera);
    
    compute_gps_speed();
    update_display();        
    ros::spinOnce();

     wb_robot_step(TIME_STEP);
  }

  wb_robot_cleanup();

  return 0;  // ignored

}
/*
 * This is the main program.
 * The arguments of the main function can be specified by the
 * "controllerArgs" field of the Robot node
 */
int main(int argc, char **argv)
{
  //int cont=0;
  
  
  using_shared_memory();

  /* necessary to initialize webots stuff */
  wb_robot_init();
  
  // do this once only Darwin
  WbNodeRef robot_node = wb_supervisor_node_get_from_def("Darwin");
  WbFieldRef trans_field = wb_supervisor_node_get_field(robot_node, "translation");
  WbFieldRef rot_field = wb_supervisor_node_get_field(robot_node, "rotation");
  int caiu_cont = 0;

  // do this once only Darwin2
  WbNodeRef robot_node_2 = wb_supervisor_node_get_from_def("Darwin2");
  WbFieldRef trans_field_2 = wb_supervisor_node_get_field(robot_node_2, "translation");
  WbFieldRef rot_field_2 = wb_supervisor_node_get_field(robot_node_2, "rotation");

  // do this once only Darwin3
  WbNodeRef robot_node_3 = wb_supervisor_node_get_from_def("Darwin3");
  WbFieldRef trans_field_3 = wb_supervisor_node_get_field(robot_node_3, "translation");
  WbFieldRef rot_field_3 = wb_supervisor_node_get_field(robot_node_3, "rotation");

  while (1) {
    // this is done repeatedly
    const double *trans = wb_supervisor_field_get_sf_vec3f(trans_field);
	const double *trans_2 = wb_supervisor_field_get_sf_vec3f(trans_field_2);
	const double *trans_3 = wb_supervisor_field_get_sf_vec3f(trans_field_3);
    TRANS1 = trans[0];
    TRANS2 = trans[1];
    TRANS3 = trans[2];
    TRANS1_2 = trans_2[0];
    TRANS2_2 = trans_2[1];
    TRANS3_2 = trans_2[2];
    TRANS1_3 = trans_3[0];
    TRANS2_3 = trans_3[1];
    TRANS3_3 = trans_3[2];
    //printf("MY_ROBOT is at position: %g %g %g\n", trans[0], trans[1], trans[2]);
    wb_robot_step(32);
    
    if(RESET_ROBOT == 1)
    { 
      caiu_cont++;
      CAIU_CONT = caiu_cont;
      // reset robot position
      const double INITIAL[3] = { 0, 0.32004, 0 };
      const double INITIAL_ROT[4] = { 0.211189, 0.971678, -0.106025, 0.944968 };
      wb_supervisor_field_set_sf_vec3f(trans_field, INITIAL);
      wb_supervisor_field_set_sf_rotation(rot_field, INITIAL_ROT);
      //wb_supervisor_simulation_reset_physics();
      RESET_ROBOT = 0;
      if(caiu_cont > 25)
      {
        caiu_cont = 0;
        wb_supervisor_simulation_revert(); // restart the simulation
        // A medida que o tempo vai passando o robo Darwin vai ficando
        // cada vez mais devagar como se houvesse algum tipo de desgaste fisico
        //entao e necessario restarta a simulaçao
      }
    }

    if(RESET_ROBOT_2 == 1)
    { 
      // reset robot position
      const double INITIAL_2[3] = { 0.2, 0.32004, 4.7 };
      const double INITIAL_ROT_2[4] = { 0.211189, 0.971678, -0.106025, 0.944968 };
      wb_supervisor_field_set_sf_vec3f(trans_field_2, INITIAL_2);
      wb_supervisor_field_set_sf_rotation(rot_field_2, INITIAL_ROT_2);
      //wb_supervisor_simulation_reset_physics();
      RESET_ROBOT_2 = 0;
    }

    if(RESET_ROBOT_3 == 1)
    { 
      // reset robot position
      const double INITIAL_3[3] = { 3.2, 0.32004, -3.7 };
      const double INITIAL_ROT_3[4] = { 0.211189, 0.971678, -0.106025, 0.944968 };
      wb_supervisor_field_set_sf_vec3f(trans_field_3, INITIAL_3);
      wb_supervisor_field_set_sf_rotation(rot_field_3, INITIAL_ROT_3);
      //wb_supervisor_simulation_reset_physics();
      RESET_ROBOT_3 = 0;
    }
    
  }
  
  /*
   * You should declare here WbDeviceTag variables for storing
   * robot devices like this:
   *  WbDeviceTag my_sensor = wb_robot_get_device("my_sensor");
   *  WbDeviceTag my_actuator = wb_robot_get_device("my_actuator");
   */
 
  
  /* This is necessary to cleanup webots resources */
  wb_robot_cleanup();
  
  return 0;
}