/** @brief Init accelerometer. */ void initAccel() { xmWriteByte(CTRL_REG0_XM, 0x00); // Disable fifo mode xmWriteByte(CTRL_REG1_XM, 0x57); // 100Hz data rate, x/y/z all enabled xmWriteByte(CTRL_REG2_XM, 0x00); // Set scale to 2g xmWriteByte(CTRL_REG3_XM, 0x00); }
void LSM9DS0::initMag() { /* CTRL_REG5_XM enables temp sensor, sets mag resolution and data rate Bits (7-0): TEMP_EN M_RES1 M_RES0 M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1 TEMP_EN - Enable temperature sensor (0=disabled, 1=enabled) M_RES[1:0] - Magnetometer resolution select (0=low, 3=high) M_ODR[2:0] - Magnetometer data rate select 000=3.125Hz, 001=6.25Hz, 010=12.5Hz, 011=25Hz, 100=50Hz, 101=100Hz LIR2 - Latch interrupt request on INT2_SRC (cleared by reading INT2_SRC) 0=interrupt request not latched, 1=interrupt request latched LIR1 - Latch interrupt request on INT1_SRC (cleared by readging INT1_SRC) 0=irq not latched, 1=irq latched */ xmWriteByte(CTRL_REG5_XM, 0x14); // Mag data rate - 100 Hz /* CTRL_REG6_XM sets the magnetometer full-scale Bits (7-0): 0 MFS1 MFS0 0 0 0 0 0 MFS[1:0] - Magnetic full-scale selection 00:+/-2Gauss, 01:+/-4Gs, 10:+/-8Gs, 11:+/-12Gs */ xmWriteByte(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS /* CTRL_REG7_XM sets magnetic sensor mode, low power mode, and filters AHPM1 AHPM0 AFDS 0 0 MLP MD1 MD0 AHPM[1:0] - HPF mode selection 00=normal (resets reference registers), 01=reference signal for filtering, 10=normal, 11=autoreset on interrupt event AFDS - Filtered acceleration data selection 0=internal filter bypassed, 1=data from internal filter sent to FIFO MLP - Magnetic data low-power mode 0=data rate is set by M_ODR bits in CTRL_REG5 1=data rate is set to 3.125Hz MD[1:0] - Magnetic sensor mode selection (default 10) 00=continuous-conversion, 01=single-conversion, 10 and 11=power-down */ xmWriteByte(CTRL_REG7_XM, 0x00); // Continuous conversion mode /* CTRL_REG4_XM is used to set interrupt generators on INT2_XM Bits (7-0): P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM */ xmWriteByte(CTRL_REG4_XM, 0x04); // Magnetometer data ready on INT2_XM (0x08) /* INT_CTRL_REG_M to set push-pull/open drain, and active-low/high Bits[7:0] - XMIEN YMIEN ZMIEN PP_OD IEA IEL 4D MIEN XMIEN, YMIEN, ZMIEN - Enable interrupt recognition on axis for mag data PP_OD - Push-pull/open-drain interrupt configuration (0=push-pull, 1=od) IEA - Interrupt polarity for accel and magneto 0=active-low, 1=active-high IEL - Latch interrupt request for accel and magneto 0=irq not latched, 1=irq latched 4D - 4D enable. 4D detection is enabled when 6D bit in INT_GEN1_REG is set MIEN - Enable interrupt generation for magnetic data 0=disable, 1=enable) */ xmWriteByte(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull }
/** @brief Init magnetometer. */ void initMag() { xmWriteByte(CTRL_REG5_XM, 0x14); // Mag data rate - 100 Hz xmWriteByte(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS xmWriteByte(CTRL_REG7_XM, 0x00); // Continuous conversion mode xmWriteByte(CTRL_REG4_XM, 0x00); // xmWriteByte(INT_CTRL_REG_M, 0x00); // Disable interrupts for mag }
void LSM330D::initAccel() { xmWriteByte(CTRL_REG1_A, 0x97); //0b10010111 xmWriteByte(CTRL_REG2_A, 0x00); xmWriteByte(CTRL_REG3_A, 0x08); //0b00001000 xmWriteByte(CTRL_REG4_A, 0x08); // +/-2G (1mg/digt) xmWriteByte(CTRL_REG5_A, 0x40); /* CTRL_REG0_XM (0x1F) (Default value: 0x00) Bits (7-0): BOOT FIFO_EN WTM_EN 0 0 HP_CLICK HPIS1 HPIS2 BOOT - Reboot memory content (0: normal, 1: reboot) FIFO_EN - Fifo enable (0: disable, 1: enable) WTM_EN - FIFO watermark enable (0: disable, 1: enable) HP_CLICK - HPF enabled for click (0: filter bypassed, 1: enabled) HPIS1 - HPF enabled for interrupt generator 1 (0: bypassed, 1: enabled) HPIS2 - HPF enabled for interrupt generator 2 (0: bypassed, 1 enabled) */ //xmWriteByte(CTRL_REG0_XM, 0x00); /* CTRL_REG1_XM (0x20) (Default value: 0x07) Bits (7-0): AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN AODR[3:0] - select the acceleration data rate: 0000=power down, 0001=3.125Hz, 0010=6.25Hz, 0011=12.5Hz, 0100=25Hz, 0101=50Hz, 0110=100Hz, 0111=200Hz, 1000=400Hz, 1001=800Hz, 1010=1600Hz, (remaining combinations undefined). BDU - block data update for accel AND mag 0: Continuous update 1: Output registers aren't updated until MSB and LSB have been read. AZEN, AYEN, and AXEN - Acceleration x/y/z-axis enabled. 0: Axis disabled, 1: Axis enabled */ //xmWriteByte(CTRL_REG1_XM, 0x57); // 100Hz data rate, x/y/z all enabled //Serial.println(xmReadByte(CTRL_REG1_XM)); /* CTRL_REG2_XM (0x21) (Default value: 0x00) Bits (7-0): ABW1 ABW0 AFS2 AFS1 AFS0 AST1 AST0 SIM ABW[1:0] - Accelerometer anti-alias filter bandwidth 00=773Hz, 01=194Hz, 10=362Hz, 11=50Hz AFS[2:0] - Accel full-scale selection 000=+/-2g, 001=+/-4g, 010=+/-6g, 011=+/-8g, 100=+/-16g AST[1:0] - Accel self-test enable 00=normal (no self-test), 01=positive st, 10=negative st, 11=not allowed SIM - SPI mode selection 0=4-wire, 1=3-wire */ //xmWriteByte(CTRL_REG2_XM, 0x00); // Set scale to 2g /* CTRL_REG3_XM is used to set interrupt generators on INT1_XM Bits (7-0): P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY */ // Accelerometer data ready on INT1_XM (0x04) //xmWriteByte(CTRL_REG3_XM, 0x04); }
void LSM9DS0::setMagODR(mag_odr mRate) { // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: uint8_t temp = xmReadByte(CTRL_REG5_XM); // Then mask out the mag ODR bits: temp &= 0xFF^(0x7 << 2); // Then shift in our new ODR bits: temp |= (mRate << 2); // And write the new register value back into CTRL_REG5_XM: xmWriteByte(CTRL_REG5_XM, temp); }
void LSM9DS0::setAccelABW(accel_abw abwRate) { // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it: uint8_t temp = xmReadByte(CTRL_REG2_XM); // Then mask out the accel ABW bits: temp &= 0xFF^(0x3 << 6); // Then shift in our new ODR bits: temp |= (abwRate << 6); // And write the new register value back into CTRL_REG2_XM: xmWriteByte(CTRL_REG2_XM, temp); }
void setAccelODR(LSM9DS0_t* lsm_t, accel_odr aRate) { // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: uint8_t temp = xmReadByte(lsm_t,CTRL_REG1_XM); // Then mask out the accel ODR bits: temp &= 0xFF^(0xF << 4); // Then shift in our new ODR bits: temp |= (aRate << 4); // And write the new register value back into CTRL_REG1_XM: xmWriteByte(lsm_t,CTRL_REG1_XM, temp); }
void LSM330D::setAccelODR(accel_odr aRate) { // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: uint8_t temp = xmReadByte(CTRL_REG1_A); // Then mask out the accel ODR bits: temp &= 0x0F; // Then shift in our new ODR bits: temp |= (aRate << 4); // And write the new register value back into CTRL_REG1_XM: xmWriteByte(CTRL_REG1_A, temp); }
void setMagODR(LSM9DS0_t* lsm_t, mag_odr mRate) { // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: //uint8_t temp = xmReadByte(lsm_t,CTRL_REG5_XM); // Then mask out the mag ODR bits: lsm_t->xmCtrl[5] &= 0xFF^(0x7 << 2); // Then shift in our new ODR bits: lsm_t->xmCtrl[5] |= (mRate << 2); // And write the new register value back into CTRL_REG5_XM: if (lsm_t->update==UPDATE_ON_SET) xmWriteByte(lsm_t,CTRL_REG5_XM, lsm_t->xmCtrl+5); }
void setAccelABW(LSM9DS0_t* lsm_t, accel_abw abwRate) { // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it: //uint8_t temp = xmReadByte(lsm_t,CTRL_REG2_XM); // Then mask out the accel ABW bits: lsm_t->xmCtrl[2] &= 0xFF^(0x3 << 7); // Then shift in our new ODR bits: lsm_t->xmCtrl[2] |= (abwRate << 7); // And write the new register value back into CTRL_REG2_XM: if (lsm_t->update==UPDATE_ON_SET) xmWriteByte(lsm_t,CTRL_REG2_XM, lsm_t->xmCtrl+2); }
void LSM9DS0::setMagScale(mag_scale mScl) { // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: uint8_t temp = xmReadByte(CTRL_REG6_XM); // Then mask out the mag scale bits: temp &= 0xFF^(0x3 << 5); // Then shift in our new scale bits: temp |= mScl << 5; // And write the new register value back into CTRL_REG6_XM: xmWriteByte(CTRL_REG6_XM, temp); // We've updated the sensor, but we also need to update our class variables // First update mScale: mScale = mScl; // Then calculate a new mRes, which relies on mScale being set correctly: calcmRes(); }
/* ************************************************************************** */ void LSM9DS0_setAccelScale(stLSM9DS0_t * stThis, accel_scale aScl) { // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it: uint8_t temp = xmReadByte(stThis, CTRL_REG2_XM); // Then mask out the accel scale bits: temp &= 0xFF^(0x3 << 3); // Then shift in our new scale bits: temp |= aScl << 3; // And write the new register value back into CTRL_REG2_XM: xmWriteByte(stThis, CTRL_REG2_XM, temp); // We've updated the sensor, but we also need to update our class variables // First update aScale: stThis->aScale = aScl; // Then calculate a new aRes, which relies on aScale being set correctly: calcaRes(stThis); }
void LSM330D::setAccelScale(accel_scale aScl) { // We need to preserve the other bytes in CTRL_REG4_A. So, first read it: uint8_t temp = xmReadByte(CTRL_REG4_A); // Then mask out the accel scale bits: temp &= 0xCF; // Then shift in our new scale bits: temp |= aScl << 4; // And write the new register value back into CTRL_REG2_XM: xmWriteByte(CTRL_REG4_A, temp); // We've updated the sensor, but we also need to update our class variables // First update aScale: aScale = aScl; // Then calculate a new aRes, which relies on aScale being set correctly: calcaRes(); }
void setAccelScale(LSM9DS0_t* lsm_t, accel_scale aScl) { // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it: //uint8_t temp = xmReadByte(lsm_t,CTRL_REG2_XM); // Then mask out the accel scale bits: lsm_t->xmCtrl[2] &= 0xFF^(0x3 << 3); // Then shift in our new scale bits: lsm_t->xmCtrl[2] |= aScl << 3; // And write the new register value back into CTRL_REG2_XM: if (lsm_t->update==UPDATE_ON_SET) xmWriteByte(lsm_t,CTRL_REG2_XM, lsm_t->xmCtrl+2); // We've updated the sensor, but we also need to update our class variables // First update aScale: lsm_t->aScale = aScl; // Then calculate a new aRes, which relies on aScale being set correctly: calcaRes(lsm_t); }
void setMagScale(LSM9DS0_t* lsm_t, mag_scale mScl) { // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: //uint8_t temp = xmReadByte(lsm_t,CTRL_REG6_XM); // Then mask out the mag scale bits: lsm_t->xmCtrl[6] &= 0xFF^(0x3 << 5); // Then shift in our new scale bits: lsm_t->xmCtrl[6] |= mScl << 5; // And write the new register value back into CTRL_REG6_XM: if (lsm_t->update==UPDATE_ON_SET) xmWriteByte(lsm_t,CTRL_REG6_XM, lsm_t->xmCtrl+6); // We've updated the sensor, but we also need to update our class variables // First update mScale: lsm_t->mScale = mScl; // Then calculate a new mRes, which relies on mScale being set correctly: calcmRes(lsm_t); }
// This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to // subtract the biases ourselves. This results in a more accurate measurement in general and can // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner // is good practice. void calLSM9DS0(LSM9DS0_t* lsm_t, float * gbias, float * abias) { uint8_t data[6] = {0, 0, 0, 0, 0, 0}; int16_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; int samples, ii; // First get gyro bias uint8_t c = gReadByte(lsm_t,CTRL_REG5_G); //read modify write gWriteByte(lsm_t, CTRL_REG5_G, c | 0x40); // Enable gyro FIFO delay(20); // Wait for change to take effect gWriteByte(lsm_t, FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples delay(1000); // delay 1000 milliseconds to collect FIFO samples samples = (gReadByte(lsm_t,FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO gReadBytes(lsm_t,OUT_X_L_G, &data[0], 6); gyro_bias[0] += (((int16_t)data[1] << 8) | data[0]); gyro_bias[1] += (((int16_t)data[3] << 8) | data[2]); gyro_bias[2] += (((int16_t)data[5] << 8) | data[4]); } gyro_bias[0] /= samples; // average the data gyro_bias[1] /= samples; gyro_bias[2] /= samples; gbias[0] = (float)gyro_bias[0]*lsm_t->gRes; // Properly scale the data to get deg/s gbias[1] = (float)gyro_bias[1]*lsm_t->gRes; gbias[2] = (float)gyro_bias[2]*lsm_t->gRes; c = gReadByte(lsm_t,CTRL_REG5_G); gWriteByte(lsm_t, CTRL_REG5_G, c & ~0x40); // Disable gyro FIFO delay(20); gWriteByte(lsm_t, FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode // Now get the accelerometer biases c = xmReadByte(lsm_t,CTRL_REG0_XM); xmWriteByte(lsm_t,CTRL_REG0_XM, c | 0x40); // Enable accelerometer FIFO delay(20); // Wait for change to take effect xmWriteByte(lsm_t,FIFO_CTRL_REG, 0x20 | 0x1F); // Enable accelerometer FIFO stream mode and set watermark at 32 samples delay(1000); // delay 1000 milliseconds to collect FIFO samples samples = (xmReadByte(lsm_t,FIFO_SRC_REG) & 0x1F); // Read number of stored accelerometer samples for(ii = 0; ii < samples ; ii++) { // Read the accelerometer data stored in the FIFO xmReadBytes(lsm_t,OUT_X_L_A, &data[0], 6); accel_bias[0] += (((int16_t)data[1] << 8) | data[0]); accel_bias[1] += (((int16_t)data[3] << 8) | data[2]); accel_bias[2] += (((int16_t)data[5] << 8) | data[4]) - (int16_t)(1.0f/lsm_t->aRes); // Assumes sensor facing up! } accel_bias[0] /= samples; // average the data accel_bias[1] /= samples; accel_bias[2] /= samples; abias[0] = (float)accel_bias[0]*lsm_t->aRes; // Properly scale data to get gs abias[1] = (float)accel_bias[1]*lsm_t->aRes; abias[2] = (float)accel_bias[2]*lsm_t->aRes; c = xmReadByte(lsm_t,CTRL_REG0_XM); xmWriteByte(lsm_t,CTRL_REG0_XM, c & ~0x40); // Disable accelerometer FIFO delay(20); xmWriteByte(lsm_t,FIFO_CTRL_REG, 0x00); // Enable accelerometer bypass mode }
void LSM330D::calLSM330D(float * gbias, float * abias) { uint8_t data[6] = {0, 0, 0, 0, 0, 0}; int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; uint16_t samples, ii; // First get gyro bias byte c = gReadByte(CTRL_REG5_G); gWriteByte(CTRL_REG5_G, c | 0x40); // Enable gyro FIFO delay(20); // Wait for change to take effect gWriteByte(FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples delay(1000); // delay 1000 milliseconds to collect FIFO samples samples = (gReadByte(FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO int16_t gyro_temp[3] = {0, 0, 0}; gReadBytes(OUT_X_L_G, &data[0], 6); gyro_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]); // Form signed 16-bit integer for each sample in FIFO gyro_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]); gyro_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]); gyro_bias[0] += (int32_t) gyro_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases gyro_bias[1] += (int32_t) gyro_temp[1]; gyro_bias[2] += (int32_t) gyro_temp[2]; } gyro_bias[0] /= samples; // average the data gyro_bias[1] /= samples; gyro_bias[2] /= samples; gbias[0] = (float)gyro_bias[0]*gRes; // Properly scale the data to get deg/s gbias[1] = (float)gyro_bias[1]*gRes; gbias[2] = (float)gyro_bias[2]*gRes; c = gReadByte(CTRL_REG5_G); gWriteByte(CTRL_REG5_G, c & ~0x40); // Disable gyro FIFO delay(20); gWriteByte(FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode // Now get the accelerometer biases c = xmReadByte(CTRL_REG5_A); xmWriteByte(CTRL_REG5_A, c | 0x40); // Enable accelerometer FIFO delay(20); // Wait for change to take effect xmWriteByte(FIFO_CTRL_REG, 0x40 | 0x1F); // Enable accelerometer FIFO stream mode and set watermark at 32 samples delay(1000); // delay 1000 milliseconds to collect FIFO samples samples = (xmReadByte(FIFO_SRC_REG) & 0x1F); // Read number of stored accelerometer samples for(ii = 0; ii < samples ; ii++) { // Read the accelerometer data stored in the FIFO int16_t accel_temp[3] = {0, 0, 0}; xmReadBytes(OUT_X_L_A, &data[0], 6); accel_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]);// Form signed 16-bit integer for each sample in FIFO accel_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]); accel_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]); accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases accel_bias[1] += (int32_t) accel_temp[1]; accel_bias[2] += (int32_t) accel_temp[2]; } accel_bias[0] /= samples; // average the data accel_bias[1] /= samples; accel_bias[2] /= samples; if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) (1.0/aRes);} // Remove gravity from the z-axis accelerometer bias calculation else {accel_bias[2] += (int32_t) (1.0/aRes);} abias[0] = (float)accel_bias[0]*aRes; // Properly scale data to get gs abias[1] = (float)accel_bias[1]*aRes; abias[2] = (float)accel_bias[2]*aRes; c = xmReadByte(CTRL_REG5_A); xmWriteByte(CTRL_REG5_A, c & ~0x40); // Disable accelerometer FIFO delay(20); xmWriteByte(FIFO_CTRL_REG, 0x00); // Enable accelerometer bypass mode }