Example #1
0
/* Subroutine */ int ztbcon_(char *norm, char *uplo, char *diag, integer *n, 
	integer *kd, doublecomplex *ab, integer *ldab, doublereal *rcond, 
	doublecomplex *work, doublereal *rwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZTBCON estimates the reciprocal of the condition number of a   
    triangular band matrix A, in either the 1-norm or the infinity-norm. 
  

    The norm of A is computed and an estimate is obtained for   
    norm(inv(A)), then the reciprocal of the condition number is   
    computed as   
       RCOND = 1 / ( norm(A) * norm(inv(A)) ).   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies whether the 1-norm condition number or the   
            infinity-norm condition number is required:   
            = '1' or 'O':  1-norm;   
            = 'I':         Infinity-norm.   

    UPLO    (input) CHARACTER*1   
            = 'U':  A is upper triangular;   
            = 'L':  A is lower triangular.   

    DIAG    (input) CHARACTER*1   
            = 'N':  A is non-unit triangular;   
            = 'U':  A is unit triangular.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals or subdiagonals of the   
            triangular band matrix A.  KD >= 0.   

    AB      (input) COMPLEX*16 array, dimension (LDAB,N)   
            The upper or lower triangular band matrix A, stored in the   
            first kd+1 rows of the array. The j-th column of A is stored 
  
            in the j-th column of the array AB as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 
  
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). 
  
            If DIAG = 'U', the diagonal elements of A are not referenced 
  
            and are assumed to be 1.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    RCOND   (output) DOUBLE PRECISION   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(norm(A) * norm(inv(A))).   

    WORK    (workspace) COMPLEX*16 array, dimension (2*N)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1;
    doublereal d__1, d__2;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    /* Local variables */
    static integer kase, kase1;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    static logical upper;
    static doublereal xnorm;
    extern doublereal dlamch_(char *);
    static integer ix;
    extern /* Subroutine */ int xerbla_(char *, integer *), zlacon_(
	    integer *, doublecomplex *, doublecomplex *, doublereal *, 
	    integer *);
    static doublereal ainvnm;
    extern integer izamax_(integer *, doublecomplex *, integer *);
    extern doublereal zlantb_(char *, char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *);
    static logical onenrm;
    extern /* Subroutine */ int zlatbs_(char *, char *, char *, char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublereal *, doublereal *, integer *), zdrscl_(integer *, doublereal *, doublecomplex *, 
	    integer *);
    static char normin[1];
    static doublereal smlnum;
    static logical nounit;



#define WORK(I) work[(I)-1]
#define RWORK(I) rwork[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]

    *info = 0;
    upper = lsame_(uplo, "U");
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    nounit = lsame_(diag, "N");

    if (! onenrm && ! lsame_(norm, "I")) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZTBCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*rcond = 1.;
	return 0;
    }

    *rcond = 0.;
    smlnum = dlamch_("Safe minimum") * (doublereal) max(*n,1);

/*     Compute the 1-norm of the triangular matrix A or A'. */

    anorm = zlantb_(norm, uplo, diag, n, kd, &AB(1,1), ldab, &RWORK(1));

/*     Continue only if ANORM > 0. */

    if (anorm > 0.) {

/*        Estimate the 1-norm of the inverse of A. */

	ainvnm = 0.;
	*(unsigned char *)normin = 'N';
	if (onenrm) {
	    kase1 = 1;
	} else {
	    kase1 = 2;
	}
	kase = 0;
L10:
	zlacon_(n, &WORK(*n + 1), &WORK(1), &ainvnm, &kase);
	if (kase != 0) {
	    if (kase == kase1) {

/*              Multiply by inv(A). */

		zlatbs_(uplo, "No transpose", diag, normin, n, kd, &AB(1,1), ldab, &WORK(1), &scale, &RWORK(1), info);
	    } else {

/*              Multiply by inv(A'). */

		zlatbs_(uplo, "Conjugate transpose", diag, normin, n, kd, &AB(1,1), ldab, &WORK(1), &scale, &RWORK(1), info);
	    }
	    *(unsigned char *)normin = 'Y';

/*           Multiply by 1/SCALE if doing so will not cause overfl
ow. */

	    if (scale != 1.) {
		ix = izamax_(n, &WORK(1), &c__1);
		i__1 = ix;
		xnorm = (d__1 = WORK(ix).r, abs(d__1)) + (d__2 = d_imag(&
			WORK(ix)), abs(d__2));
		if (scale < xnorm * smlnum || scale == 0.) {
		    goto L20;
		}
		zdrscl_(n, &scale, &WORK(1), &c__1);
	    }
	    goto L10;
	}

/*        Compute the estimate of the reciprocal condition number. */

	if (ainvnm != 0.) {
	    *rcond = 1. / anorm / ainvnm;
	}
    }

L20:
    return 0;

/*     End of ZTBCON */

} /* ztbcon_ */
Example #2
0
/* Subroutine */ int ztpcon_(char *norm, char *uplo, char *diag, integer *n,
                             doublecomplex *ap, doublereal *rcond, doublecomplex *work, doublereal
                             *rwork, integer *info)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;

    /* Builtin functions */
    double d_imag(doublecomplex *);

    /* Local variables */
    integer ix, kase, kase1;
    doublereal scale;
    extern logical lsame_(char *, char *);
    integer isave[3];
    doublereal anorm;
    logical upper;
    doublereal xnorm;
    extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *,
                                        doublecomplex *, doublereal *, integer *, integer *);
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal ainvnm;
    extern integer izamax_(integer *, doublecomplex *, integer *);
    logical onenrm;
    extern /* Subroutine */ int zdrscl_(integer *, doublereal *,
                                        doublecomplex *, integer *);
    char normin[1];
    extern doublereal zlantp_(char *, char *, char *, integer *,
                              doublecomplex *, doublereal *);
    doublereal smlnum;
    logical nounit;
    extern /* Subroutine */ int zlatps_(char *, char *, char *, char *,
                                        integer *, doublecomplex *, doublecomplex *, doublereal *,
                                        doublereal *, integer *);


    /*  -- LAPACK routine (version 3.2) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  ZTPCON estimates the reciprocal of the condition number of a packed */
    /*  triangular matrix A, in either the 1-norm or the infinity-norm. */

    /*  The norm of A is computed and an estimate is obtained for */
    /*  norm(inv(A)), then the reciprocal of the condition number is */
    /*  computed as */
    /*     RCOND = 1 / ( norm(A) * norm(inv(A)) ). */

    /*  Arguments */
    /*  ========= */

    /*  NORM    (input) CHARACTER*1 */
    /*          Specifies whether the 1-norm condition number or the */
    /*          infinity-norm condition number is required: */
    /*          = '1' or 'O':  1-norm; */
    /*          = 'I':         Infinity-norm. */

    /*  UPLO    (input) CHARACTER*1 */
    /*          = 'U':  A is upper triangular; */
    /*          = 'L':  A is lower triangular. */

    /*  DIAG    (input) CHARACTER*1 */
    /*          = 'N':  A is non-unit triangular; */
    /*          = 'U':  A is unit triangular. */

    /*  N       (input) INTEGER */
    /*          The order of the matrix A.  N >= 0. */

    /*  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
    /*          The upper or lower triangular matrix A, packed columnwise in */
    /*          a linear array.  The j-th column of A is stored in the array */
    /*          AP as follows: */
    /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
    /*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
    /*          If DIAG = 'U', the diagonal elements of A are not referenced */
    /*          and are assumed to be 1. */

    /*  RCOND   (output) DOUBLE PRECISION */
    /*          The reciprocal of the condition number of the matrix A, */
    /*          computed as RCOND = 1/(norm(A) * norm(inv(A))). */

    /*  WORK    (workspace) COMPLEX*16 array, dimension (2*N) */

    /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. Local Arrays .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Statement Functions .. */
    /*     .. */
    /*     .. Statement Function definitions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Test the input parameters. */

    /* Parameter adjustments */
    --rwork;
    --work;
    --ap;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    nounit = lsame_(diag, "N");

    if (! onenrm && ! lsame_(norm, "I")) {
        *info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
        *info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
        *info = -3;
    } else if (*n < 0) {
        *info = -4;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("ZTPCON", &i__1);
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        *rcond = 1.;
        return 0;
    }

    *rcond = 0.;
    smlnum = dlamch_("Safe minimum") * (doublereal) max(1,*n);

    /*     Compute the norm of the triangular matrix A. */

    anorm = zlantp_(norm, uplo, diag, n, &ap[1], &rwork[1]);

    /*     Continue only if ANORM > 0. */

    if (anorm > 0.) {

        /*        Estimate the norm of the inverse of A. */

        ainvnm = 0.;
        *(unsigned char *)normin = 'N';
        if (onenrm) {
            kase1 = 1;
        } else {
            kase1 = 2;
        }
        kase = 0;
L10:
        zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
        if (kase != 0) {
            if (kase == kase1) {

                /*              Multiply by inv(A). */

                zlatps_(uplo, "No transpose", diag, normin, n, &ap[1], &work[
                            1], &scale, &rwork[1], info);
            } else {

                /*              Multiply by inv(A'). */

                zlatps_(uplo, "Conjugate transpose", diag, normin, n, &ap[1],
                        &work[1], &scale, &rwork[1], info);
            }
            *(unsigned char *)normin = 'Y';

            /*           Multiply by 1/SCALE if doing so will not cause overflow. */

            if (scale != 1.) {
                ix = izamax_(n, &work[1], &c__1);
                i__1 = ix;
                xnorm = (d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag(&
                        work[ix]), abs(d__2));
                if (scale < xnorm * smlnum || scale == 0.) {
                    goto L20;
                }
                zdrscl_(n, &scale, &work[1], &c__1);
            }
            goto L10;
        }

        /*        Compute the estimate of the reciprocal condition number. */

        if (ainvnm != 0.) {
            *rcond = 1. / anorm / ainvnm;
        }
    }

L20:
    return 0;

    /*     End of ZTPCON */

} /* ztpcon_ */
Example #3
0
/* Subroutine */ int zgecon_(char *norm, integer *n, doublecomplex *a, 
	integer *lda, doublereal *anorm, doublereal *rcond, doublecomplex *
	work, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    doublereal sl;
    integer ix;
    doublereal su;
    integer kase, kase1;
    doublereal scale;
    integer isave[3];
    doublereal ainvnm;
    logical onenrm;
    char normin[1];
    doublereal smlnum;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */

/*  Purpose */
/*  ======= */

/*  ZGECON estimates the reciprocal of the condition number of a general */
/*  complex matrix A, in either the 1-norm or the infinity-norm, using */
/*  the LU factorization computed by ZGETRF. */

/*  An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/*  condition number is computed as */
/*     RCOND = 1 / ( norm(A) * norm(inv(A)) ). */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies whether the 1-norm condition number or the */
/*          infinity-norm condition number is required: */
/*          = '1' or 'O':  1-norm; */
/*          = 'I':         Infinity-norm. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The factors L and U from the factorization A = P*L*U */
/*          as computed by ZGETRF. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  ANORM   (input) DOUBLE PRECISION */
/*          If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/*          If NORM = 'I', the infinity-norm of the original matrix A. */

/*  RCOND   (output) DOUBLE PRECISION */
/*          The reciprocal of the condition number of the matrix A, */
/*          computed as RCOND = 1/(norm(A) * norm(inv(A))). */

/*  WORK    (workspace) COMPLEX*16 array, dimension (2*N) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    if (! onenrm && ! lsame_(norm, "I")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    } else if (*anorm < 0.) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGECON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.;
    if (*n == 0) {
	*rcond = 1.;
	return 0;
    } else if (*anorm == 0.) {
	return 0;
    }

    smlnum = dlamch_("Safe minimum");

/*     Estimate the norm of inv(A). */

    ainvnm = 0.;
    *(unsigned char *)normin = 'N';
    if (onenrm) {
	kase1 = 1;
    } else {
	kase1 = 2;
    }
    kase = 0;
L10:
    zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
    if (kase != 0) {
	if (kase == kase1) {

/*           Multiply by inv(L). */

	    zlatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset], 
		    lda, &work[1], &sl, &rwork[1], info);

/*           Multiply by inv(U). */

	    zlatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[
		    a_offset], lda, &work[1], &su, &rwork[*n + 1], info);
	} else {

/*           Multiply by inv(U'). */

	    zlatrs_("Upper", "Conjugate transpose", "Non-unit", normin, n, &a[
		    a_offset], lda, &work[1], &su, &rwork[*n + 1], info);

/*           Multiply by inv(L'). */

	    zlatrs_("Lower", "Conjugate transpose", "Unit", normin, n, &a[
		    a_offset], lda, &work[1], &sl, &rwork[1], info);
	}

/*        Divide X by 1/(SL*SU) if doing so will not cause overflow. */

	scale = sl * su;
	*(unsigned char *)normin = 'Y';
	if (scale != 1.) {
	    ix = izamax_(n, &work[1], &c__1);
	    i__1 = ix;
	    if (scale < ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag(&
		    work[ix]), abs(d__2))) * smlnum || scale == 0.) {
		goto L20;
	    }
	    zdrscl_(n, &scale, &work[1], &c__1);
	}
	goto L10;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.) {
	*rcond = 1. / ainvnm / *anorm;
    }

L20:
    return 0;

/*     End of ZGECON */

} /* zgecon_ */
Example #4
0
/* Subroutine */ int zpbcon_(char *uplo, integer *n, integer *kd, 
	doublecomplex *ab, integer *ldab, doublereal *anorm, doublereal *
	rcond, doublecomplex *work, doublereal *rwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZPBCON estimates the reciprocal of the condition number (in the   
    1-norm) of a complex Hermitian positive definite band matrix using   
    the Cholesky factorization A = U**H*U or A = L*L**H computed by   
    ZPBTRF.   

    An estimate is obtained for norm(inv(A)), and the reciprocal of the   
    condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangular factor stored in AB;   
            = 'L':  Lower triangular factor stored in AB.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.   

    AB      (input) COMPLEX*16 array, dimension (LDAB,N)   
            The triangular factor U or L from the Cholesky factorization 
  
            A = U**H*U or A = L*L**H of the band matrix A, stored in the 
  
            first KD+1 rows of the array.  The j-th column of U or L is   
            stored in the j-th column of the array AB as follows:   
            if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; 
  
            if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd). 
  

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    ANORM   (input) DOUBLE PRECISION   
            The 1-norm (or infinity-norm) of the Hermitian band matrix A. 
  

    RCOND   (output) DOUBLE PRECISION   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an   
            estimate of the 1-norm of inv(A) computed in this routine.   

    WORK    (workspace) COMPLEX*16 array, dimension (2*N)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1;
    doublereal d__1, d__2;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    /* Local variables */
    static integer kase;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static logical upper;
    extern doublereal dlamch_(char *);
    static integer ix;
    static doublereal scalel, scaleu;
    extern /* Subroutine */ int xerbla_(char *, integer *), zlacon_(
	    integer *, doublecomplex *, doublecomplex *, doublereal *, 
	    integer *);
    static doublereal ainvnm;
    extern integer izamax_(integer *, doublecomplex *, integer *);
    extern /* Subroutine */ int zlatbs_(char *, char *, char *, char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublereal *, doublereal *, integer *), zdrscl_(integer *, doublereal *, doublecomplex *, 
	    integer *);
    static char normin[1];
    static doublereal smlnum;



#define WORK(I) work[(I)-1]
#define RWORK(I) rwork[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]

    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*ldab < *kd + 1) {
	*info = -5;
    } else if (*anorm < 0.) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPBCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.;
    if (*n == 0) {
	*rcond = 1.;
	return 0;
    } else if (*anorm == 0.) {
	return 0;
    }

    smlnum = dlamch_("Safe minimum");

/*     Estimate the 1-norm of the inverse. */

    kase = 0;
    *(unsigned char *)normin = 'N';
L10:
    zlacon_(n, &WORK(*n + 1), &WORK(1), &ainvnm, &kase);
    if (kase != 0) {
	if (upper) {

/*           Multiply by inv(U'). */

	    zlatbs_("Upper", "Conjugate transpose", "Non-unit", normin, n, kd,
		     &AB(1,1), ldab, &WORK(1), &scalel, &RWORK(1), info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(U). */

	    zlatbs_("Upper", "No transpose", "Non-unit", normin, n, kd, &AB(1,1), ldab, &WORK(1), &scaleu, &RWORK(1), info);
	} else {

/*           Multiply by inv(L). */

	    zlatbs_("Lower", "No transpose", "Non-unit", normin, n, kd, &AB(1,1), ldab, &WORK(1), &scalel, &RWORK(1), info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(L'). */

	    zlatbs_("Lower", "Conjugate transpose", "Non-unit", normin, n, kd,
		     &AB(1,1), ldab, &WORK(1), &scaleu, &RWORK(1), info);
	}

/*        Multiply by 1/SCALE if doing so will not cause overflow. */

	scale = scalel * scaleu;
	if (scale != 1.) {
	    ix = izamax_(n, &WORK(1), &c__1);
	    i__1 = ix;
	    if (scale < ((d__1 = WORK(ix).r, abs(d__1)) + (d__2 = d_imag(&
		    WORK(ix)), abs(d__2))) * smlnum || scale == 0.) {
		goto L20;
	    }
	    zdrscl_(n, &scale, &WORK(1), &c__1);
	}
	goto L10;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.) {
	*rcond = 1. / ainvnm / *anorm;
    }

L20:

    return 0;

/*     End of ZPBCON */

} /* zpbcon_ */
Example #5
0
/* Subroutine */ int ztrsna_(char *job, char *howmny, logical *select, 
	integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl, 
	integer *ldvl, doublecomplex *vr, integer *ldvr, doublereal *s, 
	doublereal *sep, integer *mm, integer *m, doublecomplex *work, 
	integer *ldwork, doublereal *rwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZTRSNA estimates reciprocal condition numbers for specified   
    eigenvalues and/or right eigenvectors of a complex upper triangular   
    matrix T (or of any matrix Q*T*Q**H with Q unitary).   

    Arguments   
    =========   

    JOB     (input) CHARACTER*1   
            Specifies whether condition numbers are required for   
            eigenvalues (S) or eigenvectors (SEP):   
            = 'E': for eigenvalues only (S);   
            = 'V': for eigenvectors only (SEP);   
            = 'B': for both eigenvalues and eigenvectors (S and SEP).   

    HOWMNY  (input) CHARACTER*1   
            = 'A': compute condition numbers for all eigenpairs;   
            = 'S': compute condition numbers for selected eigenpairs   
                   specified by the array SELECT.   

    SELECT  (input) LOGICAL array, dimension (N)   
            If HOWMNY = 'S', SELECT specifies the eigenpairs for which   
            condition numbers are required. To select condition numbers   
            for the j-th eigenpair, SELECT(j) must be set to .TRUE..   
            If HOWMNY = 'A', SELECT is not referenced.   

    N       (input) INTEGER   
            The order of the matrix T. N >= 0.   

    T       (input) COMPLEX*16 array, dimension (LDT,N)   
            The upper triangular matrix T.   

    LDT     (input) INTEGER   
            The leading dimension of the array T. LDT >= max(1,N).   

    VL      (input) COMPLEX*16 array, dimension (LDVL,M)   
            If JOB = 'E' or 'B', VL must contain left eigenvectors of T   
            (or of any Q*T*Q**H with Q unitary), corresponding to the   
            eigenpairs specified by HOWMNY and SELECT. The eigenvectors   
            must be stored in consecutive columns of VL, as returned by   
            ZHSEIN or ZTREVC.   
            If JOB = 'V', VL is not referenced.   

    LDVL    (input) INTEGER   
            The leading dimension of the array VL.   
            LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.   

    VR      (input) COMPLEX*16 array, dimension (LDVR,M)   
            If JOB = 'E' or 'B', VR must contain right eigenvectors of T 
  
            (or of any Q*T*Q**H with Q unitary), corresponding to the   
            eigenpairs specified by HOWMNY and SELECT. The eigenvectors   
            must be stored in consecutive columns of VR, as returned by   
            ZHSEIN or ZTREVC.   
            If JOB = 'V', VR is not referenced.   

    LDVR    (input) INTEGER   
            The leading dimension of the array VR.   
            LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.   

    S       (output) DOUBLE PRECISION array, dimension (MM)   
            If JOB = 'E' or 'B', the reciprocal condition numbers of the 
  
            selected eigenvalues, stored in consecutive elements of the   
            array. Thus S(j), SEP(j), and the j-th columns of VL and VR   
            all correspond to the same eigenpair (but not in general the 
  
            j-th eigenpair, unless all eigenpairs are selected).   
            If JOB = 'V', S is not referenced.   

    SEP     (output) DOUBLE PRECISION array, dimension (MM)   
            If JOB = 'V' or 'B', the estimated reciprocal condition   
            numbers of the selected eigenvectors, stored in consecutive   
            elements of the array.   
            If JOB = 'E', SEP is not referenced.   

    MM      (input) INTEGER   
            The number of elements in the arrays S (if JOB = 'E' or 'B') 
  
             and/or SEP (if JOB = 'V' or 'B'). MM >= M.   

    M       (output) INTEGER   
            The number of elements of the arrays S and/or SEP actually   
            used to store the estimated condition numbers.   
            If HOWMNY = 'A', M is set to N.   

    WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,N+1)   
            If JOB = 'E', WORK is not referenced.   

    LDWORK  (input) INTEGER   
            The leading dimension of the array WORK.   
            LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   
            If JOB = 'E', RWORK is not referenced.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    The reciprocal of the condition number of an eigenvalue lambda is   
    defined as   

            S(lambda) = |v'*u| / (norm(u)*norm(v))   

    where u and v are the right and left eigenvectors of T corresponding 
  
    to lambda; v' denotes the conjugate transpose of v, and norm(u)   
    denotes the Euclidean norm. These reciprocal condition numbers always 
  
    lie between zero (very badly conditioned) and one (very well   
    conditioned). If n = 1, S(lambda) is defined to be 1.   

    An approximate error bound for a computed eigenvalue W(i) is given by 
  

                        EPS * norm(T) / S(i)   

    where EPS is the machine precision.   

    The reciprocal of the condition number of the right eigenvector u   
    corresponding to lambda is defined as follows. Suppose   

                T = ( lambda  c  )   
                    (   0    T22 )   

    Then the reciprocal condition number is   

            SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )   

    where sigma-min denotes the smallest singular value. We approximate   
    the smallest singular value by the reciprocal of an estimate of the   
    one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is   
    defined to be abs(T(1,1)).   

    An approximate error bound for a computed right eigenvector VR(i)   
    is given by   

                        EPS * norm(T) / SEP(i)   

    ===================================================================== 
  


       Decode and test the input parameters   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, 
	    work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2;
    doublecomplex z__1;
    /* Builtin functions */
    double z_abs(doublecomplex *), d_imag(doublecomplex *);
    /* Local variables */
    static integer kase, ierr;
    static doublecomplex prod;
    static doublereal lnrm, rnrm;
    static integer i, j, k;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    static doublecomplex dummy[1];
    static logical wants;
    static doublereal xnorm;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_(
	    char *);
    static integer ks, ix;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static doublereal bignum;
    static logical wantbh;
    extern /* Subroutine */ int zlacon_(integer *, doublecomplex *, 
	    doublecomplex *, doublereal *, integer *);
    extern integer izamax_(integer *, doublecomplex *, integer *);
    static logical somcon;
    extern /* Subroutine */ int zdrscl_(integer *, doublereal *, 
	    doublecomplex *, integer *);
    static char normin[1];
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    static doublereal smlnum;
    static logical wantsp;
    extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, integer *), ztrexc_(char *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *, integer *);
    static doublereal eps, est;



#define DUMMY(I) dummy[(I)]
#define SELECT(I) select[(I)-1]
#define S(I) s[(I)-1]
#define SEP(I) sep[(I)-1]
#define RWORK(I) rwork[(I)-1]

#define T(I,J) t[(I)-1 + ((J)-1)* ( *ldt)]
#define VL(I,J) vl[(I)-1 + ((J)-1)* ( *ldvl)]
#define VR(I,J) vr[(I)-1 + ((J)-1)* ( *ldvr)]
#define WORK(I,J) work[(I)-1 + ((J)-1)* ( *ldwork)]

    wantbh = lsame_(job, "B");
    wants = lsame_(job, "E") || wantbh;
    wantsp = lsame_(job, "V") || wantbh;

    somcon = lsame_(howmny, "S");

/*     Set M to the number of eigenpairs for which condition numbers are 
  
       to be computed. */

    if (somcon) {
	*m = 0;
	i__1 = *n;
	for (j = 1; j <= *n; ++j) {
	    if (SELECT(j)) {
		++(*m);
	    }
/* L10: */
	}
    } else {
	*m = *n;
    }

    *info = 0;
    if (! wants && ! wantsp) {
	*info = -1;
    } else if (! lsame_(howmny, "A") && ! somcon) {
	*info = -2;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ldt < max(1,*n)) {
	*info = -6;
    } else if (*ldvl < 1 || wants && *ldvl < *n) {
	*info = -8;
    } else if (*ldvr < 1 || wants && *ldvr < *n) {
	*info = -10;
    } else if (*mm < *m) {
	*info = -13;
    } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
	*info = -16;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZTRSNA", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (somcon) {
	    if (! SELECT(1)) {
		return 0;
	    }
	}
	if (wants) {
	    S(1) = 1.;
	}
	if (wantsp) {
	    SEP(1) = z_abs(&T(1,1));
	}
	return 0;
    }

/*     Get machine constants */

    eps = dlamch_("P");
    smlnum = dlamch_("S") / eps;
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

    ks = 1;
    i__1 = *n;
    for (k = 1; k <= *n; ++k) {

	if (somcon) {
	    if (! SELECT(k)) {
		goto L50;
	    }
	}

	if (wants) {

/*           Compute the reciprocal condition number of the k-th 
  
             eigenvalue. */

	    zdotc_(&z__1, n, &VR(1,ks), &c__1, &VL(1,ks), &c__1);
	    prod.r = z__1.r, prod.i = z__1.i;
	    rnrm = dznrm2_(n, &VR(1,ks), &c__1);
	    lnrm = dznrm2_(n, &VL(1,ks), &c__1);
	    S(ks) = z_abs(&prod) / (rnrm * lnrm);

	}

	if (wantsp) {

/*           Estimate the reciprocal condition number of the k-th 
  
             eigenvector.   

             Copy the matrix T to the array WORK and swap the k-th
   
             diagonal element to the (1,1) position. */

	    zlacpy_("Full", n, n, &T(1,1), ldt, &WORK(1,1), 
		    ldwork);
	    ztrexc_("No Q", n, &WORK(1,1), ldwork, dummy, &c__1, &k, &
		    c__1, &ierr);

/*           Form  C = T22 - lambda*I in WORK(2:N,2:N). */

	    i__2 = *n;
	    for (i = 2; i <= *n; ++i) {
		i__3 = i + i * work_dim1;
		i__4 = i + i * work_dim1;
		i__5 = work_dim1 + 1;
		z__1.r = WORK(i,i).r - WORK(1,1).r, z__1.i = WORK(i,i).i - 
			WORK(1,1).i;
		WORK(i,i).r = z__1.r, WORK(i,i).i = z__1.i;
/* L20: */
	    }

/*           Estimate a lower bound for the 1-norm of inv(C'). The
 1st   
             and (N+1)th columns of WORK are used to store work ve
ctors. */

	    SEP(ks) = 0.;
	    est = 0.;
	    kase = 0;
	    *(unsigned char *)normin = 'N';
L30:
	    i__2 = *n - 1;
	    zlacon_(&i__2, &WORK(1,*n+1), &WORK(1,1)
		    , &est, &kase);

	    if (kase != 0) {
		if (kase == 1) {

/*                 Solve C'*x = scale*b */

		    i__2 = *n - 1;
		    zlatrs_("Upper", "Conjugate transpose", "Nonunit", normin,
			     &i__2, &WORK(2,2), ldwork, &
			    WORK(1,1), &scale, &RWORK(1), &ierr);
		} else {

/*                 Solve C*x = scale*b */

		    i__2 = *n - 1;
		    zlatrs_("Upper", "No transpose", "Nonunit", normin, &i__2,
			     &WORK(2,2), ldwork, &WORK(1,1), &scale, &RWORK(1), &ierr);
		}
		*(unsigned char *)normin = 'Y';
		if (scale != 1.) {

/*                 Multiply by 1/SCALE if doing so will no
t cause   
                   overflow. */

		    i__2 = *n - 1;
		    ix = izamax_(&i__2, &WORK(1,1), &c__1);
		    i__2 = ix + work_dim1;
		    xnorm = (d__1 = WORK(ix,1).r, abs(d__1)) + (d__2 = d_imag(
			    &WORK(ix,1)), abs(d__2));
		    if (scale < xnorm * smlnum || scale == 0.) {
			goto L40;
		    }
		    zdrscl_(n, &scale, &WORK(1,1), &c__1);
		}
		goto L30;
	    }

	    SEP(ks) = 1. / max(est,smlnum);
	}

L40:
	++ks;
L50:
	;
    }
    return 0;

/*     End of ZTRSNA */

} /* ztrsna_ */
Example #6
0
/* Subroutine */
int zpbcon_(char *uplo, integer *n, integer *kd, doublecomplex *ab, integer *ldab, doublereal *anorm, doublereal * rcond, doublecomplex *work, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1;
    doublereal d__1, d__2;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    /* Local variables */
    integer ix, kase;
    doublereal scale;
    extern logical lsame_(char *, char *);
    integer isave[3];
    logical upper;
    extern /* Subroutine */
    int zlacn2_(integer *, doublecomplex *, doublecomplex *, doublereal *, integer *, integer *);
    extern doublereal dlamch_(char *);
    doublereal scalel, scaleu;
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    doublereal ainvnm;
    extern integer izamax_(integer *, doublecomplex *, integer *);
    extern /* Subroutine */
    int zlatbs_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *, integer *), zdrscl_(integer *, doublereal *, doublecomplex *, integer *);
    char normin[1];
    doublereal smlnum;
    /* -- LAPACK computational routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Statement Functions .. */
    /* .. */
    /* .. Statement Function definitions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --work;
    --rwork;
    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L"))
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*kd < 0)
    {
        *info = -3;
    }
    else if (*ldab < *kd + 1)
    {
        *info = -5;
    }
    else if (*anorm < 0.)
    {
        *info = -6;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZPBCON", &i__1);
        return 0;
    }
    /* Quick return if possible */
    *rcond = 0.;
    if (*n == 0)
    {
        *rcond = 1.;
        return 0;
    }
    else if (*anorm == 0.)
    {
        return 0;
    }
    smlnum = dlamch_("Safe minimum");
    /* Estimate the 1-norm of the inverse. */
    kase = 0;
    *(unsigned char *)normin = 'N';
L10:
    zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
    if (kase != 0)
    {
        if (upper)
        {
            /* Multiply by inv(U**H). */
            zlatbs_("Upper", "Conjugate transpose", "Non-unit", normin, n, kd, &ab[ab_offset], ldab, &work[1], &scalel, &rwork[1], info);
            *(unsigned char *)normin = 'Y';
            /* Multiply by inv(U). */
            zlatbs_("Upper", "No transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scaleu, &rwork[1], info);
        }
        else
        {
            /* Multiply by inv(L). */
            zlatbs_("Lower", "No transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scalel, &rwork[1], info);
            *(unsigned char *)normin = 'Y';
            /* Multiply by inv(L**H). */
            zlatbs_("Lower", "Conjugate transpose", "Non-unit", normin, n, kd, &ab[ab_offset], ldab, &work[1], &scaleu, &rwork[1], info);
        }
        /* Multiply by 1/SCALE if doing so will not cause overflow. */
        scale = scalel * scaleu;
        if (scale != 1.)
        {
            ix = izamax_(n, &work[1], &c__1);
            i__1 = ix;
            if (scale < ((d__1 = work[i__1].r, f2c_abs(d__1)) + (d__2 = d_imag(& work[ix]), f2c_abs(d__2))) * smlnum || scale == 0.)
            {
                goto L20;
            }
            zdrscl_(n, &scale, &work[1], &c__1);
        }
        goto L10;
    }
    /* Compute the estimate of the reciprocal condition number. */
    if (ainvnm != 0.)
    {
        *rcond = 1. / ainvnm / *anorm;
    }
L20:
    return 0;
    /* End of ZPBCON */
}