Example #1
0
    //! see full matrix case.
    inline void solvecomplex(fortranVectorF<n>& Zr,fortranVectorF<n>& Zi,
			     const MatrixReal& Jac)
    {
#include "Ivdep.hpp"
      for(int i=n;i>=1;i--)
	{
	  Z2N(2*i-1)=Zr(i);
	  Z2N(2*i)=Zi(i);
	}
      int nn=n,knsub=nsub,knsup=nsup,lldab=ldab,un=1,ier; char notrans='n';
      zgbtrs_(&notrans,&nn,&knsub,&knsup,&un,&E2R,&lldab,&(ipivc[0]),
	      &Z2N,&nn,&ier);
      if(ier!=0)
	throw OdesException("odes::Matrices::slvrad, zgetrs,ier=",ier);
#include "Ivdep.hpp"
      for(int i=1;i<=n;i++)
	{
	  Zi(i)=Z2N(2*i);
	  Zr(i)=Z2N(2*i-1);
	}
    }
Example #2
0
 int zgbsv_(int *n, int *kl, int *ku, int *
	nrhs, doublecomplex *ab, int *ldab, int *ipiv, doublecomplex *
	b, int *ldb, int *info)
{
    /* System generated locals */
    int ab_dim1, ab_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern  int xerbla_(char *, int *), zgbtrf_(
	    int *, int *, int *, int *, doublecomplex *, 
	    int *, int *, int *), zgbtrs_(char *, int *, 
	    int *, int *, int *, doublecomplex *, int *, 
	    int *, doublecomplex *, int *, int *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGBSV computes the solution to a complex system of linear equations */
/*  A * X = B, where A is a band matrix of order N with KL subdiagonals */
/*  and KU superdiagonals, and X and B are N-by-NRHS matrices. */

/*  The LU decomposition with partial pivoting and row interchanges is */
/*  used to factor A as A = L * U, where L is a product of permutation */
/*  and unit lower triangular matrices with KL subdiagonals, and U is */
/*  upper triangular with KL+KU superdiagonals.  The factored form of A */
/*  is then used to solve the system of equations A * X = B. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  KL      (input) INTEGER */
/*          The number of subdiagonals within the band of A.  KL >= 0. */

/*  KU      (input) INTEGER */
/*          The number of superdiagonals within the band of A.  KU >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N) */
/*          On entry, the matrix A in band storage, in rows KL+1 to */
/*          2*KL+KU+1; rows 1 to KL of the array need not be set. */
/*          The j-th column of A is stored in the j-th column of the */
/*          array AB as follows: */
/*          AB(KL+KU+1+i-j,j) = A(i,j) for MAX(1,j-KU)<=i<=MIN(N,j+KL) */
/*          On exit, details of the factorization: U is stored as an */
/*          upper triangular band matrix with KL+KU superdiagonals in */
/*          rows 1 to KL+KU+1, and the multipliers used during the */
/*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
/*          See below for further details. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */

/*  IPIV    (output) INTEGER array, dimension (N) */
/*          The pivot indices that define the permutation matrix P; */
/*          row i of the matrix was interchanged with row IPIV(i). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= MAX(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization */
/*                has been completed, but the factor U is exactly */
/*                singular, and the solution has not been computed. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  M = N = 6, KL = 2, KU = 1: */

/*  On entry:                       On exit: */

/*      *    *    *    +    +    +       *    *    *   u14  u25  u36 */
/*      *    *    +    +    +    +       *    *   u13  u24  u35  u46 */
/*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
/*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
/*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * */
/*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * */

/*  Array elements marked * are not used by the routine; elements marked */
/*  + need not be set on entry, but are required by the routine to store */
/*  elements of U because of fill-in resulting from the row interchanges. */

/*  ===================================================================== */

/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
    } else if (*kl < 0) {
	*info = -2;
    } else if (*ku < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*ldab < (*kl << 1) + *ku + 1) {
	*info = -6;
    } else if (*ldb < MAX(*n,1)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGBSV ", &i__1);
	return 0;
    }

/*     Compute the LU factorization of the band matrix A. */

    zgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	zgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[
		1], &b[b_offset], ldb, info);
    }
    return 0;

/*     End of ZGBSV */

} /* zgbsv_ */
Example #3
0
/* Subroutine */ int zgbrfs_(char *trans, integer *n, integer *kl, integer *
	ku, integer *nrhs, doublecomplex *ab, integer *ldab, doublecomplex *
	afb, integer *ldafb, integer *ipiv, doublecomplex *b, integer *ldb, 
	doublecomplex *x, integer *ldx, doublereal *ferr, doublereal *berr, 
	doublecomplex *work, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
	    x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1;

    /* Builtin functions */
    double d_imag(doublecomplex *);

    /* Local variables */
    integer i__, j, k;
    doublereal s;
    integer kk;
    doublereal xk;
    integer nz;
    doublereal eps;
    integer kase;
    doublereal safe1, safe2;
    extern logical lsame_(char *, char *);
    integer isave[3];
    extern /* Subroutine */ int zgbmv_(char *, integer *, integer *, integer *
, integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    integer count;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zlacn2_(
	    integer *, doublecomplex *, doublecomplex *, doublereal *, 
	    integer *, integer *);
    extern doublereal dlamch_(char *);
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    logical notran;
    char transn[1], transt[1];
    doublereal lstres;
    extern /* Subroutine */ int zgbtrs_(char *, integer *, integer *, integer 
	    *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGBRFS improves the computed solution to a system of linear */
/*  equations when the coefficient matrix is banded, and provides */
/*  error bounds and backward error estimates for the solution. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the form of the system of equations: */
/*          = 'N':  A * X = B     (No transpose) */
/*          = 'T':  A**T * X = B  (Transpose) */
/*          = 'C':  A**H * X = B  (Conjugate transpose) */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KL      (input) INTEGER */
/*          The number of subdiagonals within the band of A.  KL >= 0. */

/*  KU      (input) INTEGER */
/*          The number of superdiagonals within the band of A.  KU >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
/*          The original band matrix A, stored in rows 1 to KL+KU+1. */
/*          The j-th column of A is stored in the j-th column of the */
/*          array AB as follows: */
/*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KL+KU+1. */

/*  AFB     (input) COMPLEX*16 array, dimension (LDAFB,N) */
/*          Details of the LU factorization of the band matrix A, as */
/*          computed by ZGBTRF.  U is stored as an upper triangular band */
/*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
/*          the multipliers used during the factorization are stored in */
/*          rows KL+KU+2 to 2*KL+KU+1. */

/*  LDAFB   (input) INTEGER */
/*          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1. */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices from ZGBTRF; for 1<=i<=N, row i of the */
/*          matrix was interchanged with row IPIV(i). */

/*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          The right hand side matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS) */
/*          On entry, the solution matrix X, as computed by ZGBTRS. */
/*          On exit, the improved solution matrix X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) COMPLEX*16 array, dimension (2*N) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Internal Parameters */
/*  =================== */

/*  ITMAX is the maximum number of steps of iterative refinement. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    afb_dim1 = *ldafb;
    afb_offset = 1 + afb_dim1;
    afb -= afb_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    notran = lsame_(trans, "N");
    if (! notran && ! lsame_(trans, "T") && ! lsame_(
	    trans, "C")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0) {
	*info = -3;
    } else if (*ku < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -5;
    } else if (*ldab < *kl + *ku + 1) {
	*info = -7;
    } else if (*ldafb < (*kl << 1) + *ku + 1) {
	*info = -9;
    } else if (*ldb < max(1,*n)) {
	*info = -12;
    } else if (*ldx < max(1,*n)) {
	*info = -14;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGBRFS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] = 0.;
	    berr[j] = 0.;
/* L10: */
	}
	return 0;
    }

    if (notran) {
	*(unsigned char *)transn = 'N';
	*(unsigned char *)transt = 'C';
    } else {
	*(unsigned char *)transn = 'C';
	*(unsigned char *)transt = 'N';
    }

/*     NZ = maximum number of nonzero elements in each row of A, plus 1 */

/* Computing MIN */
    i__1 = *kl + *ku + 2, i__2 = *n + 1;
    nz = min(i__1,i__2);
    eps = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;

/*     Do for each right hand side */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {

	count = 1;
	lstres = 3.;
L20:

/*        Loop until stopping criterion is satisfied. */

/*        Compute residual R = B - op(A) * X, */
/*        where op(A) = A, A**T, or A**H, depending on TRANS. */

	zcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
	z__1.r = -1., z__1.i = -0.;
	zgbmv_(trans, n, n, kl, ku, &z__1, &ab[ab_offset], ldab, &x[j * 
		x_dim1 + 1], &c__1, &c_b1, &work[1], &c__1);

/*        Compute componentwise relative backward error from formula */

/*        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */

/*        where abs(Z) is the componentwise absolute value of the matrix */
/*        or vector Z.  If the i-th component of the denominator is less */
/*        than SAFE2, then SAFE1 is added to the i-th components of the */
/*        numerator and denominator before dividing. */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * b_dim1;
	    rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[
		    i__ + j * b_dim1]), abs(d__2));
/* L30: */
	}

/*        Compute abs(op(A))*abs(X) + abs(B). */

	if (notran) {
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		kk = *ku + 1 - k;
		i__3 = k + j * x_dim1;
		xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
			 x_dim1]), abs(d__2));
/* Computing MAX */
		i__3 = 1, i__4 = k - *ku;
/* Computing MIN */
		i__6 = *n, i__7 = k + *kl;
		i__5 = min(i__6,i__7);
		for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) {
		    i__3 = kk + i__ + k * ab_dim1;
		    rwork[i__] += ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 = 
			    d_imag(&ab[kk + i__ + k * ab_dim1]), abs(d__2))) *
			     xk;
/* L40: */
		}
/* L50: */
	    }
	} else {
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		s = 0.;
		kk = *ku + 1 - k;
/* Computing MAX */
		i__5 = 1, i__3 = k - *ku;
/* Computing MIN */
		i__6 = *n, i__7 = k + *kl;
		i__4 = min(i__6,i__7);
		for (i__ = max(i__5,i__3); i__ <= i__4; ++i__) {
		    i__5 = kk + i__ + k * ab_dim1;
		    i__3 = i__ + j * x_dim1;
		    s += ((d__1 = ab[i__5].r, abs(d__1)) + (d__2 = d_imag(&ab[
			    kk + i__ + k * ab_dim1]), abs(d__2))) * ((d__3 = 
			    x[i__3].r, abs(d__3)) + (d__4 = d_imag(&x[i__ + j 
			    * x_dim1]), abs(d__4)));
/* L60: */
		}
		rwork[k] += s;
/* L70: */
	    }
	}
	s = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (rwork[i__] > safe2) {
/* Computing MAX */
		i__4 = i__;
		d__3 = s, d__4 = ((d__1 = work[i__4].r, abs(d__1)) + (d__2 = 
			d_imag(&work[i__]), abs(d__2))) / rwork[i__];
		s = max(d__3,d__4);
	    } else {
/* Computing MAX */
		i__4 = i__;
		d__3 = s, d__4 = ((d__1 = work[i__4].r, abs(d__1)) + (d__2 = 
			d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__] 
			+ safe1);
		s = max(d__3,d__4);
	    }
/* L80: */
	}
	berr[j] = s;

/*        Test stopping criterion. Continue iterating if */
/*           1) The residual BERR(J) is larger than machine epsilon, and */
/*           2) BERR(J) decreased by at least a factor of 2 during the */
/*              last iteration, and */
/*           3) At most ITMAX iterations tried. */

	if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {

/*           Update solution and try again. */

	    zgbtrs_(trans, n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1]
, &work[1], n, info);
	    zaxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
	    lstres = berr[j];
	    ++count;
	    goto L20;
	}

/*        Bound error from formula */

/*        norm(X - XTRUE) / norm(X) .le. FERR = */
/*        norm( abs(inv(op(A)))* */
/*           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */

/*        where */
/*          norm(Z) is the magnitude of the largest component of Z */
/*          inv(op(A)) is the inverse of op(A) */
/*          abs(Z) is the componentwise absolute value of the matrix or */
/*             vector Z */
/*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
/*          EPS is machine epsilon */

/*        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
/*        is incremented by SAFE1 if the i-th component of */
/*        abs(op(A))*abs(X) + abs(B) is less than SAFE2. */

/*        Use ZLACN2 to estimate the infinity-norm of the matrix */
/*           inv(op(A)) * diag(W), */
/*        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (rwork[i__] > safe2) {
		i__4 = i__;
		rwork[i__] = (d__1 = work[i__4].r, abs(d__1)) + (d__2 = 
			d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
			;
	    } else {
		i__4 = i__;
		rwork[i__] = (d__1 = work[i__4].r, abs(d__1)) + (d__2 = 
			d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
			 + safe1;
	    }
/* L90: */
	}

	kase = 0;
L100:
	zlacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
	if (kase != 0) {
	    if (kase == 1) {

/*              Multiply by diag(W)*inv(op(A)**H). */

		zgbtrs_(transt, n, kl, ku, &c__1, &afb[afb_offset], ldafb, &
			ipiv[1], &work[1], n, info);
		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__4 = i__;
		    i__5 = i__;
		    i__3 = i__;
		    z__1.r = rwork[i__5] * work[i__3].r, z__1.i = rwork[i__5] 
			    * work[i__3].i;
		    work[i__4].r = z__1.r, work[i__4].i = z__1.i;
/* L110: */
		}
	    } else {

/*              Multiply by inv(op(A))*diag(W). */

		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__4 = i__;
		    i__5 = i__;
		    i__3 = i__;
		    z__1.r = rwork[i__5] * work[i__3].r, z__1.i = rwork[i__5] 
			    * work[i__3].i;
		    work[i__4].r = z__1.r, work[i__4].i = z__1.i;
/* L120: */
		}
		zgbtrs_(transn, n, kl, ku, &c__1, &afb[afb_offset], ldafb, &
			ipiv[1], &work[1], n, info);
	    }
	    goto L100;
	}

/*        Normalize error. */

	lstres = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    i__4 = i__ + j * x_dim1;
	    d__3 = lstres, d__4 = (d__1 = x[i__4].r, abs(d__1)) + (d__2 = 
		    d_imag(&x[i__ + j * x_dim1]), abs(d__2));
	    lstres = max(d__3,d__4);
/* L130: */
	}
	if (lstres != 0.) {
	    ferr[j] /= lstres;
	}

/* L140: */
    }

    return 0;

/*     End of ZGBRFS */

} /* zgbrfs_ */
Example #4
0
doublereal zla_gbrcond_x__(char *trans, integer *n, integer *kl, integer *ku, 
	doublecomplex *ab, integer *ldab, doublecomplex *afb, integer *ldafb, 
	integer *ipiv, doublecomplex *x, integer *info, doublecomplex *work, 
	doublereal *rwork, ftnlen trans_len)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;
    doublereal ret_val, d__1, d__2;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    double d_imag(doublecomplex *);
    void z_div(doublecomplex *, doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, j, kd, ke;
    doublereal tmp;
    integer kase;
    extern logical lsame_(char *, char *);
    integer isave[3];
    doublereal anorm;
    extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *, 
	    doublecomplex *, doublereal *, integer *, integer *), xerbla_(
	    char *, integer *);
    doublereal ainvnm;
    extern /* Subroutine */ int zgbtrs_(char *, integer *, integer *, integer 
	    *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, integer *, integer *);
    logical notrans;


/*     -- LAPACK routine (version 3.2.1)                               -- */
/*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
/*     -- April 2009                                                   -- */

/*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/*     -- Univ. of California Berkeley and NAG Ltd.                    -- */

/*     .. */
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */


/*  Purpose */
/*  ======= */

/*     ZLA_GBRCOND_X Computes the infinity norm condition number of */
/*     op(A) * diag(X) where X is a COMPLEX*16 vector. */

/*  Arguments */
/*  ========= */

/*     TRANS   (input) CHARACTER*1 */
/*     Specifies the form of the system of equations: */
/*       = 'N':  A * X = B     (No transpose) */
/*       = 'T':  A**T * X = B  (Transpose) */
/*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose) */

/*     N       (input) INTEGER */
/*     The number of linear equations, i.e., the order of the */
/*     matrix A.  N >= 0. */

/*     KL      (input) INTEGER */
/*     The number of subdiagonals within the band of A.  KL >= 0. */

/*     KU      (input) INTEGER */
/*     The number of superdiagonals within the band of A.  KU >= 0. */

/*     AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
/*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
/*     The j-th column of A is stored in the j-th column of the */
/*     array AB as follows: */
/*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */

/*     LDAB    (input) INTEGER */
/*     The leading dimension of the array AB.  LDAB >= KL+KU+1. */

/*     AFB     (input) COMPLEX*16 array, dimension (LDAFB,N) */
/*     Details of the LU factorization of the band matrix A, as */
/*     computed by ZGBTRF.  U is stored as an upper triangular */
/*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
/*     and the multipliers used during the factorization are stored */
/*     in rows KL+KU+2 to 2*KL+KU+1. */

/*     LDAFB   (input) INTEGER */
/*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1. */

/*     IPIV    (input) INTEGER array, dimension (N) */
/*     The pivot indices from the factorization A = P*L*U */
/*     as computed by ZGBTRF; row i of the matrix was interchanged */
/*     with row IPIV(i). */

/*     X       (input) COMPLEX*16 array, dimension (N) */
/*     The vector X in the formula op(A) * diag(X). */

/*     INFO    (output) INTEGER */
/*       = 0:  Successful exit. */
/*     i > 0:  The ith argument is invalid. */

/*     WORK    (input) COMPLEX*16 array, dimension (2*N). */
/*     Workspace. */

/*     RWORK   (input) DOUBLE PRECISION array, dimension (N). */
/*     Workspace. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function Definitions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    afb_dim1 = *ldafb;
    afb_offset = 1 + afb_dim1;
    afb -= afb_offset;
    --ipiv;
    --x;
    --work;
    --rwork;

    /* Function Body */
    ret_val = 0.;

    *info = 0;
    notrans = lsame_(trans, "N");
    if (! notrans && ! lsame_(trans, "T") && ! lsame_(
	    trans, "C")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0 || *kl > *n - 1) {
	*info = -3;
    } else if (*ku < 0 || *ku > *n - 1) {
	*info = -4;
    } else if (*ldab < *kl + *ku + 1) {
	*info = -6;
    } else if (*ldafb < (*kl << 1) + *ku + 1) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZLA_GBRCOND_X", &i__1);
	return ret_val;
    }

/*     Compute norm of op(A)*op2(C). */

    kd = *ku + 1;
    ke = *kl + 1;
    anorm = 0.;
    if (notrans) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    tmp = 0.;
/* Computing MAX */
	    i__2 = i__ - *kl;
/* Computing MIN */
	    i__4 = i__ + *ku;
	    i__3 = min(i__4,*n);
	    for (j = max(i__2,1); j <= i__3; ++j) {
		i__2 = kd + i__ - j + j * ab_dim1;
		i__4 = j;
		z__2.r = ab[i__2].r * x[i__4].r - ab[i__2].i * x[i__4].i, 
			z__2.i = ab[i__2].r * x[i__4].i + ab[i__2].i * x[i__4]
			.r;
		z__1.r = z__2.r, z__1.i = z__2.i;
		tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), 
			abs(d__2));
	    }
	    rwork[i__] = tmp;
	    anorm = max(anorm,tmp);
	}
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    tmp = 0.;
/* Computing MAX */
	    i__3 = i__ - *kl;
/* Computing MIN */
	    i__4 = i__ + *ku;
	    i__2 = min(i__4,*n);
	    for (j = max(i__3,1); j <= i__2; ++j) {
		i__3 = ke - i__ + j + i__ * ab_dim1;
		i__4 = j;
		z__2.r = ab[i__3].r * x[i__4].r - ab[i__3].i * x[i__4].i, 
			z__2.i = ab[i__3].r * x[i__4].i + ab[i__3].i * x[i__4]
			.r;
		z__1.r = z__2.r, z__1.i = z__2.i;
		tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), 
			abs(d__2));
	    }
	    rwork[i__] = tmp;
	    anorm = max(anorm,tmp);
	}
    }

/*     Quick return if possible. */

    if (*n == 0) {
	ret_val = 1.;
	return ret_val;
    } else if (anorm == 0.) {
	return ret_val;
    }

/*     Estimate the norm of inv(op(A)). */

    ainvnm = 0.;

    kase = 0;
L10:
    zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
    if (kase != 0) {
	if (kase == 2) {

/*           Multiply by R. */

	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = i__;
		i__3 = i__;
		i__4 = i__;
		z__1.r = rwork[i__4] * work[i__3].r, z__1.i = rwork[i__4] * 
			work[i__3].i;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
	    }

	    if (notrans) {
		zgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], 
			ldafb, &ipiv[1], &work[1], n, info);
	    } else {
		zgbtrs_("Conjugate transpose", n, kl, ku, &c__1, &afb[
			afb_offset], ldafb, &ipiv[1], &work[1], n, info);
	    }

/*           Multiply by inv(X). */

	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = i__;
		z_div(&z__1, &work[i__], &x[i__]);
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
	    }
	} else {

/*           Multiply by inv(X'). */

	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = i__;
		z_div(&z__1, &work[i__], &x[i__]);
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
	    }

	    if (notrans) {
		zgbtrs_("Conjugate transpose", n, kl, ku, &c__1, &afb[
			afb_offset], ldafb, &ipiv[1], &work[1], n, info);
	    } else {
		zgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], 
			ldafb, &ipiv[1], &work[1], n, info);
	    }

/*           Multiply by R. */

	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = i__;
		i__3 = i__;
		i__4 = i__;
		z__1.r = rwork[i__4] * work[i__3].r, z__1.i = rwork[i__4] * 
			work[i__3].i;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
	    }
	}
	goto L10;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.) {
	ret_val = 1. / ainvnm;
    }

    return ret_val;

} /* zla_gbrcond_x__ */
Example #5
0
/* Subroutine */ int zerrge_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal r__[4];
    doublecomplex w[8], x[4];
    char c2[2];
    doublereal r1[4], r2[4];
    doublecomplex af[16]	/* was [4][4] */;
    integer ip[4], info;
    doublereal anrm, ccond, rcond;
    extern /* Subroutine */ int zgbtf2_(integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, integer *), 
	    zgetf2_(integer *, integer *, doublecomplex *, integer *, integer 
	    *, integer *), alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer 
	    *, doublecomplex *, integer *, integer *, doublereal *, 
	    doublereal *, doublecomplex *, doublereal *, integer *), 
	    chkxer_(char *, integer *, integer *, logical *, logical *), zgecon_(char *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zgbequ_(integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *, 
	     doublereal *, doublereal *, doublereal *, integer *), zgbrfs_(
	    char *, integer *, integer *, integer *, integer *, doublecomplex 
	    *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zgbtrf_(integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, integer *), 
	    zgeequ_(integer *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *), zgerfs_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zgetrf_(integer *, integer *, doublecomplex *, 
	     integer *, integer *, integer *), zgetri_(integer *, 
	    doublecomplex *, integer *, integer *, doublecomplex *, integer *, 
	     integer *), zgbtrs_(char *, integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     integer *, integer *), zgetrs_(char *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRGE tests the error exits for the COMPLEX*16 routines */
/*  for general matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
	ip[j - 1] = j;
/* L20: */
    }
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the LU decomposition */
/*     of a general matrix. */

    if (lsamen_(&c__2, c2, "GE")) {

/*        ZGETRF */

	s_copy(srnamc_1.srnamt, "ZGETRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgetrf_(&c_n1, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgetrf_(&c__0, &c_n1, a, &c__1, ip, &info);
	chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgetrf_(&c__2, &c__1, a, &c__1, ip, &info);
	chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGETF2 */

	s_copy(srnamc_1.srnamt, "ZGETF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgetf2_(&c_n1, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgetf2_(&c__0, &c_n1, a, &c__1, ip, &info);
	chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgetf2_(&c__2, &c__1, a, &c__1, ip, &info);
	chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGETRI */

	s_copy(srnamc_1.srnamt, "ZGETRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgetri_(&c_n1, a, &c__1, ip, w, &c__1, &info);
	chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgetri_(&c__2, a, &c__1, ip, w, &c__2, &info);
	chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgetri_(&c__2, a, &c__2, ip, w, &c__1, &info);
	chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGETRS */

	s_copy(srnamc_1.srnamt, "ZGETRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgetrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgetrs_("N", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgetrs_("N", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgetrs_("N", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zgetrs_("N", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGERFS */

	s_copy(srnamc_1.srnamt, "ZGERFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgerfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgerfs_("N", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgerfs_("N", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgerfs_("N", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGECON */

	s_copy(srnamc_1.srnamt, "ZGECON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgecon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgecon_("1", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgecon_("1", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGEEQU */

	s_copy(srnamc_1.srnamt, "ZGEEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgeequ_(&c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info);
	chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgeequ_(&c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info);
	chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgeequ_(&c__2, &c__2, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info);
	chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the LU decomposition */
/*     of a general band matrix. */

    } else if (lsamen_(&c__2, c2, "GB")) {

/*        ZGBTRF */

	s_copy(srnamc_1.srnamt, "ZGBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbtrf_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbtrf_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbtrf_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbtrf_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgbtrf_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBTF2 */

	s_copy(srnamc_1.srnamt, "ZGBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbtf2_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbtf2_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbtf2_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbtf2_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgbtf2_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBTRS */

	s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbtrs_("/", &c__0, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbtrs_("N", &c_n1, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbtrs_("N", &c__1, &c_n1, &c__0, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbtrs_("N", &c__1, &c__0, &c_n1, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgbtrs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zgbtrs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, ip, b, &c__2, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zgbtrs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBRFS */

	s_copy(srnamc_1.srnamt, "ZGBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbrfs_("/", &c__0, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbrfs_("N", &c_n1, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbrfs_("N", &c__1, &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbrfs_("N", &c__1, &c__0, &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgbrfs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__2, af, &c__4, ip, b, &
		c__2, x, &c__2, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, af, &c__3, ip, b, &
		c__2, x, &c__2, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__2, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 14;
	zgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, &
		c__2, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBCON */

	s_copy(srnamc_1.srnamt, "ZGBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbcon_("/", &c__0, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbcon_("1", &c_n1, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbcon_("1", &c__1, &c_n1, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbcon_("1", &c__1, &c__0, &c_n1, a, &c__1, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgbcon_("1", &c__2, &c__1, &c__1, a, &c__3, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBEQU */

	s_copy(srnamc_1.srnamt, "ZGBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbequ_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbequ_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbequ_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbequ_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgbequ_(&c__2, &c__2, &c__1, &c__1, a, &c__2, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRGE */

} /* zerrge_ */
Example #6
0
/* Subroutine */ int zchkgb_(logical *dotype, integer *nm, integer *mval,
                             integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
                             nns, integer *nsval, doublereal *thresh, logical *tsterr,
                             doublecomplex *a, integer *la, doublecomplex *afac, integer *lafac,
                             doublecomplex *b, doublecomplex *x, doublecomplex *xact,
                             doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 *** In ZCHKGB, LA=\002,i5,\002 is too sm"
                             "all for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU=\002"
                             ",i4,/\002 ==> Increase LA to at least \002,i5)";
    static char fmt_9998[] = "(\002 *** In ZCHKGB, LAFAC=\002,i5,\002 is too"
                             " small for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU"
                             "=\002,i4,/\002 ==> Increase LAFAC to at least \002,i5)";
    static char fmt_9997[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, KL="
                             "\002,i5,\002, KU=\002,i5,\002, NB =\002,i4,\002, type \002,i1"
                             ",\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9996[] = "(\002 TRANS='\002,a1,\002', N=\002,i5,\002, "
                             "KL=\002,i5,\002, KU=\002,i5,\002, NRHS=\002,i3,\002, type \002,i"
                             "1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9995[] = "(\002 NORM ='\002,a1,\002', N=\002,i5,\002, "
                             "KL=\002,i5,\002, KU=\002,i5,\002,\002,10x,\002 type \002,i1,\002"
                             ", test(\002,i1,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10,
            i__11;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, i1, i2, nb, im, in, kl, ku, lda, ldb, inb, ikl,
            nkl, iku, nku, ioff, mode, koff, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    doublereal rcond;
    extern /* Subroutine */ int zgbt01_(integer *, integer *, integer *,
                                        integer *, doublecomplex *, integer *, doublecomplex *, integer *,
                                        integer *, doublecomplex *, doublereal *);
    integer nimat, klval[4];
    extern /* Subroutine */ int zgbt02_(char *, integer *, integer *, integer
                                        *, integer *, integer *, doublecomplex *, integer *,
                                        doublecomplex *, integer *, doublecomplex *, integer *,
                                        doublereal *), zgbt05_(char *, integer *, integer *,
                                                integer *, integer *, doublecomplex *, integer *, doublecomplex *,
                                                integer *, doublecomplex *, integer *, doublecomplex *, integer *
                                                , doublereal *, doublereal *, doublereal *);
    doublereal anorm;
    integer itran;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
                                        integer *, doublecomplex *, integer *, doublereal *, doublereal *
                                       );
    integer kuval[4];
    char trans[1];
    integer izero, nerrs;
    logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
                                       doublecomplex *, integer *);
    char xtype[1];
    extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer
                                        *, char *, integer *, integer *, doublereal *, integer *,
                                        doublereal *, char *);
    integer ldafac;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *,
                                        char *, integer *, integer *, integer *, integer *, integer *,
                                        integer *, integer *, integer *, integer *);
    doublereal rcondc;
    extern doublereal zlangb_(char *, integer *, integer *, integer *,
                              doublecomplex *, integer *, doublereal *);
    doublereal rcondi;
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
                              integer *, doublereal *);
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer
                                        *, integer *);
    doublereal cndnum, anormi, rcondo;
    extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer
                                        *, doublecomplex *, integer *, integer *, doublereal *,
                                        doublereal *, doublecomplex *, doublereal *, integer *);
    doublereal ainvnm;
    logical trfcon;
    doublereal anormo;
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zerrge_(char *,
            integer *), zgbrfs_(char *, integer *, integer *,
                                integer *, integer *, doublecomplex *, integer *, doublecomplex *,
                                integer *, integer *, doublecomplex *, integer *, doublecomplex *
                                , integer *, doublereal *, doublereal *, doublecomplex *,
                                doublereal *, integer *), zgbtrf_(integer *, integer *,
                                        integer *, integer *, doublecomplex *, integer *, integer *,
                                        integer *), zlacpy_(char *, integer *, integer *, doublecomplex *,
                                                integer *, doublecomplex *, integer *), zlarhs_(char *,
                                                        char *, char *, char *, integer *, integer *, integer *, integer *
                                                        , integer *, doublecomplex *, integer *, doublecomplex *, integer
                                                        *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *,
                                                                doublecomplex *, doublecomplex *, doublecomplex *, integer *), zgbtrs_(char *, integer *, integer *, integer *, integer
                                                                        *, doublecomplex *, integer *, integer *, doublecomplex *,
                                                                        integer *, integer *), zlatms_(integer *, integer *, char
                                                                                *, integer *, char *, doublereal *, integer *, doublereal *,
                                                                                doublereal *, integer *, integer *, char *, doublecomplex *,
                                                                                integer *, doublecomplex *, integer *);
    doublereal result[7];

    /* Fortran I/O blocks */
    static cilist io___25 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___26 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9995, 0 };



    /*  -- LAPACK test routine (version 3.1) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  ZCHKGB tests ZGBTRF, -TRS, -RFS, and -CON */

    /*  Arguments */
    /*  ========= */

    /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
    /*          The matrix types to be used for testing.  Matrices of type j */
    /*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
    /*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

    /*  NM      (input) INTEGER */
    /*          The number of values of M contained in the vector MVAL. */

    /*  MVAL    (input) INTEGER array, dimension (NM) */
    /*          The values of the matrix row dimension M. */

    /*  NN      (input) INTEGER */
    /*          The number of values of N contained in the vector NVAL. */

    /*  NVAL    (input) INTEGER array, dimension (NN) */
    /*          The values of the matrix column dimension N. */

    /*  NNB     (input) INTEGER */
    /*          The number of values of NB contained in the vector NBVAL. */

    /*  NBVAL   (input) INTEGER array, dimension (NBVAL) */
    /*          The values of the blocksize NB. */

    /*  NNS     (input) INTEGER */
    /*          The number of values of NRHS contained in the vector NSVAL. */

    /*  NSVAL   (input) INTEGER array, dimension (NNS) */
    /*          The values of the number of right hand sides NRHS. */

    /*  THRESH  (input) DOUBLE PRECISION */
    /*          The threshold value for the test ratios.  A result is */
    /*          included in the output file if RESULT >= THRESH.  To have */
    /*          every test ratio printed, use THRESH = 0. */

    /*  TSTERR  (input) LOGICAL */
    /*          Flag that indicates whether error exits are to be tested. */

    /*  A       (workspace) COMPLEX*16 array, dimension (LA) */

    /*  LA      (input) INTEGER */
    /*          The length of the array A.  LA >= (KLMAX+KUMAX+1)*NMAX */
    /*          where KLMAX is the largest entry in the local array KLVAL, */
    /*                KUMAX is the largest entry in the local array KUVAL and */
    /*                NMAX is the largest entry in the input array NVAL. */

    /*  AFAC    (workspace) COMPLEX*16 array, dimension (LAFAC) */

    /*  LAFAC   (input) INTEGER */
    /*          The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX */
    /*          where KLMAX is the largest entry in the local array KLVAL, */
    /*                KUMAX is the largest entry in the local array KUVAL and */
    /*                NMAX is the largest entry in the input array NVAL. */

    /*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

    /*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

    /*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

    /*  WORK    (workspace) COMPLEX*16 array, dimension */
    /*                      (NMAX*max(3,NSMAX,NMAX)) */

    /*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
    /*                      (max(NMAX,2*NSMAX)) */

    /*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

    /*  NOUT    (input) INTEGER */
    /*          The unit number for output. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. Local Arrays .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Scalars in Common .. */
    /*     .. */
    /*     .. Common blocks .. */
    /*     .. */
    /*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
        iseed[i__ - 1] = iseedy[i__ - 1];
        /* L10: */
    }

    /*     Test the error exits */

    if (*tsterr) {
        zerrge_(path, nout);
    }
    infoc_1.infot = 0;

    /*     Initialize the first value for the lower and upper bandwidths. */

    klval[0] = 0;
    kuval[0] = 0;

    /*     Do for each value of M in MVAL */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
        m = mval[im];

        /*        Set values to use for the lower bandwidth. */

        klval[1] = m + (m + 1) / 4;

        /*        KLVAL( 2 ) = MAX( M-1, 0 ) */

        klval[2] = (m * 3 - 1) / 4;
        klval[3] = (m + 1) / 4;

        /*        Do for each value of N in NVAL */

        i__2 = *nn;
        for (in = 1; in <= i__2; ++in) {
            n = nval[in];
            *(unsigned char *)xtype = 'N';

            /*           Set values to use for the upper bandwidth. */

            kuval[1] = n + (n + 1) / 4;

            /*           KUVAL( 2 ) = MAX( N-1, 0 ) */

            kuval[2] = (n * 3 - 1) / 4;
            kuval[3] = (n + 1) / 4;

            /*           Set limits on the number of loop iterations. */

            /* Computing MIN */
            i__3 = m + 1;
            nkl = min(i__3,4);
            if (n == 0) {
                nkl = 2;
            }
            /* Computing MIN */
            i__3 = n + 1;
            nku = min(i__3,4);
            if (m == 0) {
                nku = 2;
            }
            nimat = 8;
            if (m <= 0 || n <= 0) {
                nimat = 1;
            }

            i__3 = nkl;
            for (ikl = 1; ikl <= i__3; ++ikl) {

                /*              Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This */
                /*              order makes it easier to skip redundant values for small */
                /*              values of M. */

                kl = klval[ikl - 1];
                i__4 = nku;
                for (iku = 1; iku <= i__4; ++iku) {

                    /*                 Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This */
                    /*                 order makes it easier to skip redundant values for */
                    /*                 small values of N. */

                    ku = kuval[iku - 1];

                    /*                 Check that A and AFAC are big enough to generate this */
                    /*                 matrix. */

                    lda = kl + ku + 1;
                    ldafac = (kl << 1) + ku + 1;
                    if (lda * n > *la || ldafac * n > *lafac) {
                        if (nfail == 0 && nerrs == 0) {
                            alahd_(nout, path);
                        }
                        if (n * (kl + ku + 1) > *la) {
                            io___25.ciunit = *nout;
                            s_wsfe(&io___25);
                            do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(
                                       integer));
                            do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
                            ;
                            do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
                            ;
                            do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)
                                  );
                            do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)
                                  );
                            i__5 = n * (kl + ku + 1);
                            do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof(
                                       integer));
                            e_wsfe();
                            ++nerrs;
                        }
                        if (n * ((kl << 1) + ku + 1) > *lafac) {
                            io___26.ciunit = *nout;
                            s_wsfe(&io___26);
                            do_fio(&c__1, (char *)&(*lafac), (ftnlen)sizeof(
                                       integer));
                            do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
                            ;
                            do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
                            ;
                            do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)
                                  );
                            do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)
                                  );
                            i__5 = n * ((kl << 1) + ku + 1);
                            do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof(
                                       integer));
                            e_wsfe();
                            ++nerrs;
                        }
                        goto L130;
                    }

                    i__5 = nimat;
                    for (imat = 1; imat <= i__5; ++imat) {

                        /*                    Do the tests only if DOTYPE( IMAT ) is true. */

                        if (! dotype[imat]) {
                            goto L120;
                        }

                        /*                    Skip types 2, 3, or 4 if the matrix size is too */
                        /*                    small. */

                        zerot = imat >= 2 && imat <= 4;
                        if (zerot && n < imat - 1) {
                            goto L120;
                        }

                        if (! zerot || ! dotype[1]) {

                            /*                       Set up parameters with ZLATB4 and generate a */
                            /*                       test matrix with ZLATMS. */

                            zlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &
                                    anorm, &mode, &cndnum, dist);

                            /* Computing MAX */
                            i__6 = 1, i__7 = ku + 2 - n;
                            koff = max(i__6,i__7);
                            i__6 = koff - 1;
                            for (i__ = 1; i__ <= i__6; ++i__) {
                                i__7 = i__;
                                a[i__7].r = 0., a[i__7].i = 0.;
                                /* L20: */
                            }
                            s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (
                                       ftnlen)6);
                            zlatms_(&m, &n, dist, iseed, type__, &rwork[1], &
                                    mode, &cndnum, &anorm, &kl, &ku, "Z", &a[
                                        koff], &lda, &work[1], &info);

                            /*                       Check the error code from ZLATMS. */

                            if (info != 0) {
                                alaerh_(path, "ZLATMS", &info, &c__0, " ", &m,
                                        &n, &kl, &ku, &c_n1, &imat, &nfail, &
                                        nerrs, nout);
                                goto L120;
                            }
                        } else if (izero > 0) {

                            /*                       Use the same matrix for types 3 and 4 as for */
                            /*                       type 2 by copying back the zeroed out column. */

                            i__6 = i2 - i1 + 1;
                            zcopy_(&i__6, &b[1], &c__1, &a[ioff + i1], &c__1);
                        }

                        /*                    For types 2, 3, and 4, zero one or more columns of */
                        /*                    the matrix to test that INFO is returned correctly. */

                        izero = 0;
                        if (zerot) {
                            if (imat == 2) {
                                izero = 1;
                            } else if (imat == 3) {
                                izero = min(m,n);
                            } else {
                                izero = min(m,n) / 2 + 1;
                            }
                            ioff = (izero - 1) * lda;
                            if (imat < 4) {

                                /*                          Store the column to be zeroed out in B. */

                                /* Computing MAX */
                                i__6 = 1, i__7 = ku + 2 - izero;
                                i1 = max(i__6,i__7);
                                /* Computing MIN */
                                i__6 = kl + ku + 1, i__7 = ku + 1 + (m -
                                                                     izero);
                                i2 = min(i__6,i__7);
                                i__6 = i2 - i1 + 1;
                                zcopy_(&i__6, &a[ioff + i1], &c__1, &b[1], &
                                       c__1);

                                i__6 = i2;
                                for (i__ = i1; i__ <= i__6; ++i__) {
                                    i__7 = ioff + i__;
                                    a[i__7].r = 0., a[i__7].i = 0.;
                                    /* L30: */
                                }
                            } else {
                                i__6 = n;
                                for (j = izero; j <= i__6; ++j) {
                                    /* Computing MAX */
                                    i__7 = 1, i__8 = ku + 2 - j;
                                    /* Computing MIN */
                                    i__10 = kl + ku + 1, i__11 = ku + 1 + (m
                                                                           - j);
                                    i__9 = min(i__10,i__11);
                                    for (i__ = max(i__7,i__8); i__ <= i__9;
                                            ++i__) {
                                        i__7 = ioff + i__;
                                        a[i__7].r = 0., a[i__7].i = 0.;
                                        /* L40: */
                                    }
                                    ioff += lda;
                                    /* L50: */
                                }
                            }
                        }

                        /*                    These lines, if used in place of the calls in the */
                        /*                    loop over INB, cause the code to bomb on a Sun */
                        /*                    SPARCstation. */

                        /*                     ANORMO = ZLANGB( 'O', N, KL, KU, A, LDA, RWORK ) */
                        /*                     ANORMI = ZLANGB( 'I', N, KL, KU, A, LDA, RWORK ) */

                        /*                    Do for each blocksize in NBVAL */

                        i__6 = *nnb;
                        for (inb = 1; inb <= i__6; ++inb) {
                            nb = nbval[inb];
                            xlaenv_(&c__1, &nb);

                            /*                       Compute the LU factorization of the band matrix. */

                            if (m > 0 && n > 0) {
                                i__9 = kl + ku + 1;
                                zlacpy_("Full", &i__9, &n, &a[1], &lda, &afac[
                                            kl + 1], &ldafac);
                            }
                            s_copy(srnamc_1.srnamt, "ZGBTRF", (ftnlen)6, (
                                       ftnlen)6);
                            zgbtrf_(&m, &n, &kl, &ku, &afac[1], &ldafac, &
                                    iwork[1], &info);

                            /*                       Check error code from ZGBTRF. */

                            if (info != izero) {
                                alaerh_(path, "ZGBTRF", &info, &izero, " ", &
                                        m, &n, &kl, &ku, &nb, &imat, &nfail, &
                                        nerrs, nout);
                            }
                            trfcon = FALSE_;

                            /* +    TEST 1 */
                            /*                       Reconstruct matrix from factors and compute */
                            /*                       residual. */

                            zgbt01_(&m, &n, &kl, &ku, &a[1], &lda, &afac[1], &
                                    ldafac, &iwork[1], &work[1], result);

                            /*                       Print information about the tests so far that */
                            /*                       did not pass the threshold. */

                            if (result[0] >= *thresh) {
                                if (nfail == 0 && nerrs == 0) {
                                    alahd_(nout, path);
                                }
                                io___45.ciunit = *nout;
                                s_wsfe(&io___45);
                                do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&result[0], (ftnlen)
                                       sizeof(doublereal));
                                e_wsfe();
                                ++nfail;
                            }
                            ++nrun;

                            /*                       Skip the remaining tests if this is not the */
                            /*                       first block size or if M .ne. N. */

                            if (inb > 1 || m != n) {
                                goto L110;
                            }

                            anormo = zlangb_("O", &n, &kl, &ku, &a[1], &lda, &
                                             rwork[1]);
                            anormi = zlangb_("I", &n, &kl, &ku, &a[1], &lda, &
                                             rwork[1]);

                            if (info == 0) {

                                /*                          Form the inverse of A so we can get a good */
                                /*                          estimate of CNDNUM = norm(A) * norm(inv(A)). */

                                ldb = max(1,n);
                                zlaset_("Full", &n, &n, &c_b61, &c_b62, &work[
                                            1], &ldb);
                                s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)6, (
                                           ftnlen)6);
                                zgbtrs_("No transpose", &n, &kl, &ku, &n, &
                                        afac[1], &ldafac, &iwork[1], &work[1],
                                        &ldb, &info);

                                /*                          Compute the 1-norm condition number of A. */

                                ainvnm = zlange_("O", &n, &n, &work[1], &ldb,
                                                 &rwork[1]);
                                if (anormo <= 0. || ainvnm <= 0.) {
                                    rcondo = 1.;
                                } else {
                                    rcondo = 1. / anormo / ainvnm;
                                }

                                /*                          Compute the infinity-norm condition number of */
                                /*                          A. */

                                ainvnm = zlange_("I", &n, &n, &work[1], &ldb,
                                                 &rwork[1]);
                                if (anormi <= 0. || ainvnm <= 0.) {
                                    rcondi = 1.;
                                } else {
                                    rcondi = 1. / anormi / ainvnm;
                                }
                            } else {

                                /*                          Do only the condition estimate if INFO.NE.0. */

                                trfcon = TRUE_;
                                rcondo = 0.;
                                rcondi = 0.;
                            }

                            /*                       Skip the solve tests if the matrix is singular. */

                            if (trfcon) {
                                goto L90;
                            }

                            i__9 = *nns;
                            for (irhs = 1; irhs <= i__9; ++irhs) {
                                nrhs = nsval[irhs];
                                *(unsigned char *)xtype = 'N';

                                for (itran = 1; itran <= 3; ++itran) {
                                    *(unsigned char *)trans = *(unsigned char
                                                                *)&transs[itran - 1];
                                    if (itran == 1) {
                                        rcondc = rcondo;
                                        *(unsigned char *)norm = 'O';
                                    } else {
                                        rcondc = rcondi;
                                        *(unsigned char *)norm = 'I';
                                    }

                                    /* +    TEST 2: */
                                    /*                             Solve and compute residual for A * X = B. */

                                    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)
                                           6, (ftnlen)6);
                                    zlarhs_(path, xtype, " ", trans, &n, &n, &
                                            kl, &ku, &nrhs, &a[1], &lda, &
                                            xact[1], &ldb, &b[1], &ldb, iseed,
                                            &info);
                                    *(unsigned char *)xtype = 'C';
                                    zlacpy_("Full", &n, &nrhs, &b[1], &ldb, &
                                            x[1], &ldb);

                                    s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)
                                           6, (ftnlen)6);
                                    zgbtrs_(trans, &n, &kl, &ku, &nrhs, &afac[
                                                1], &ldafac, &iwork[1], &x[1], &
                                            ldb, &info);

                                    /*                             Check error code from ZGBTRS. */

                                    if (info != 0) {
                                        alaerh_(path, "ZGBTRS", &info, &c__0,
                                                trans, &n, &n, &kl, &ku, &
                                                c_n1, &imat, &nfail, &nerrs,
                                                nout);
                                    }

                                    zlacpy_("Full", &n, &nrhs, &b[1], &ldb, &
                                            work[1], &ldb);
                                    zgbt02_(trans, &m, &n, &kl, &ku, &nrhs, &
                                            a[1], &lda, &x[1], &ldb, &work[1],
                                            &ldb, &result[1]);

                                    /* +    TEST 3: */
                                    /*                             Check solution from generated exact */
                                    /*                             solution. */

                                    zget04_(&n, &nrhs, &x[1], &ldb, &xact[1],
                                            &ldb, &rcondc, &result[2]);

                                    /* +    TESTS 4, 5, 6: */
                                    /*                             Use iterative refinement to improve the */
                                    /*                             solution. */

                                    s_copy(srnamc_1.srnamt, "ZGBRFS", (ftnlen)
                                           6, (ftnlen)6);
                                    zgbrfs_(trans, &n, &kl, &ku, &nrhs, &a[1],
                                            &lda, &afac[1], &ldafac, &iwork[
                                                1], &b[1], &ldb, &x[1], &ldb, &
                                            rwork[1], &rwork[nrhs + 1], &work[
                                                1], &rwork[(nrhs << 1) + 1], &
                                            info);

                                    /*                             Check error code from ZGBRFS. */

                                    if (info != 0) {
                                        alaerh_(path, "ZGBRFS", &info, &c__0,
                                                trans, &n, &n, &kl, &ku, &
                                                nrhs, &imat, &nfail, &nerrs,
                                                nout);
                                    }

                                    zget04_(&n, &nrhs, &x[1], &ldb, &xact[1],
                                            &ldb, &rcondc, &result[3]);
                                    zgbt05_(trans, &n, &kl, &ku, &nrhs, &a[1],
                                            &lda, &b[1], &ldb, &x[1], &ldb, &
                                            xact[1], &ldb, &rwork[1], &rwork[
                                                nrhs + 1], &result[4]);

                                    /*                             Print information about the tests that did */
                                    /*                             not pass the threshold. */

                                    for (k = 2; k <= 6; ++k) {
                                        if (result[k - 1] >= *thresh) {
                                            if (nfail == 0 && nerrs == 0) {
                                                alahd_(nout, path);
                                            }
                                            io___59.ciunit = *nout;
                                            s_wsfe(&io___59);
                                            do_fio(&c__1, trans, (ftnlen)1);
                                            do_fio(&c__1, (char *)&n, (ftnlen)
                                                   sizeof(integer));
                                            do_fio(&c__1, (char *)&kl, (
                                                       ftnlen)sizeof(integer));
                                            do_fio(&c__1, (char *)&ku, (
                                                       ftnlen)sizeof(integer));
                                            do_fio(&c__1, (char *)&nrhs, (
                                                       ftnlen)sizeof(integer));
                                            do_fio(&c__1, (char *)&imat, (
                                                       ftnlen)sizeof(integer));
                                            do_fio(&c__1, (char *)&k, (ftnlen)
                                                   sizeof(integer));
                                            do_fio(&c__1, (char *)&result[k -
                                                                          1], (ftnlen)sizeof(
                                                       doublereal));
                                            e_wsfe();
                                            ++nfail;
                                        }
                                        /* L60: */
                                    }
                                    nrun += 5;
                                    /* L70: */
                                }
                                /* L80: */
                            }

                            /* +    TEST 7: */
                            /*                          Get an estimate of RCOND = 1/CNDNUM. */

L90:
                            for (itran = 1; itran <= 2; ++itran) {
                                if (itran == 1) {
                                    anorm = anormo;
                                    rcondc = rcondo;
                                    *(unsigned char *)norm = 'O';
                                } else {
                                    anorm = anormi;
                                    rcondc = rcondi;
                                    *(unsigned char *)norm = 'I';
                                }
                                s_copy(srnamc_1.srnamt, "ZGBCON", (ftnlen)6, (
                                           ftnlen)6);
                                zgbcon_(norm, &n, &kl, &ku, &afac[1], &ldafac,
                                        &iwork[1], &anorm, &rcond, &work[1],
                                        &rwork[1], &info);

                                /*                             Check error code from ZGBCON. */

                                if (info != 0) {
                                    alaerh_(path, "ZGBCON", &info, &c__0,
                                            norm, &n, &n, &kl, &ku, &c_n1, &
                                            imat, &nfail, &nerrs, nout);
                                }

                                result[6] = dget06_(&rcond, &rcondc);

                                /*                          Print information about the tests that did */
                                /*                          not pass the threshold. */

                                if (result[6] >= *thresh) {
                                    if (nfail == 0 && nerrs == 0) {
                                        alahd_(nout, path);
                                    }
                                    io___61.ciunit = *nout;
                                    s_wsfe(&io___61);
                                    do_fio(&c__1, norm, (ftnlen)1);
                                    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&imat, (ftnlen)
                                           sizeof(integer));
                                    do_fio(&c__1, (char *)&c__7, (ftnlen)
                                           sizeof(integer));
                                    do_fio(&c__1, (char *)&result[6], (ftnlen)
                                           sizeof(doublereal));
                                    e_wsfe();
                                    ++nfail;
                                }
                                ++nrun;
                                /* L100: */
                            }
L110:
                            ;
                        }
L120:
                        ;
                    }
L130:
                    ;
                }
                /* L140: */
            }
            /* L150: */
        }
        /* L160: */
    }

    /*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


    return 0;

    /*     End of ZCHKGB */

} /* zchkgb_ */
Example #7
0
/* Subroutine */ int zgbsvxx_(char *fact, char *trans, integer *n, integer *
	kl, integer *ku, integer *nrhs, doublecomplex *ab, integer *ldab, 
	doublecomplex *afb, integer *ldafb, integer *ipiv, char *equed, 
	doublereal *r__, doublereal *c__, doublecomplex *b, integer *ldb, 
	doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *rpvgrw, 
	 doublereal *berr, integer *n_err_bnds__, doublereal *err_bnds_norm__, 
	 doublereal *err_bnds_comp__, integer *nparams, doublereal *params, 
	doublecomplex *work, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
	    x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__, j;
    doublereal amax;
    extern doublereal zla_gbrpvgrw__(integer *, integer *, integer *, integer 
	    *, doublecomplex *, integer *, doublecomplex *, integer *);
    extern logical lsame_(char *, char *);
    doublereal rcmin, rcmax;
    logical equil;
    extern doublereal dlamch_(char *);
    doublereal colcnd;
    logical nofact;
    extern /* Subroutine */ int xerbla_(char *, integer *), zlaqgb_(
	    integer *, integer *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, char *);
    doublereal bignum;
    integer infequ;
    logical colequ;
    doublereal rowcnd;
    extern /* Subroutine */ int zgbtrf_(integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, integer *);
    logical notran;
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    doublereal smlnum;
    extern /* Subroutine */ int zgbtrs_(char *, integer *, integer *, integer 
	    *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, integer *, integer *);
    logical rowequ;
    extern /* Subroutine */ int zlascl2_(integer *, integer *, doublereal *, 
	    doublecomplex *, integer *), zgbequb_(integer *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *)
	    , zgbrfsx_(char *, char *, integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     integer *, doublereal *, doublereal *, doublecomplex *, integer *
, doublecomplex *, integer *, doublereal *, doublereal *, integer 
	    *, doublereal *, doublereal *, integer *, doublereal *, 
	    doublecomplex *, doublereal *, integer *);


/*     -- LAPACK driver routine (version 3.2)                          -- */
/*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
/*     -- November 2008                                                -- */

/*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/*     -- Univ. of California Berkeley and NAG Ltd.                    -- */

/*     .. */
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*     Purpose */
/*     ======= */

/*     ZGBSVXX uses the LU factorization to compute the solution to a */
/*     complex*16 system of linear equations  A * X = B,  where A is an */
/*     N-by-N matrix and X and B are N-by-NRHS matrices. */

/*     If requested, both normwise and maximum componentwise error bounds */
/*     are returned. ZGBSVXX will return a solution with a tiny */
/*     guaranteed error (O(eps) where eps is the working machine */
/*     precision) unless the matrix is very ill-conditioned, in which */
/*     case a warning is returned. Relevant condition numbers also are */
/*     calculated and returned. */

/*     ZGBSVXX accepts user-provided factorizations and equilibration */
/*     factors; see the definitions of the FACT and EQUED options. */
/*     Solving with refinement and using a factorization from a previous */
/*     ZGBSVXX call will also produce a solution with either O(eps) */
/*     errors or warnings, but we cannot make that claim for general */
/*     user-provided factorizations and equilibration factors if they */
/*     differ from what ZGBSVXX would itself produce. */

/*     Description */
/*     =========== */

/*     The following steps are performed: */

/*     1. If FACT = 'E', double precision scaling factors are computed to equilibrate */
/*     the system: */

/*       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B */
/*       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
/*       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */

/*     Whether or not the system will be equilibrated depends on the */
/*     scaling of the matrix A, but if equilibration is used, A is */
/*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
/*     or diag(C)*B (if TRANS = 'T' or 'C'). */

/*     2. If FACT = 'N' or 'E', the LU decomposition is used to factor */
/*     the matrix A (after equilibration if FACT = 'E') as */

/*       A = P * L * U, */

/*     where P is a permutation matrix, L is a unit lower triangular */
/*     matrix, and U is upper triangular. */

/*     3. If some U(i,i)=0, so that U is exactly singular, then the */
/*     routine returns with INFO = i. Otherwise, the factored form of A */
/*     is used to estimate the condition number of the matrix A (see */
/*     argument RCOND). If the reciprocal of the condition number is less */
/*     than machine precision, the routine still goes on to solve for X */
/*     and compute error bounds as described below. */

/*     4. The system of equations is solved for X using the factored form */
/*     of A. */

/*     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
/*     the routine will use iterative refinement to try to get a small */
/*     error and error bounds.  Refinement calculates the residual to at */
/*     least twice the working precision. */

/*     6. If equilibration was used, the matrix X is premultiplied by */
/*     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
/*     that it solves the original system before equilibration. */

/*     Arguments */
/*     ========= */

/*     Some optional parameters are bundled in the PARAMS array.  These */
/*     settings determine how refinement is performed, but often the */
/*     defaults are acceptable.  If the defaults are acceptable, users */
/*     can pass NPARAMS = 0 which prevents the source code from accessing */
/*     the PARAMS argument. */

/*     FACT    (input) CHARACTER*1 */
/*     Specifies whether or not the factored form of the matrix A is */
/*     supplied on entry, and if not, whether the matrix A should be */
/*     equilibrated before it is factored. */
/*       = 'F':  On entry, AF and IPIV contain the factored form of A. */
/*               If EQUED is not 'N', the matrix A has been */
/*               equilibrated with scaling factors given by R and C. */
/*               A, AF, and IPIV are not modified. */
/*       = 'N':  The matrix A will be copied to AF and factored. */
/*       = 'E':  The matrix A will be equilibrated if necessary, then */
/*               copied to AF and factored. */

/*     TRANS   (input) CHARACTER*1 */
/*     Specifies the form of the system of equations: */
/*       = 'N':  A * X = B     (No transpose) */
/*       = 'T':  A**T * X = B  (Transpose) */
/*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose) */

/*     N       (input) INTEGER */
/*     The number of linear equations, i.e., the order of the */
/*     matrix A.  N >= 0. */

/*     KL      (input) INTEGER */
/*     The number of subdiagonals within the band of A.  KL >= 0. */

/*     KU      (input) INTEGER */
/*     The number of superdiagonals within the band of A.  KU >= 0. */

/*     NRHS    (input) INTEGER */
/*     The number of right hand sides, i.e., the number of columns */
/*     of the matrices B and X.  NRHS >= 0. */

/*     AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
/*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
/*     The j-th column of A is stored in the j-th column of the */
/*     array AB as follows: */
/*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */

/*     If FACT = 'F' and EQUED is not 'N', then AB must have been */
/*     equilibrated by the scaling factors in R and/or C.  AB is not */
/*     modified if FACT = 'F' or 'N', or if FACT = 'E' and */
/*     EQUED = 'N' on exit. */

/*     On exit, if EQUED .ne. 'N', A is scaled as follows: */
/*     EQUED = 'R':  A := diag(R) * A */
/*     EQUED = 'C':  A := A * diag(C) */
/*     EQUED = 'B':  A := diag(R) * A * diag(C). */

/*     LDAB    (input) INTEGER */
/*     The leading dimension of the array AB.  LDAB >= KL+KU+1. */

/*     AFB     (input or output) DOUBLE PRECISION array, dimension (LDAFB,N) */
/*     If FACT = 'F', then AFB is an input argument and on entry */
/*     contains details of the LU factorization of the band matrix */
/*     A, as computed by ZGBTRF.  U is stored as an upper triangular */
/*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
/*     and the multipliers used during the factorization are stored */
/*     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is */
/*     the factored form of the equilibrated matrix A. */

/*     If FACT = 'N', then AF is an output argument and on exit */
/*     returns the factors L and U from the factorization A = P*L*U */
/*     of the original matrix A. */

/*     If FACT = 'E', then AF is an output argument and on exit */
/*     returns the factors L and U from the factorization A = P*L*U */
/*     of the equilibrated matrix A (see the description of A for */
/*     the form of the equilibrated matrix). */

/*     LDAFB   (input) INTEGER */
/*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1. */

/*     IPIV    (input or output) INTEGER array, dimension (N) */
/*     If FACT = 'F', then IPIV is an input argument and on entry */
/*     contains the pivot indices from the factorization A = P*L*U */
/*     as computed by DGETRF; row i of the matrix was interchanged */
/*     with row IPIV(i). */

/*     If FACT = 'N', then IPIV is an output argument and on exit */
/*     contains the pivot indices from the factorization A = P*L*U */
/*     of the original matrix A. */

/*     If FACT = 'E', then IPIV is an output argument and on exit */
/*     contains the pivot indices from the factorization A = P*L*U */
/*     of the equilibrated matrix A. */

/*     EQUED   (input or output) CHARACTER*1 */
/*     Specifies the form of equilibration that was done. */
/*       = 'N':  No equilibration (always true if FACT = 'N'). */
/*       = 'R':  Row equilibration, i.e., A has been premultiplied by */
/*               diag(R). */
/*       = 'C':  Column equilibration, i.e., A has been postmultiplied */
/*               by diag(C). */
/*       = 'B':  Both row and column equilibration, i.e., A has been */
/*               replaced by diag(R) * A * diag(C). */
/*     EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/*     output argument. */

/*     R       (input or output) DOUBLE PRECISION array, dimension (N) */
/*     The row scale factors for A.  If EQUED = 'R' or 'B', A is */
/*     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
/*     is not accessed.  R is an input argument if FACT = 'F'; */
/*     otherwise, R is an output argument.  If FACT = 'F' and */
/*     EQUED = 'R' or 'B', each element of R must be positive. */
/*     If R is output, each element of R is a power of the radix. */
/*     If R is input, each element of R should be a power of the radix */
/*     to ensure a reliable solution and error estimates. Scaling by */
/*     powers of the radix does not cause rounding errors unless the */
/*     result underflows or overflows. Rounding errors during scaling */
/*     lead to refining with a matrix that is not equivalent to the */
/*     input matrix, producing error estimates that may not be */
/*     reliable. */

/*     C       (input or output) DOUBLE PRECISION array, dimension (N) */
/*     The column scale factors for A.  If EQUED = 'C' or 'B', A is */
/*     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
/*     is not accessed.  C is an input argument if FACT = 'F'; */
/*     otherwise, C is an output argument.  If FACT = 'F' and */
/*     EQUED = 'C' or 'B', each element of C must be positive. */
/*     If C is output, each element of C is a power of the radix. */
/*     If C is input, each element of C should be a power of the radix */
/*     to ensure a reliable solution and error estimates. Scaling by */
/*     powers of the radix does not cause rounding errors unless the */
/*     result underflows or overflows. Rounding errors during scaling */
/*     lead to refining with a matrix that is not equivalent to the */
/*     input matrix, producing error estimates that may not be */
/*     reliable. */

/*     B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*     On entry, the N-by-NRHS right hand side matrix B. */
/*     On exit, */
/*     if EQUED = 'N', B is not modified; */
/*     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
/*        diag(R)*B; */
/*     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
/*        overwritten by diag(C)*B. */

/*     LDB     (input) INTEGER */
/*     The leading dimension of the array B.  LDB >= max(1,N). */

/*     X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/*     If INFO = 0, the N-by-NRHS solution matrix X to the original */
/*     system of equations.  Note that A and B are modified on exit */
/*     if EQUED .ne. 'N', and the solution to the equilibrated system is */
/*     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */
/*     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */

/*     LDX     (input) INTEGER */
/*     The leading dimension of the array X.  LDX >= max(1,N). */

/*     RCOND   (output) DOUBLE PRECISION */
/*     Reciprocal scaled condition number.  This is an estimate of the */
/*     reciprocal Skeel condition number of the matrix A after */
/*     equilibration (if done).  If this is less than the machine */
/*     precision (in particular, if it is zero), the matrix is singular */
/*     to working precision.  Note that the error may still be small even */
/*     if this number is very small and the matrix appears ill- */
/*     conditioned. */

/*     RPVGRW  (output) DOUBLE PRECISION */
/*     Reciprocal pivot growth.  On exit, this contains the reciprocal */
/*     pivot growth factor norm(A)/norm(U). The "max absolute element" */
/*     norm is used.  If this is much less than 1, then the stability of */
/*     the LU factorization of the (equilibrated) matrix A could be poor. */
/*     This also means that the solution X, estimated condition numbers, */
/*     and error bounds could be unreliable. If factorization fails with */
/*     0<INFO<=N, then this contains the reciprocal pivot growth factor */
/*     for the leading INFO columns of A.  In DGESVX, this quantity is */
/*     returned in WORK(1). */

/*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*     Componentwise relative backward error.  This is the */
/*     componentwise relative backward error of each solution vector X(j) */
/*     (i.e., the smallest relative change in any element of A or B that */
/*     makes X(j) an exact solution). */

/*     N_ERR_BNDS (input) INTEGER */
/*     Number of error bounds to return for each right hand side */
/*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and */
/*     ERR_BNDS_COMP below. */

/*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
/*     For each right-hand side, this array contains information about */
/*     various error bounds and condition numbers corresponding to the */
/*     normwise relative error, which is defined as follows: */

/*     Normwise relative error in the ith solution vector: */
/*             max_j (abs(XTRUE(j,i) - X(j,i))) */
/*            ------------------------------ */
/*                  max_j abs(X(j,i)) */

/*     The array is indexed by the type of error information as described */
/*     below. There currently are up to three pieces of information */
/*     returned. */

/*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
/*     right-hand side. */

/*     The second index in ERR_BNDS_NORM(:,err) contains the following */
/*     three fields: */
/*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/*              reciprocal condition number is less than the threshold */
/*              sqrt(n) * dlamch('Epsilon'). */

/*     err = 2 "Guaranteed" error bound: The estimated forward error, */
/*              almost certainly within a factor of 10 of the true error */
/*              so long as the next entry is greater than the threshold */
/*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
/*              be trusted if the previous boolean is true. */

/*     err = 3  Reciprocal condition number: Estimated normwise */
/*              reciprocal condition number.  Compared with the threshold */
/*              sqrt(n) * dlamch('Epsilon') to determine if the error */
/*              estimate is "guaranteed". These reciprocal condition */
/*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/*              appropriately scaled matrix Z. */
/*              Let Z = S*A, where S scales each row by a power of the */
/*              radix so all absolute row sums of Z are approximately 1. */

/*     See Lapack Working Note 165 for further details and extra */
/*     cautions. */

/*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
/*     For each right-hand side, this array contains information about */
/*     various error bounds and condition numbers corresponding to the */
/*     componentwise relative error, which is defined as follows: */

/*     Componentwise relative error in the ith solution vector: */
/*                    abs(XTRUE(j,i) - X(j,i)) */
/*             max_j ---------------------- */
/*                         abs(X(j,i)) */

/*     The array is indexed by the right-hand side i (on which the */
/*     componentwise relative error depends), and the type of error */
/*     information as described below. There currently are up to three */
/*     pieces of information returned for each right-hand side. If */
/*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
/*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most */
/*     the first (:,N_ERR_BNDS) entries are returned. */

/*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
/*     right-hand side. */

/*     The second index in ERR_BNDS_COMP(:,err) contains the following */
/*     three fields: */
/*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/*              reciprocal condition number is less than the threshold */
/*              sqrt(n) * dlamch('Epsilon'). */

/*     err = 2 "Guaranteed" error bound: The estimated forward error, */
/*              almost certainly within a factor of 10 of the true error */
/*              so long as the next entry is greater than the threshold */
/*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
/*              be trusted if the previous boolean is true. */

/*     err = 3  Reciprocal condition number: Estimated componentwise */
/*              reciprocal condition number.  Compared with the threshold */
/*              sqrt(n) * dlamch('Epsilon') to determine if the error */
/*              estimate is "guaranteed". These reciprocal condition */
/*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/*              appropriately scaled matrix Z. */
/*              Let Z = S*(A*diag(x)), where x is the solution for the */
/*              current right-hand side and S scales each row of */
/*              A*diag(x) by a power of the radix so all absolute row */
/*              sums of Z are approximately 1. */

/*     See Lapack Working Note 165 for further details and extra */
/*     cautions. */

/*     NPARAMS (input) INTEGER */
/*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the */
/*     PARAMS array is never referenced and default values are used. */

/*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS */
/*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then */
/*     that entry will be filled with default value used for that */
/*     parameter.  Only positions up to NPARAMS are accessed; defaults */
/*     are used for higher-numbered parameters. */

/*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
/*            refinement or not. */
/*         Default: 1.0D+0 */
/*            = 0.0 : No refinement is performed, and no error bounds are */
/*                    computed. */
/*            = 1.0 : Use the extra-precise refinement algorithm. */
/*              (other values are reserved for future use) */

/*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
/*            computations allowed for refinement. */
/*         Default: 10 */
/*         Aggressive: Set to 100 to permit convergence using approximate */
/*                     factorizations or factorizations other than LU. If */
/*                     the factorization uses a technique other than */
/*                     Gaussian elimination, the guarantees in */
/*                     err_bnds_norm and err_bnds_comp may no longer be */
/*                     trustworthy. */

/*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
/*            will attempt to find a solution with small componentwise */
/*            relative error in the double-precision algorithm.  Positive */
/*            is true, 0.0 is false. */
/*         Default: 1.0 (attempt componentwise convergence) */

/*     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) */

/*     IWORK   (workspace) INTEGER array, dimension (N) */

/*     INFO    (output) INTEGER */
/*       = 0:  Successful exit. The solution to every right-hand side is */
/*         guaranteed. */
/*       < 0:  If INFO = -i, the i-th argument had an illegal value */
/*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization */
/*         has been completed, but the factor U is exactly singular, so */
/*         the solution and error bounds could not be computed. RCOND = 0 */
/*         is returned. */
/*       = N+J: The solution corresponding to the Jth right-hand side is */
/*         not guaranteed. The solutions corresponding to other right- */
/*         hand sides K with K > J may not be guaranteed as well, but */
/*         only the first such right-hand side is reported. If a small */
/*         componentwise error is not requested (PARAMS(3) = 0.0) then */
/*         the Jth right-hand side is the first with a normwise error */
/*         bound that is not guaranteed (the smallest J such */
/*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
/*         the Jth right-hand side is the first with either a normwise or */
/*         componentwise error bound that is not guaranteed (the smallest */
/*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
/*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
/*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
/*         about all of the right-hand sides check ERR_BNDS_NORM or */
/*         ERR_BNDS_COMP. */

/*     ================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    err_bnds_comp_dim1 = *nrhs;
    err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
    err_bnds_comp__ -= err_bnds_comp_offset;
    err_bnds_norm_dim1 = *nrhs;
    err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
    err_bnds_norm__ -= err_bnds_norm_offset;
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    afb_dim1 = *ldafb;
    afb_offset = 1 + afb_dim1;
    afb -= afb_offset;
    --ipiv;
    --r__;
    --c__;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --berr;
    --params;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    notran = lsame_(trans, "N");
    smlnum = dlamch_("Safe minimum");
    bignum = 1. / smlnum;
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE_;
	colequ = FALSE_;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, 
		"B");
	colequ = lsame_(equed, "C") || lsame_(equed, 
		"B");
    }

/*     Default is failure.  If an input parameter is wrong or */
/*     factorization fails, make everything look horrible.  Only the */
/*     pivot growth is set here, the rest is initialized in ZGBRFSX. */

    *rpvgrw = 0.;

/*     Test the input parameters.  PARAMS is not tested until DGERFSX. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "T") && ! 
	    lsame_(trans, "C")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kl < 0) {
	*info = -4;
    } else if (*ku < 0) {
	*info = -5;
    } else if (*nrhs < 0) {
	*info = -6;
    } else if (*ldab < *kl + *ku + 1) {
	*info = -8;
    } else if (*ldafb < (*kl << 1) + *ku + 1) {
	*info = -10;
    } else if (lsame_(fact, "F") && ! (rowequ || colequ 
	    || lsame_(equed, "N"))) {
	*info = -12;
    } else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		d__1 = rcmin, d__2 = r__[j];
		rcmin = min(d__1,d__2);
/* Computing MAX */
		d__1 = rcmax, d__2 = r__[j];
		rcmax = max(d__1,d__2);
/* L10: */
	    }
	    if (rcmin <= 0.) {
		*info = -13;
	    } else if (*n > 0) {
		rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
	    } else {
		rowcnd = 1.;
	    }
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		d__1 = rcmin, d__2 = c__[j];
		rcmin = min(d__1,d__2);
/* Computing MAX */
		d__1 = rcmax, d__2 = c__[j];
		rcmax = max(d__1,d__2);
/* L20: */
	    }
	    if (rcmin <= 0.) {
		*info = -14;
	    } else if (*n > 0) {
		colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
	    } else {
		colcnd = 1.;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -15;
	    } else if (*ldx < max(1,*n)) {
		*info = -16;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGBSVXX", &i__1);
	return 0;
    }

    if (equil) {

/*     Compute row and column scalings to equilibrate the matrix A. */

	zgbequb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
		rowcnd, &colcnd, &amax, &infequ);
	if (infequ == 0) {

/*     Equilibrate the matrix. */

	    zlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
		    rowcnd, &colcnd, &amax, equed);
	    rowequ = lsame_(equed, "R") || lsame_(equed, 
		     "B");
	    colequ = lsame_(equed, "C") || lsame_(equed, 
		     "B");
	}

/*     If the scaling factors are not applied, set them to 1.0. */

	if (! rowequ) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		r__[j] = 1.;
	    }
	}
	if (! colequ) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		c__[j] = 1.;
	    }
	}
    }

/*     Scale the right-hand side. */

    if (notran) {
	if (rowequ) {
	    zlascl2_(n, nrhs, &r__[1], &b[b_offset], ldb);
	}
    } else {
	if (colequ) {
	    zlascl2_(n, nrhs, &c__[1], &b[b_offset], ldb);
	}
    }

    if (nofact || equil) {

/*        Compute the LU factorization of A. */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = (*kl << 1) + *ku + 1;
	    for (i__ = *kl + 1; i__ <= i__2; ++i__) {
		i__3 = i__ + j * afb_dim1;
		i__4 = i__ - *kl + j * ab_dim1;
		afb[i__3].r = ab[i__4].r, afb[i__3].i = ab[i__4].i;
/* L30: */
	    }
/* L40: */
	}
	zgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {

/*           Pivot in column INFO is exactly 0 */
/*           Compute the reciprocal pivot growth factor of the */
/*           leading rank-deficient INFO columns of A. */

	    *rpvgrw = zla_gbrpvgrw__(n, kl, ku, info, &ab[ab_offset], ldab, &
		    afb[afb_offset], ldafb);
	    return 0;
	}
    }

/*     Compute the reciprocal pivot growth factor RPVGRW. */

    *rpvgrw = zla_gbrpvgrw__(n, kl, ku, n, &ab[ab_offset], ldab, &afb[
	    afb_offset], ldafb);

/*     Compute the solution matrix X. */

    zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    zgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[
	    x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solution and */
/*     compute error bounds and backward error estimates for it. */

    zgbrfsx_(trans, equed, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[
	    afb_offset], ldafb, &ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb, 
	     &x[x_offset], ldx, rcond, &berr[1], n_err_bnds__, &
	    err_bnds_norm__[err_bnds_norm_offset], &err_bnds_comp__[
	    err_bnds_comp_offset], nparams, &params[1], &work[1], &rwork[1], 
	    info);

/*     Scale solutions. */

    if (colequ && notran) {
	zlascl2_(n, nrhs, &c__[1], &x[x_offset], ldx);
    } else if (rowequ && ! notran) {
	zlascl2_(n, nrhs, &r__[1], &x[x_offset], ldx);
    }

    return 0;

/*     End of ZGBSVXX */

} /* zgbsvxx_ */
Example #8
0
/* ===================================================================== */
doublereal zla_gbrcond_x_(char *trans, integer *n, integer *kl, integer *ku, doublecomplex *ab, integer *ldab, doublecomplex *afb, integer *ldafb, integer *ipiv, doublecomplex *x, integer *info, doublecomplex *work, doublereal *rwork)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;
    doublereal ret_val, d__1, d__2;
    doublecomplex z__1, z__2;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
    /* Local variables */
    integer i__, j, kd, ke;
    doublereal tmp;
    integer kase;
    extern logical lsame_(char *, char *);
    integer isave[3];
    doublereal anorm;
    extern /* Subroutine */
    int zlacn2_(integer *, doublecomplex *, doublecomplex *, doublereal *, integer *, integer *), xerbla_( char *, integer *);
    doublereal ainvnm;
    extern /* Subroutine */
    int zgbtrs_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *);
    logical notrans;
    /* -- LAPACK computational routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* ===================================================================== */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Statement Functions .. */
    /* .. */
    /* .. Statement Function Definitions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    afb_dim1 = *ldafb;
    afb_offset = 1 + afb_dim1;
    afb -= afb_offset;
    --ipiv;
    --x;
    --work;
    --rwork;
    /* Function Body */
    ret_val = 0.;
    *info = 0;
    notrans = lsame_(trans, "N");
    if (! notrans && ! lsame_(trans, "T") && ! lsame_( trans, "C"))
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*kl < 0 || *kl > *n - 1)
    {
        *info = -3;
    }
    else if (*ku < 0 || *ku > *n - 1)
    {
        *info = -4;
    }
    else if (*ldab < *kl + *ku + 1)
    {
        *info = -6;
    }
    else if (*ldafb < (*kl << 1) + *ku + 1)
    {
        *info = -8;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZLA_GBRCOND_X", &i__1);
        return ret_val;
    }
    /* Compute norm of op(A)*op2(C). */
    kd = *ku + 1;
    ke = *kl + 1;
    anorm = 0.;
    if (notrans)
    {
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            tmp = 0.;
            /* Computing MAX */
            i__2 = i__ - *kl;
            /* Computing MIN */
            i__4 = i__ + *ku;
            i__3 = min(i__4,*n);
            for (j = max(i__2,1);
                    j <= i__3;
                    ++j)
            {
                i__2 = kd + i__ - j + j * ab_dim1;
                i__4 = j;
                z__2.r = ab[i__2].r * x[i__4].r - ab[i__2].i * x[i__4].i;
                z__2.i = ab[i__2].r * x[i__4].i + ab[i__2].i * x[i__4] .r; // , expr subst
                z__1.r = z__2.r;
                z__1.i = z__2.i; // , expr subst
                tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), abs(d__2));
            }
            rwork[i__] = tmp;
            anorm = max(anorm,tmp);
        }
    }
    else
    {
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            tmp = 0.;
            /* Computing MAX */
            i__3 = i__ - *kl;
            /* Computing MIN */
            i__4 = i__ + *ku;
            i__2 = min(i__4,*n);
            for (j = max(i__3,1);
                    j <= i__2;
                    ++j)
            {
                i__3 = ke - i__ + j + i__ * ab_dim1;
                i__4 = j;
                z__2.r = ab[i__3].r * x[i__4].r - ab[i__3].i * x[i__4].i;
                z__2.i = ab[i__3].r * x[i__4].i + ab[i__3].i * x[i__4] .r; // , expr subst
                z__1.r = z__2.r;
                z__1.i = z__2.i; // , expr subst
                tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), abs(d__2));
            }
            rwork[i__] = tmp;
            anorm = max(anorm,tmp);
        }
    }
    /* Quick return if possible. */
    if (*n == 0)
    {
        ret_val = 1.;
        return ret_val;
    }
    else if (anorm == 0.)
    {
        return ret_val;
    }
    /* Estimate the norm of inv(op(A)). */
    ainvnm = 0.;
    kase = 0;
L10:
    zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
    if (kase != 0)
    {
        if (kase == 2)
        {
            /* Multiply by R. */
            i__1 = *n;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                i__2 = i__;
                i__3 = i__;
                i__4 = i__;
                z__1.r = rwork[i__4] * work[i__3].r;
                z__1.i = rwork[i__4] * work[i__3].i; // , expr subst
                work[i__2].r = z__1.r;
                work[i__2].i = z__1.i; // , expr subst
            }
            if (notrans)
            {
                zgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1], &work[1], n, info);
            }
            else
            {
                zgbtrs_("Conjugate transpose", n, kl, ku, &c__1, &afb[ afb_offset], ldafb, &ipiv[1], &work[1], n, info);
            }
            /* Multiply by inv(X). */
            i__1 = *n;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                i__2 = i__;
                z_div(&z__1, &work[i__], &x[i__]);
                work[i__2].r = z__1.r;
                work[i__2].i = z__1.i; // , expr subst
            }
        }
        else
        {
            /* Multiply by inv(X**H). */
            i__1 = *n;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                i__2 = i__;
                z_div(&z__1, &work[i__], &x[i__]);
                work[i__2].r = z__1.r;
                work[i__2].i = z__1.i; // , expr subst
            }
            if (notrans)
            {
                zgbtrs_("Conjugate transpose", n, kl, ku, &c__1, &afb[ afb_offset], ldafb, &ipiv[1], &work[1], n, info);
            }
            else
            {
                zgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1], &work[1], n, info);
            }
            /* Multiply by R. */
            i__1 = *n;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                i__2 = i__;
                i__3 = i__;
                i__4 = i__;
                z__1.r = rwork[i__4] * work[i__3].r;
                z__1.i = rwork[i__4] * work[i__3].i; // , expr subst
                work[i__2].r = z__1.r;
                work[i__2].i = z__1.i; // , expr subst
            }
        }
        goto L10;
    }
    /* Compute the estimate of the reciprocal condition number. */
    if (ainvnm != 0.)
    {
        ret_val = 1. / ainvnm;
    }
    return ret_val;
}
Example #9
0
int main(void)
{
    /* Local scalars */
    char trans, trans_i;
    lapack_int n, n_i;
    lapack_int kl, kl_i;
    lapack_int ku, ku_i;
    lapack_int nrhs, nrhs_i;
    lapack_int ldab, ldab_i;
    lapack_int ldab_r;
    lapack_int ldb, ldb_i;
    lapack_int ldb_r;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    lapack_complex_double *ab = NULL, *ab_i = NULL;
    lapack_int *ipiv = NULL, *ipiv_i = NULL;
    lapack_complex_double *b = NULL, *b_i = NULL;
    lapack_complex_double *b_save = NULL;
    lapack_complex_double *ab_r = NULL;
    lapack_complex_double *b_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_zgbtrs( &trans, &n, &kl, &ku, &nrhs, &ldab, &ldb );
    ldab_r = n+2;
    ldb_r = nrhs+2;
    trans_i = trans;
    n_i = n;
    kl_i = kl;
    ku_i = ku;
    nrhs_i = nrhs;
    ldab_i = ldab;
    ldb_i = ldb;

    /* Allocate memory for the LAPACK routine arrays */
    ab = (lapack_complex_double *)
        LAPACKE_malloc( ldab*n * sizeof(lapack_complex_double) );
    ipiv = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );
    b = (lapack_complex_double *)
        LAPACKE_malloc( ldb*nrhs * sizeof(lapack_complex_double) );

    /* Allocate memory for the C interface function arrays */
    ab_i = (lapack_complex_double *)
        LAPACKE_malloc( ldab*n * sizeof(lapack_complex_double) );
    ipiv_i = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );
    b_i = (lapack_complex_double *)
        LAPACKE_malloc( ldb*nrhs * sizeof(lapack_complex_double) );

    /* Allocate memory for the backup arrays */
    b_save = (lapack_complex_double *)
        LAPACKE_malloc( ldb*nrhs * sizeof(lapack_complex_double) );

    /* Allocate memory for the row-major arrays */
    ab_r = (lapack_complex_double *)
        LAPACKE_malloc( ((2*kl+ku+1)*(n+2)) * sizeof(lapack_complex_double) );
    b_r = (lapack_complex_double *)
        LAPACKE_malloc( n*(nrhs+2) * sizeof(lapack_complex_double) );

    /* Initialize input arrays */
    init_ab( ldab*n, ab );
    init_ipiv( n, ipiv );
    init_b( ldb*nrhs, b );

    /* Backup the ouptut arrays */
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_save[i] = b[i];
    }

    /* Call the LAPACK routine */
    zgbtrs_( &trans, &n, &kl, &ku, &nrhs, ab, &ldab, ipiv, b, &ldb, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < ldab*n; i++ ) {
        ab_i[i] = ab[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_i[i] = b_save[i];
    }
    info_i = LAPACKE_zgbtrs_work( LAPACK_COL_MAJOR, trans_i, n_i, kl_i, ku_i,
                                  nrhs_i, ab_i, ldab_i, ipiv_i, b_i, ldb_i );

    failed = compare_zgbtrs( b, b_i, info, info_i, ldb, nrhs );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to zgbtrs\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to zgbtrs\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < ldab*n; i++ ) {
        ab_i[i] = ab[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_i[i] = b_save[i];
    }
    info_i = LAPACKE_zgbtrs( LAPACK_COL_MAJOR, trans_i, n_i, kl_i, ku_i, nrhs_i,
                             ab_i, ldab_i, ipiv_i, b_i, ldb_i );

    failed = compare_zgbtrs( b, b_i, info, info_i, ldb, nrhs );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to zgbtrs\n" );
    } else {
        printf( "FAILED: column-major high-level interface to zgbtrs\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < ldab*n; i++ ) {
        ab_i[i] = ab[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_i[i] = b_save[i];
    }

    LAPACKE_zge_trans( LAPACK_COL_MAJOR, 2*kl+ku+1, n, ab_i, ldab, ab_r, n+2 );
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, nrhs, b_i, ldb, b_r, nrhs+2 );
    info_i = LAPACKE_zgbtrs_work( LAPACK_ROW_MAJOR, trans_i, n_i, kl_i, ku_i,
                                  nrhs_i, ab_r, ldab_r, ipiv_i, b_r, ldb_r );

    LAPACKE_zge_trans( LAPACK_ROW_MAJOR, n, nrhs, b_r, nrhs+2, b_i, ldb );

    failed = compare_zgbtrs( b, b_i, info, info_i, ldb, nrhs );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to zgbtrs\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to zgbtrs\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < ldab*n; i++ ) {
        ab_i[i] = ab[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_i[i] = b_save[i];
    }

    /* Init row_major arrays */
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, 2*kl+ku+1, n, ab_i, ldab, ab_r, n+2 );
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, nrhs, b_i, ldb, b_r, nrhs+2 );
    info_i = LAPACKE_zgbtrs( LAPACK_ROW_MAJOR, trans_i, n_i, kl_i, ku_i, nrhs_i,
                             ab_r, ldab_r, ipiv_i, b_r, ldb_r );

    LAPACKE_zge_trans( LAPACK_ROW_MAJOR, n, nrhs, b_r, nrhs+2, b_i, ldb );

    failed = compare_zgbtrs( b, b_i, info, info_i, ldb, nrhs );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to zgbtrs\n" );
    } else {
        printf( "FAILED: row-major high-level interface to zgbtrs\n" );
    }

    /* Release memory */
    if( ab != NULL ) {
        LAPACKE_free( ab );
    }
    if( ab_i != NULL ) {
        LAPACKE_free( ab_i );
    }
    if( ab_r != NULL ) {
        LAPACKE_free( ab_r );
    }
    if( ipiv != NULL ) {
        LAPACKE_free( ipiv );
    }
    if( ipiv_i != NULL ) {
        LAPACKE_free( ipiv_i );
    }
    if( b != NULL ) {
        LAPACKE_free( b );
    }
    if( b_i != NULL ) {
        LAPACKE_free( b_i );
    }
    if( b_r != NULL ) {
        LAPACKE_free( b_r );
    }
    if( b_save != NULL ) {
        LAPACKE_free( b_save );
    }

    return 0;
}