/* Subroutine */ int zchkhp_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex * ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g" "12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, n, i1, i2, in, kl, ku, nt, lda, npp, ioff, mode, imat, info; char path[3], dist[1]; integer irhs, nrhs; char uplo[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); extern logical lsame_(char *, char *); doublereal rcond; integer nimat; doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ), zhpt01_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); integer iuplo, izero, nerrs; extern /* Subroutine */ int zppt02_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zppt03_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zppt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); char xtype[1]; extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; char packit[1]; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, integer *); logical trfcon; extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zhpcon_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer * , integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *), zhprfs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zhptrf_(char *, integer *, doublecomplex *, integer *, integer *); doublereal result[8]; extern /* Subroutine */ int zhptri_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zhptrs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zerrsy_(char *, integer *) ; /* Fortran I/O blocks */ static cilist io___38 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKHP tests ZHPTRF, -TRI, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AFAC (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AINV (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(2,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, */ /* dimension (NMAX+2*NSMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrsy_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 10; if (n <= 0) { nimat = 1; } izero = 0; i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L160; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L160; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (lsame_(uplo, "U")) { *(unsigned char *)packit = 'C'; } else { *(unsigned char *)packit = 'R'; } /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[ 1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L150; } /* For types 3-6, zero one or more rows and columns of */ /* the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { ioff = 0; if (iuplo == 1) { /* Set the first IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L60: */ } ioff += j; /* L70: */ } } else { /* Set the last IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L80: */ } ioff = ioff + n - j; /* L90: */ } } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[1], &c__2, &c__1); } else { zlaipd_(&n, &a[1], &n, &c_n1); } /* Compute the L*D*L' or U*D*U' factorization of the matrix. */ npp = n * (n + 1) / 2; zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); s_copy(srnamc_1.srnamt, "ZHPTRF", (ftnlen)6, (ftnlen)6); zhptrf_(uplo, &n, &afac[1], &iwork[1], &info); /* Adjust the expected value of INFO to account for */ /* pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from ZHPTRF. */ if (info != k) { alaerh_(path, "ZHPTRF", &info, &k, uplo, &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } if (info != 0) { trfcon = TRUE_; } else { trfcon = FALSE_; } /* + TEST 1 */ /* Reconstruct matrix from factors and compute residual. */ zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1], &lda, &rwork[1], result); nt = 1; /* + TEST 2 */ /* Form the inverse and compute the residual. */ if (! trfcon) { zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1); s_copy(srnamc_1.srnamt, "ZHPTRI", (ftnlen)6, (ftnlen)6); zhptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &info); /* Check error code from ZHPTRI. */ if (info != 0) { alaerh_(path, "ZHPTRI", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } zppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[ 1], &rcondc, &result[1]); nt = 2; } /* Print information about the tests that did not pass */ /* the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; /* Do only the condition estimate if INFO is not 0. */ if (trfcon) { rcondc = 0.; goto L140; } i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; /* + TEST 3 */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, & a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, & info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZHPTRS", (ftnlen)6, (ftnlen)6); zhptrs_(uplo, &n, &nrhs, &afac[1], &iwork[1], &x[1], &lda, &info); /* Check error code from ZHPTRS. */ if (info != 0) { alaerh_(path, "ZHPTRS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); zppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], & lda, &rwork[1], &result[2]); /* + TEST 4 */ /* Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[3]); /* + TESTS 5, 6, and 7 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "ZHPRFS", (ftnlen)6, (ftnlen)6); zhprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &iwork[1], &b[1] , &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from ZHPRFS. */ if (info != 0) { alaerh_(path, "ZHPRFS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[4]); zppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], & result[5]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L120: */ } nrun += 5; /* L130: */ } /* + TEST 8 */ /* Get an estimate of RCOND = 1/CNDNUM. */ L140: anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]); s_copy(srnamc_1.srnamt, "ZHPCON", (ftnlen)6, (ftnlen)6); zhpcon_(uplo, &n, &afac[1], &iwork[1], &anorm, &rcond, &work[ 1], &info); /* Check error code from ZHPCON. */ if (info != 0) { alaerh_(path, "ZHPCON", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[7] = dget06_(&rcond, &rcondc); /* Print the test ratio if it is .GE. THRESH. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___43.ciunit = *nout; s_wsfe(&io___43); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; L150: ; } L160: ; } /* L170: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKHP */ } /* zchkhp_ */
/* Subroutine */ int zdrvpb_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *asav, doublecomplex *b, doublecomplex *bsav, doublecomplex *x, doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal * rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char facts[1*3] = "F" "N" "E"; static char equeds[1*2] = "N" "Y"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, KD =\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)" "=\002,g12.5)"; static char fmt_9997[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002'," " \002,i5,\002, \002,i5,\002, ... ), EQUED='\002,a1,\002', type" " \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002'," " \002,i5,\002, \002,i5,\002, ... ), type \002,i1,\002, test(\002" ",i1,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6, i__7[2]; char ch__1[2]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static integer ldab; static char fact[1]; static integer ioff, mode, koff; static doublereal amax; static char path[3]; static integer imat, info; static char dist[1], uplo[1], type__[1]; static integer nrun, i__, k, n, ifact, nfail, iseed[4], nfact; extern doublereal dget06_(doublereal *, doublereal *); static integer kdval[4]; extern logical lsame_(char *, char *); static char equed[1]; static integer nbmin; static doublereal rcond, roldc, scond; static integer nimat; static doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); static logical equil; extern /* Subroutine */ int zpbt01_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zpbt02_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ), zpbt05_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); static integer iuplo, izero, i1, i2, k1, nerrs; static logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zpbsv_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); static char xtype[1]; extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *); static integer kd, nb, in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static logical prefac; static integer iw, ku, nt; static doublereal rcondc; static logical nofact; static char packit[1]; static integer iequed; extern doublereal zlanhb_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zlaqhb_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, char *), alasvm_(char *, integer *, integer *, integer *, integer *); static doublereal cndnum; extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, integer *); static doublereal ainvnm; extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zpbequ_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, integer *), zpbtrf_(char *, integer *, integer *, doublecomplex *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal result[6]; extern /* Subroutine */ int zpbtrs_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zpbsvx_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, char *, doublereal *, doublecomplex *, integer *, doublecomplex * , integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zerrvx_(char *, integer *); static integer lda, ikd, nkd; /* Fortran I/O blocks */ static cilist io___57 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___60 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= ZDRVPB tests the driver routines ZPBSV and -SVX. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix dimension N. NRHS (input) INTEGER The number of right hand side vectors to be generated for each linear system. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for N, used in dimensioning the work arrays. A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) AFAC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) ASAV (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) BSAV (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) S (workspace) DOUBLE PRECISION array, dimension (NMAX) WORK (workspace) COMPLEX*16 array, dimension (NMAX*max(3,NRHS)) RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; kdval[0] = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; /* Set limits on the number of loop iterations. Computing MAX */ i__2 = 1, i__3 = min(n,4); nkd = max(i__2,i__3); nimat = 8; if (n == 0) { nimat = 1; } kdval[1] = n + (n + 1) / 4; kdval[2] = (n * 3 - 1) / 4; kdval[3] = (n + 1) / 4; i__2 = nkd; for (ikd = 1; ikd <= i__2; ++ikd) { /* Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order makes it easier to skip redundant values for small values of N. */ kd = kdval[ikd - 1]; ldab = kd + 1; /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { koff = 1; if (iuplo == 1) { *(unsigned char *)uplo = 'U'; *(unsigned char *)packit = 'Q'; /* Computing MAX */ i__3 = 1, i__4 = kd + 2 - n; koff = max(i__3,i__4); } else { *(unsigned char *)uplo = 'L'; *(unsigned char *)packit = 'B'; } i__3 = nimat; for (imat = 1; imat <= i__3; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L80; } /* Skip types 2, 3, or 4 if the matrix size is too small. */ zerot = imat >= 2 && imat <= 4; if (zerot && n < imat - 1) { goto L80; } if (! zerot || ! dotype[1]) { /* Set up parameters with ZLATB4 and generate a test matrix with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen) 6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &anorm, &kd, &kd, packit, &a[koff], &ldab, &work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); goto L80; } } else if (izero > 0) { /* Use the same matrix for types 3 and 4 as for type 2 by copying back the zeroed out column, */ iw = (lda << 1) + 1; if (iuplo == 1) { ioff = (izero - 1) * ldab + kd + 1; i__4 = izero - i1; zcopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + i1], &c__1); iw = iw + izero - i1; i__4 = i2 - izero + 1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5); } else { ioff = (i1 - 1) * ldab + 1; i__4 = izero - i1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zcopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - i1], &i__5); ioff = (izero - 1) * ldab + 1; iw = iw + izero - i1; i__4 = i2 - izero + 1; zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1); } } /* For types 2-4, zero one row and column of the matrix to test that INFO is returned correctly. */ izero = 0; if (zerot) { if (imat == 2) { izero = 1; } else if (imat == 3) { izero = n; } else { izero = n / 2 + 1; } /* Save the zeroed out row and column in WORK(*,3) */ iw = lda << 1; /* Computing MIN */ i__5 = (kd << 1) + 1; i__4 = min(i__5,n); for (i__ = 1; i__ <= i__4; ++i__) { i__5 = iw + i__; work[i__5].r = 0., work[i__5].i = 0.; /* L20: */ } ++iw; /* Computing MAX */ i__4 = izero - kd; i1 = max(i__4,1); /* Computing MIN */ i__4 = izero + kd; i2 = min(i__4,n); if (iuplo == 1) { ioff = (izero - 1) * ldab + kd + 1; i__4 = izero - i1; zswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[ iw], &c__1); iw = iw + izero - i1; i__4 = i2 - izero + 1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1); } else { ioff = (i1 - 1) * ldab + 1; i__4 = izero - i1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[ iw], &c__1); ioff = (izero - 1) * ldab + 1; iw = iw + izero - i1; i__4 = i2 - izero + 1; zswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1); } } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[kd + 1], &ldab, &c__0); } else { zlaipd_(&n, &a[1], &ldab, &c__0); } /* Save a copy of the matrix A in ASAV. */ i__4 = kd + 1; zlacpy_("Full", &i__4, &n, &a[1], &ldab, &asav[1], &ldab); for (iequed = 1; iequed <= 2; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__4 = nfact; for (ifact = 1; ifact <= i__4; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L60; } rcondc = 0.; } else if (! lsame_(fact, "N")) { /* Compute the condition number for comparison with the value returned by ZPBSVX (FACT = 'N' reuses the condition number from the previous iteration with FACT = 'F'). */ i__5 = kd + 1; zlacpy_("Full", &i__5, &n, &asav[1], &ldab, & afac[1], &ldab); if (equil || iequed > 1) { /* Compute row and column scale factors to equilibrate the matrix A. */ zpbequ_(uplo, &n, &kd, &afac[1], &ldab, & s[1], &scond, &amax, &info); if (info == 0 && n > 0) { if (iequed > 1) { scond = 0.; } /* Equilibrate the matrix. */ zlaqhb_(uplo, &n, &kd, &afac[1], & ldab, &s[1], &scond, &amax, equed); } } /* Save the condition number of the non-equilibrated system for use in ZGET04. */ if (equil) { roldc = rcondc; } /* Compute the 1-norm of A. */ anorm = zlanhb_("1", uplo, &n, &kd, &afac[1], &ldab, &rwork[1]); /* Factor the matrix A. */ zpbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info); /* Form the inverse of A. */ zlaset_("Full", &n, &n, &c_b47, &c_b48, &a[1], &lda); s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, ( ftnlen)6); zpbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, & a[1], &lda, &info); /* Compute the 1-norm condition number of A. */ ainvnm = zlange_("1", &n, &n, &a[1], &lda, & rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Restore the matrix A. */ i__5 = kd + 1; zlacpy_("Full", &i__5, &n, &asav[1], &ldab, &a[1], &ldab); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, ( ftnlen)6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, nrhs, &a[1], &ldab, &xact[1], &lda, &b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], & lda); if (nofact) { /* --- Test ZPBSV --- Compute the L*L' or U'*U factorization of the matrix and solve the system. */ i__5 = kd + 1; zlacpy_("Full", &i__5, &n, &a[1], &ldab, & afac[1], &ldab); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZPBSV ", (ftnlen)6, ( ftnlen)6); zpbsv_(uplo, &n, &kd, nrhs, &afac[1], &ldab, & x[1], &lda, &info); /* Check error code from ZPBSV . */ if (info != izero) { alaerh_(path, "ZPBSV ", &info, &izero, uplo, &n, &n, &kd, &kd, nrhs, & imat, &nfail, &nerrs, nout); goto L40; } else if (info != 0) { goto L40; } /* Reconstruct matrix from factors and compute residual. */ zpbt01_(uplo, &n, &kd, &a[1], &ldab, &afac[1], &ldab, &rwork[1], result); /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[ 1], &lda); zpbt02_(uplo, &n, &kd, nrhs, &a[1], &ldab, &x[ 1], &lda, &work[1], &lda, &rwork[1], & result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); nt = 3; /* Print information about the tests that did not pass the threshold. */ i__5 = nt; for (k = 1; k <= i__5; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___57.ciunit = *nout; s_wsfe(&io___57); do_fio(&c__1, "ZPBSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kd, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L30: */ } nrun += nt; L40: ; } /* --- Test ZPBSVX --- */ if (! prefac) { i__5 = kd + 1; zlaset_("Full", &i__5, &n, &c_b47, &c_b47, & afac[1], &ldab); } zlaset_("Full", &n, nrhs, &c_b47, &c_b47, &x[1], & lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and EQUED='Y' */ zlaqhb_(uplo, &n, &kd, &a[1], &ldab, &s[1], & scond, &amax, equed); } /* Solve the system and compute the condition number and error bounds using ZPBSVX. */ s_copy(srnamc_1.srnamt, "ZPBSVX", (ftnlen)6, ( ftnlen)6); zpbsvx_(fact, uplo, &n, &kd, nrhs, &a[1], &ldab, & afac[1], &ldab, equed, &s[1], &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[* nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info); /* Check the error code from ZPBSVX. */ if (info != izero) { /* Writing concatenation */ i__7[0] = 1, a__1[0] = fact; i__7[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__7, &c__2, (ftnlen)2); alaerh_(path, "ZPBSVX", &info, &izero, ch__1, &n, &n, &kd, &kd, nrhs, &imat, &nfail, &nerrs, nout); goto L60; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute residual. */ zpbt01_(uplo, &n, &kd, &a[1], &ldab, & afac[1], &ldab, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &bsav[1], &lda, & work[1], &lda); zpbt02_(uplo, &n, &kd, nrhs, &asav[1], &ldab, &x[1], &lda, &work[1], &lda, &rwork[(* nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { zget04_(&n, nrhs, &x[1], &lda, &xact[1], & lda, &rcondc, &result[2]); } else { zget04_(&n, nrhs, &x[1], &lda, &xact[1], & lda, &roldc, &result[2]); } /* Check the error bounds from iterative refinement. */ zpbt05_(uplo, &n, &kd, nrhs, &asav[1], &ldab, &b[1], &lda, &x[1], &lda, &xact[1], & lda, &rwork[1], &rwork[*nrhs + 1], & result[3]); } else { k1 = 6; } /* Compare RCOND from ZPBSVX with the computed value in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___60.ciunit = *nout; s_wsfe(&io___60); do_fio(&c__1, "ZPBSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kd, (ftnlen) sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___61.ciunit = *nout; s_wsfe(&io___61); do_fio(&c__1, "ZPBSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kd, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L50: */ } nrun = nrun + 7 - k1; L60: ; } /* L70: */ } L80: ; } /* L90: */ } /* L100: */ } /* L110: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVPB */ } /* zdrvpb_ */
/* Subroutine */ int zdrvpo_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *asav, doublecomplex *b, doublecomplex *bsav, doublecomplex *x, doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal * rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char facts[1*3] = "F" "N" "E"; static char equeds[1*2] = "N" "Y"; /* Format strings */ static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002," "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1," "\002, test(\002,i1,\002) =\002,g12.5)"; static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002," "a1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; char ch__1[2]; /* Local variables */ integer i__, k, n, k1, nb, in, kl, ku, nt, lda; char fact[1]; integer ioff, mode; doublereal amax; char path[3]; integer imat, info; char dist[1], uplo[1], type__[1]; integer nrun, ifact, nfail, iseed[4], nfact; char equed[1]; integer nbmin; doublereal rcond, roldc, scond; integer nimat; doublereal anorm; logical equil; integer iuplo, izero, nerrs; logical zerot; char xtype[1]; logical prefac; doublereal rcondc; logical nofact; integer iequed; doublereal cndnum; doublereal ainvnm; doublereal result[6]; /* Fortran I/O blocks */ static cilist io___48 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZDRVPO tests the driver routines ZPOSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AFAC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* ASAV (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* BSAV (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* S (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PO", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 9; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } /* Skip types 3, 4, or 5 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 5; if (zerot && n < imat - 2) { goto L120; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L110; } /* For types 3-5, zero one row and column of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; /* Set row and column IZERO of A to 0. */ if (iuplo == 1) { i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ i__3 = lda + 1; zlaipd_(&n, &a[1], &i__3, &c__0); /* Save a copy of the matrix A in ASAV. */ zlacpy_(uplo, &n, &n, &a[1], &lda, &asav[1], &lda); for (iequed = 1; iequed <= 2; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L90; } rcondc = 0.; } else if (! lsame_(fact, "N")) { /* Compute the condition number for comparison with */ /* the value returned by ZPOSVX (FACT = 'N' reuses */ /* the condition number from the previous iteration */ /* with FACT = 'F'). */ zlacpy_(uplo, &n, &n, &asav[1], &lda, &afac[1], & lda); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ zpoequ_(&n, &afac[1], &lda, &s[1], &scond, & amax, &info); if (info == 0 && n > 0) { if (iequed > 1) { scond = 0.; } /* Equilibrate the matrix. */ zlaqhe_(uplo, &n, &afac[1], &lda, &s[1], & scond, &amax, equed); } } /* Save the condition number of the */ /* non-equilibrated system for use in ZGET04. */ if (equil) { roldc = rcondc; } /* Compute the 1-norm of A. */ anorm = zlanhe_("1", uplo, &n, &afac[1], &lda, & rwork[1]); /* Factor the matrix A. */ zpotrf_(uplo, &n, &afac[1], &lda, &info); /* Form the inverse of A. */ zlacpy_(uplo, &n, &n, &afac[1], &lda, &a[1], &lda); zpotri_(uplo, &n, &a[1], &lda, &info); /* Compute the 1-norm condition number of A. */ ainvnm = zlanhe_("1", uplo, &n, &a[1], &lda, & rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Restore the matrix A. */ zlacpy_(uplo, &n, &n, &asav[1], &lda, &a[1], &lda); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen) 6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact) { /* --- Test ZPOSV --- */ /* Compute the L*L' or U'*U factorization of the */ /* matrix and solve the system. */ zlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "ZPOSV ", (ftnlen)32, ( ftnlen)6); zposv_(uplo, &n, nrhs, &afac[1], &lda, &x[1], & lda, &info); /* Check error code from ZPOSV . */ if (info != izero) { alaerh_(path, "ZPOSV ", &info, &izero, uplo, & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); goto L70; } else if (info != 0) { goto L70; } /* Reconstruct matrix from factors and compute */ /* residual. */ zpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, & rwork[1], result); /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], & lda); zpot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &work[1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not */ /* pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___48.ciunit = *nout; s_wsfe(&io___48); do_fio(&c__1, "ZPOSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += nt; L70: ; } /* --- Test ZPOSVX --- */ if (! prefac) { zlaset_(uplo, &n, &n, &c_b51, &c_b51, &afac[1], & lda); } zlaset_("Full", &n, nrhs, &c_b51, &c_b51, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y'. */ zlaqhe_(uplo, &n, &a[1], &lda, &s[1], &scond, & amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using ZPOSVX. */ s_copy(srnamc_1.srnamt, "ZPOSVX", (ftnlen)32, (ftnlen) 6); zposvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], & lda, equed, &s[1], &b[1], &lda, &x[1], &lda, & rcond, &rwork[1], &rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info); /* Check the error code from ZPOSVX. */ if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "ZPOSVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L90; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ zpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); zpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], & lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ zpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from ZPOSVX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, "ZPOSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, "ZPOSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L80: */ } nrun = nrun + 7 - k1; L90: ; } /* L100: */ } L110: ; } L120: ; } /* L130: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVPO */ } /* zdrvpo_ */
/* Subroutine */ int zcklse_(integer *nn, integer *mval, integer *pval, integer *nval, integer *nmats, integer *iseed, doublereal *thresh, integer *nmax, doublecomplex *a, doublecomplex *af, doublecomplex *b, doublecomplex *bf, doublecomplex *x, doublecomplex *work, doublereal * rwork, integer *nin, integer *nout, integer *info) { /* Format strings */ static char fmt_9997[] = "(\002 *** Invalid input for LSE: M = \002," "i6,\002, P = \002,i6,\002, N = \002,i6,\002;\002,/\002 must " "satisfy P <= N <= P+M \002,\002(this set of values will be skip" "ped)\002)"; static char fmt_9999[] = "(\002 ZLATMS in ZCKLSE INFO = \002,i5)"; static char fmt_9998[] = "(\002 M=\002,i4,\002 P=\002,i4,\002, N=\002," "i4,\002, type \002,i2,\002, test \002,i2,\002, ratio=\002,g13.6)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5, i__6, i__7; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsle(cilist *), e_wsle(void), s_wsfe(cilist *), do_fio(integer * , char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, m, n, p, ik, nt, lda, ldb, kla, klb, kua, kub, imat; char path[3], type__[1]; integer nrun, modea, modeb, nfail; char dista[1], distb[1]; integer iinfo; doublereal anorm, bnorm; integer lwork; extern /* Subroutine */ int dlatb9_(char *, integer *, integer *, integer *, integer *, char *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, char *, char *), alahdg_(integer *, char *); doublereal cndnma, cndnmb; extern /* Subroutine */ int alareq_(char *, integer *, logical *, integer *, integer *, integer *), alasum_(char *, integer *, integer *, integer *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *); logical dotype[8]; extern /* Subroutine */ int zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); logical firstt; doublereal result[7]; extern /* Subroutine */ int zlsets_(integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , integer *, doublereal *, doublereal *); /* Fortran I/O blocks */ static cilist io___13 = { 0, 0, 0, 0, 0 }; static cilist io___14 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___35 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCKLSE tests ZGGLSE - a subroutine for solving linear equality */ /* constrained least square problem (LSE). */ /* Arguments */ /* ========= */ /* NN (input) INTEGER */ /* The number of values of (M,P,N) contained in the vectors */ /* (MVAL, PVAL, NVAL). */ /* MVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix row(column) dimension M. */ /* PVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix row(column) dimension P. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column(row) dimension N. */ /* NMATS (input) INTEGER */ /* The number of matrix types to be tested for each combination */ /* of matrix dimensions. If NMATS >= NTYPES (the maximum */ /* number of matrix types), then all the different types are */ /* generated for testing. If NMATS < NTYPES, another input line */ /* is read to get the numbers of the matrix types to be used. */ /* ISEED (input/output) INTEGER array, dimension (4) */ /* On entry, the seed of the random number generator. The array */ /* elements should be between 0 and 4095, otherwise they will be */ /* reduced mod 4096, and ISEED(4) must be odd. */ /* On exit, the next seed in the random number sequence after */ /* all the test matrices have been generated. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for M or N, used in dimensioning */ /* the work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* BF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* X (workspace) COMPLEX*16 array, dimension (5*NMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* NIN (input) INTEGER */ /* The unit number for input. */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* INFO (output) INTEGER */ /* = 0 : successful exit */ /* > 0 : If ZLATMS returns an error code, the absolute value */ /* of it is returned. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ /* Parameter adjustments */ --rwork; --work; --x; --bf; --b; --af; --a; --iseed; --nval; --pval; --mval; /* Function Body */ s_copy(path, "LSE", (ftnlen)3, (ftnlen)3); *info = 0; nrun = 0; nfail = 0; firstt = TRUE_; alareq_(path, nmats, dotype, &c__8, nin, nout); lda = *nmax; ldb = *nmax; lwork = *nmax * *nmax; /* Check for valid input values. */ i__1 = *nn; for (ik = 1; ik <= i__1; ++ik) { m = mval[ik]; p = pval[ik]; n = nval[ik]; if (p > n || n > m + p) { if (firstt) { io___13.ciunit = *nout; s_wsle(&io___13); e_wsle(); firstt = FALSE_; } io___14.ciunit = *nout; s_wsfe(&io___14); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&p, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); e_wsfe(); } /* L10: */ } firstt = TRUE_; /* Do for each value of M in MVAL. */ i__1 = *nn; for (ik = 1; ik <= i__1; ++ik) { m = mval[ik]; p = pval[ik]; n = nval[ik]; if (p > n || n > m + p) { goto L40; } for (imat = 1; imat <= 8; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat - 1]) { goto L30; } /* Set up parameters with DLATB9 and generate test */ /* matrices A and B with ZLATMS. */ dlatb9_(path, &imat, &m, &p, &n, type__, &kla, &kua, &klb, &kub, & anorm, &bnorm, &modea, &modeb, &cndnma, &cndnmb, dista, distb); zlatms_(&m, &n, dista, &iseed[1], type__, &rwork[1], &modea, & cndnma, &anorm, &kla, &kua, "No packing", &a[1], &lda, & work[1], &iinfo); if (iinfo != 0) { io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L30; } zlatms_(&p, &n, distb, &iseed[1], type__, &rwork[1], &modeb, & cndnmb, &bnorm, &klb, &kub, "No packing", &b[1], &ldb, & work[1], &iinfo); if (iinfo != 0) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L30; } /* Generate the right-hand sides C and D for the LSE. */ /* Computing MAX */ i__3 = m - 1; i__2 = max(i__3,0); /* Computing MAX */ i__5 = n - 1; i__4 = max(i__5,0); i__6 = max(n,1); i__7 = max(m,1); zlarhs_("ZGE", "New solution", "Upper", "N", &m, &n, &i__2, &i__4, &c__1, &a[1], &lda, &x[(*nmax << 2) + 1], &i__6, &x[1], & i__7, &iseed[1], &iinfo); /* Computing MAX */ i__3 = p - 1; i__2 = max(i__3,0); /* Computing MAX */ i__5 = n - 1; i__4 = max(i__5,0); i__6 = max(n,1); i__7 = max(p,1); zlarhs_("ZGE", "Computed", "Upper", "N", &p, &n, &i__2, &i__4, & c__1, &b[1], &ldb, &x[(*nmax << 2) + 1], &i__6, &x[(*nmax << 1) + 1], &i__7, &iseed[1], &iinfo); nt = 2; zlsets_(&m, &p, &n, &a[1], &af[1], &lda, &b[1], &bf[1], &ldb, &x[ 1], &x[*nmax + 1], &x[(*nmax << 1) + 1], &x[*nmax * 3 + 1] , &x[(*nmax << 2) + 1], &work[1], &lwork, &rwork[1], result); /* Print information about the tests that did not */ /* pass the threshold. */ i__2 = nt; for (i__ = 1; i__ <= i__2; ++i__) { if (result[i__ - 1] >= *thresh) { if (nfail == 0 && firstt) { firstt = FALSE_; alahdg_(nout, path); } io___35.ciunit = *nout; s_wsfe(&io___35); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&p, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[i__ - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += nt; L30: ; } L40: ; } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &c__0); return 0; /* End of ZCKLSE */ } /* zcklse_ */
/* Subroutine */ int zchkgb_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nns, integer *nsval, doublereal *thresh, logical *tsterr, doublecomplex *a, integer *la, doublecomplex *afac, integer *lafac, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 *** In ZCHKGB, LA=\002,i5,\002 is too sm" "all for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU=\002" ",i4,/\002 ==> Increase LA to at least \002,i5)"; static char fmt_9998[] = "(\002 *** In ZCHKGB, LAFAC=\002,i5,\002 is too" " small for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU" "=\002,i4,/\002 ==> Increase LAFAC to at least \002,i5)"; static char fmt_9997[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, KL=" "\002,i5,\002, KU=\002,i5,\002, NB =\002,i4,\002, type \002,i1" ",\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9996[] = "(\002 TRANS='\002,a1,\002', N=\002,i5,\002, " "KL=\002,i5,\002, KU=\002,i5,\002, NRHS=\002,i3,\002, type \002,i" "1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9995[] = "(\002 NORM ='\002,a1,\002', N=\002,i5,\002, " "KL=\002,i5,\002, KU=\002,i5,\002,\002,10x,\002 type \002,i1,\002" ", test(\002,i1,\002)=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, m, n, i1, i2, nb, im, in, kl, ku, lda, ldb, inb, ikl, nkl, iku, nku, ioff, mode, koff, imat, info; char path[3], dist[1]; integer irhs, nrhs; char norm[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); doublereal rcond; extern /* Subroutine */ int zgbt01_(integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, doublereal *); integer nimat, klval[4]; extern /* Subroutine */ int zgbt02_(char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *), zgbt05_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer * , doublereal *, doublereal *, doublereal *); doublereal anorm; integer itran; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); integer kuval[4]; char trans[1]; integer izero, nerrs; logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); char xtype[1]; extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *); integer ldafac; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; extern doublereal zlangb_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal rcondi; extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); doublereal cndnum, anormi, rcondo; extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); doublereal ainvnm; logical trfcon; doublereal anormo; extern /* Subroutine */ int xlaenv_(integer *, integer *), zerrge_(char *, integer *), zgbrfs_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zgbtrf_(integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer * , integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zgbtrs_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal result[7]; /* Fortran I/O blocks */ static cilist io___25 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___26 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9995, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKGB tests ZGBTRF, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NBVAL) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) COMPLEX*16 array, dimension (LA) */ /* LA (input) INTEGER */ /* The length of the array A. LA >= (KLMAX+KUMAX+1)*NMAX */ /* where KLMAX is the largest entry in the local array KLVAL, */ /* KUMAX is the largest entry in the local array KUVAL and */ /* NMAX is the largest entry in the input array NVAL. */ /* AFAC (workspace) COMPLEX*16 array, dimension (LAFAC) */ /* LAFAC (input) INTEGER */ /* The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX */ /* where KLMAX is the largest entry in the local array KLVAL, */ /* KUMAX is the largest entry in the local array KUVAL and */ /* NMAX is the largest entry in the input array NVAL. */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NSMAX,NMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --afac; --a; --nsval; --nbval; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrge_(path, nout); } infoc_1.infot = 0; /* Initialize the first value for the lower and upper bandwidths. */ klval[0] = 0; kuval[0] = 0; /* Do for each value of M in MVAL */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; /* Set values to use for the lower bandwidth. */ klval[1] = m + (m + 1) / 4; /* KLVAL( 2 ) = MAX( M-1, 0 ) */ klval[2] = (m * 3 - 1) / 4; klval[3] = (m + 1) / 4; /* Do for each value of N in NVAL */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; *(unsigned char *)xtype = 'N'; /* Set values to use for the upper bandwidth. */ kuval[1] = n + (n + 1) / 4; /* KUVAL( 2 ) = MAX( N-1, 0 ) */ kuval[2] = (n * 3 - 1) / 4; kuval[3] = (n + 1) / 4; /* Set limits on the number of loop iterations. */ /* Computing MIN */ i__3 = m + 1; nkl = min(i__3,4); if (n == 0) { nkl = 2; } /* Computing MIN */ i__3 = n + 1; nku = min(i__3,4); if (m == 0) { nku = 2; } nimat = 8; if (m <= 0 || n <= 0) { nimat = 1; } i__3 = nkl; for (ikl = 1; ikl <= i__3; ++ikl) { /* Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This */ /* order makes it easier to skip redundant values for small */ /* values of M. */ kl = klval[ikl - 1]; i__4 = nku; for (iku = 1; iku <= i__4; ++iku) { /* Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This */ /* order makes it easier to skip redundant values for */ /* small values of N. */ ku = kuval[iku - 1]; /* Check that A and AFAC are big enough to generate this */ /* matrix. */ lda = kl + ku + 1; ldafac = (kl << 1) + ku + 1; if (lda * n > *la || ldafac * n > *lafac) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } if (n * (kl + ku + 1) > *la) { io___25.ciunit = *nout; s_wsfe(&io___25); do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer) ); i__5 = n * (kl + ku + 1); do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof( integer)); e_wsfe(); ++nerrs; } if (n * ((kl << 1) + ku + 1) > *lafac) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, (char *)&(*lafac), (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer) ); i__5 = n * ((kl << 1) + ku + 1); do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof( integer)); e_wsfe(); ++nerrs; } goto L130; } i__5 = nimat; for (imat = 1; imat <= i__5; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } /* Skip types 2, 3, or 4 if the matrix size is too */ /* small. */ zerot = imat >= 2 && imat <= 4; if (zerot && n < imat - 1) { goto L120; } if (! zerot || ! dotype[1]) { /* Set up parameters with ZLATB4 and generate a */ /* test matrix with ZLATMS. */ zlatb4_(path, &imat, &m, &n, type__, &kl, &ku, & anorm, &mode, &cndnum, dist); /* Computing MAX */ i__6 = 1, i__7 = ku + 2 - n; koff = max(i__6,i__7); i__6 = koff - 1; for (i__ = 1; i__ <= i__6; ++i__) { i__7 = i__; a[i__7].r = 0., a[i__7].i = 0.; /* L20: */ } s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, ( ftnlen)6); zlatms_(&m, &n, dist, iseed, type__, &rwork[1], & mode, &cndnum, &anorm, &kl, &ku, "Z", &a[ koff], &lda, &work[1], &info); /* Check the error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &m, &n, &kl, &ku, &c_n1, &imat, &nfail, & nerrs, nout); goto L120; } } else if (izero > 0) { /* Use the same matrix for types 3 and 4 as for */ /* type 2 by copying back the zeroed out column. */ i__6 = i2 - i1 + 1; zcopy_(&i__6, &b[1], &c__1, &a[ioff + i1], &c__1); } /* For types 2, 3, and 4, zero one or more columns of */ /* the matrix to test that INFO is returned correctly. */ izero = 0; if (zerot) { if (imat == 2) { izero = 1; } else if (imat == 3) { izero = min(m,n); } else { izero = min(m,n) / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 4) { /* Store the column to be zeroed out in B. */ /* Computing MAX */ i__6 = 1, i__7 = ku + 2 - izero; i1 = max(i__6,i__7); /* Computing MIN */ i__6 = kl + ku + 1, i__7 = ku + 1 + (m - izero); i2 = min(i__6,i__7); i__6 = i2 - i1 + 1; zcopy_(&i__6, &a[ioff + i1], &c__1, &b[1], & c__1); i__6 = i2; for (i__ = i1; i__ <= i__6; ++i__) { i__7 = ioff + i__; a[i__7].r = 0., a[i__7].i = 0.; /* L30: */ } } else { i__6 = n; for (j = izero; j <= i__6; ++j) { /* Computing MAX */ i__7 = 1, i__8 = ku + 2 - j; /* Computing MIN */ i__10 = kl + ku + 1, i__11 = ku + 1 + (m - j); i__9 = min(i__10,i__11); for (i__ = max(i__7,i__8); i__ <= i__9; ++i__) { i__7 = ioff + i__; a[i__7].r = 0., a[i__7].i = 0.; /* L40: */ } ioff += lda; /* L50: */ } } } /* These lines, if used in place of the calls in the */ /* loop over INB, cause the code to bomb on a Sun */ /* SPARCstation. */ /* ANORMO = ZLANGB( 'O', N, KL, KU, A, LDA, RWORK ) */ /* ANORMI = ZLANGB( 'I', N, KL, KU, A, LDA, RWORK ) */ /* Do for each blocksize in NBVAL */ i__6 = *nnb; for (inb = 1; inb <= i__6; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the LU factorization of the band matrix. */ if (m > 0 && n > 0) { i__9 = kl + ku + 1; zlacpy_("Full", &i__9, &n, &a[1], &lda, &afac[ kl + 1], &ldafac); } s_copy(srnamc_1.srnamt, "ZGBTRF", (ftnlen)6, ( ftnlen)6); zgbtrf_(&m, &n, &kl, &ku, &afac[1], &ldafac, & iwork[1], &info); /* Check error code from ZGBTRF. */ if (info != izero) { alaerh_(path, "ZGBTRF", &info, &izero, " ", & m, &n, &kl, &ku, &nb, &imat, &nfail, & nerrs, nout); } trfcon = FALSE_; /* + TEST 1 */ /* Reconstruct matrix from factors and compute */ /* residual. */ zgbt01_(&m, &n, &kl, &ku, &a[1], &lda, &afac[1], & ldafac, &iwork[1], &work[1], result); /* Print information about the tests so far that */ /* did not pass the threshold. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } ++nrun; /* Skip the remaining tests if this is not the */ /* first block size or if M .ne. N. */ if (inb > 1 || m != n) { goto L110; } anormo = zlangb_("O", &n, &kl, &ku, &a[1], &lda, & rwork[1]); anormi = zlangb_("I", &n, &kl, &ku, &a[1], &lda, & rwork[1]); if (info == 0) { /* Form the inverse of A so we can get a good */ /* estimate of CNDNUM = norm(A) * norm(inv(A)). */ ldb = max(1,n); zlaset_("Full", &n, &n, &c_b61, &c_b62, &work[ 1], &ldb); s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)6, ( ftnlen)6); zgbtrs_("No transpose", &n, &kl, &ku, &n, & afac[1], &ldafac, &iwork[1], &work[1], &ldb, &info); /* Compute the 1-norm condition number of A. */ ainvnm = zlange_("O", &n, &n, &work[1], &ldb, &rwork[1]); if (anormo <= 0. || ainvnm <= 0.) { rcondo = 1.; } else { rcondo = 1. / anormo / ainvnm; } /* Compute the infinity-norm condition number of */ /* A. */ ainvnm = zlange_("I", &n, &n, &work[1], &ldb, &rwork[1]); if (anormi <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anormi / ainvnm; } } else { /* Do only the condition estimate if INFO.NE.0. */ trfcon = TRUE_; rcondo = 0.; rcondi = 0.; } /* Skip the solve tests if the matrix is singular. */ if (trfcon) { goto L90; } i__9 = *nns; for (irhs = 1; irhs <= i__9; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; if (itran == 1) { rcondc = rcondo; *(unsigned char *)norm = 'O'; } else { rcondc = rcondi; *(unsigned char *)norm = 'I'; } /* + TEST 2: */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen) 6, (ftnlen)6); zlarhs_(path, xtype, " ", trans, &n, &n, & kl, &ku, &nrhs, &a[1], &lda, & xact[1], &ldb, &b[1], &ldb, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, &nrhs, &b[1], &ldb, & x[1], &ldb); s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen) 6, (ftnlen)6); zgbtrs_(trans, &n, &kl, &ku, &nrhs, &afac[ 1], &ldafac, &iwork[1], &x[1], & ldb, &info); /* Check error code from ZGBTRS. */ if (info != 0) { alaerh_(path, "ZGBTRS", &info, &c__0, trans, &n, &n, &kl, &ku, & c_n1, &imat, &nfail, &nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &ldb, & work[1], &ldb); zgbt02_(trans, &m, &n, &kl, &ku, &nrhs, & a[1], &lda, &x[1], &ldb, &work[1], &ldb, &result[1]); /* + TEST 3: */ /* Check solution from generated exact */ /* solution. */ zget04_(&n, &nrhs, &x[1], &ldb, &xact[1], &ldb, &rcondc, &result[2]); /* + TESTS 4, 5, 6: */ /* Use iterative refinement to improve the */ /* solution. */ s_copy(srnamc_1.srnamt, "ZGBRFS", (ftnlen) 6, (ftnlen)6); zgbrfs_(trans, &n, &kl, &ku, &nrhs, &a[1], &lda, &afac[1], &ldafac, &iwork[ 1], &b[1], &ldb, &x[1], &ldb, & rwork[1], &rwork[nrhs + 1], &work[ 1], &rwork[(nrhs << 1) + 1], & info); /* Check error code from ZGBRFS. */ if (info != 0) { alaerh_(path, "ZGBRFS", &info, &c__0, trans, &n, &n, &kl, &ku, & nrhs, &imat, &nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &ldb, &xact[1], &ldb, &rcondc, &result[3]); zgbt05_(trans, &n, &kl, &ku, &nrhs, &a[1], &lda, &b[1], &ldb, &x[1], &ldb, & xact[1], &ldb, &rwork[1], &rwork[ nrhs + 1], &result[4]); /* Print information about the tests that did */ /* not pass the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___59.ciunit = *nout; s_wsfe(&io___59); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrhs, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += 5; /* L70: */ } /* L80: */ } /* + TEST 7: */ /* Get an estimate of RCOND = 1/CNDNUM. */ L90: for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { anorm = anormo; rcondc = rcondo; *(unsigned char *)norm = 'O'; } else { anorm = anormi; rcondc = rcondi; *(unsigned char *)norm = 'I'; } s_copy(srnamc_1.srnamt, "ZGBCON", (ftnlen)6, ( ftnlen)6); zgbcon_(norm, &n, &kl, &ku, &afac[1], &ldafac, &iwork[1], &anorm, &rcond, &work[1], &rwork[1], &info); /* Check error code from ZGBCON. */ if (info != 0) { alaerh_(path, "ZGBCON", &info, &c__0, norm, &n, &n, &kl, &ku, &c_n1, & imat, &nfail, &nerrs, nout); } result[6] = dget06_(&rcond, &rcondc); /* Print information about the tests that did */ /* not pass the threshold. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___61.ciunit = *nout; s_wsfe(&io___61); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L100: */ } L110: ; } L120: ; } L130: ; } /* L140: */ } /* L150: */ } /* L160: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKGB */ } /* zchkgb_ */
/* Subroutine */ int zchkql_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nxval, integer *nrhs, doublereal *thresh, logical *tsterr, integer * nmax, doublecomplex *a, doublecomplex *af, doublecomplex *aq, doublecomplex *al, doublecomplex *ac, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *tau, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i" "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes" "t(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Local variables */ integer i__, k, m, n, nb, ik, im, in, kl, nk, ku, nt, nx, lda, inb, mode, imat, info; char path[3]; integer kval[4]; char dist[1], type__[1]; integer nrun; integer nfail, iseed[4]; doublereal anorm; integer minmn, nerrs; integer lwork; doublereal cndnum; doublereal result[8]; /* Fortran I/O blocks */ static cilist io___33 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKQL tests ZGEQLF, ZUNGQL and CUNMQL. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB and NX contained in the */ /* vectors NBVAL and NXVAL. The blocking parameters are used */ /* in pairs (NB,NX). */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NXVAL (input) INTEGER array, dimension (NNB) */ /* The values of the crossover point NX. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for M or N, used in dimensioning */ /* the work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AQ (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AL (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* TAU (workspace) COMPLEX*16 array, dimension (NMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --tau; --xact; --x; --b; --ac; --al; --aq; --af; --a; --nxval; --nbval; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "QL", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrql_(path, nout); } infoc_1.infot = 0; xlaenv_(&c__2, &c__2); lda = *nmax; lwork = *nmax * max(*nmax,*nrhs); /* Do for each value of M in MVAL. */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; /* Do for each value of N in NVAL. */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; minmn = min(m,n); for (imat = 1; imat <= 8; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L50; } /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6); zlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, & work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &m, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L50; } /* Set some values for K: the first value must be MINMN, */ /* corresponding to the call of ZQLT01; other values are */ /* used in the calls of ZQLT02, and must not exceed MINMN. */ kval[0] = minmn; kval[1] = 0; kval[2] = 1; kval[3] = minmn / 2; if (minmn == 0) { nk = 1; } else if (minmn == 1) { nk = 2; } else if (minmn <= 3) { nk = 3; } else { nk = 4; } /* Do for each value of K in KVAL */ i__3 = nk; for (ik = 1; ik <= i__3; ++ik) { k = kval[ik - 1]; /* Do for each pair of values (NB,NX) in NBVAL and NXVAL. */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); for (i__ = 1; i__ <= 8; ++i__) { result[i__ - 1] = 0.; } nt = 2; if (ik == 1) { /* Test ZGEQLF */ zqlt01_(&m, &n, &a[1], &af[1], &aq[1], &al[1], & lda, &tau[1], &work[1], &lwork, &rwork[1], result); if (m >= n) { /* Check the lower-left n-by-n corner */ if (! zgennd_(&n, &n, &af[m - n + 1], &lda)) { result[7] = *thresh * 2; } } else { /* Check the (n-m)th superdiagonal */ if (! zgennd_(&m, &m, &af[(n - m) * lda + 1], &lda)) { result[7] = *thresh * 2; } } } else if (m >= n) { /* Test ZUNGQL, using factorization */ /* returned by ZQLT01 */ zqlt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &al[1], &lda, &tau[1], &work[1], &lwork, &rwork[ 1], result); } else { result[0] = 0.; result[1] = 0.; } if (m >= k) { /* Test ZUNMQL, using factorization returned */ /* by ZQLT01 */ zqlt03_(&m, &n, &k, &af[1], &ac[1], &al[1], &aq[1] , &lda, &tau[1], &work[1], &lwork, &rwork[ 1], &result[2]); nt += 4; /* If M>=N and K=N, call ZGEQLS to solve a system */ /* with NRHS right hand sides and compute the */ /* residual. */ if (k == n && inb == 1) { /* Generate a solution and set the right */ /* hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen)6); zlarhs_(path, "New", "Full", "No transpose", & m, &n, &c__0, &c__0, nrhs, &a[1], & lda, &xact[1], &lda, &b[1], &lda, iseed, &info); zlacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZGEQLS", (ftnlen)32, (ftnlen)6); zgeqls_(&m, &n, nrhs, &af[1], &lda, &tau[1], & x[1], &lda, &work[1], &lwork, &info); /* Check error code from ZGEQLS. */ if (info != 0) { alaerh_(path, "ZGEQLS", &info, &c__0, " ", &m, &n, nrhs, &c_n1, &nb, & imat, &nfail, &nerrs, nout); } zget02_("No transpose", &m, &n, nrhs, &a[1], & lda, &x[m - n + 1], &lda, &b[1], &lda, &rwork[1], &result[6]); ++nt; } else { result[6] = 0.; } } else { result[2] = 0.; result[3] = 0.; result[4] = 0.; result[5] = 0.; } /* Print information about the tests that did not */ /* pass the threshold. */ i__5 = nt; for (i__ = 1; i__ <= i__5; ++i__) { if (result[i__ - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___33.ciunit = *nout; s_wsfe(&io___33); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nx, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[i__ - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += nt; /* L30: */ } /* L40: */ } L50: ; } /* L60: */ } /* L70: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKQL */ } /* zchkql_ */
/* Subroutine */ int zchktr_(logical *dotype, integer *nn, integer *nval, integer *nnb, integer *nbval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer * nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', DIAG='\002,a1,\002'" ", N=\002,i5,\002, NB=\002,i4,\002, type \002,i2,\002, test(\002," "i2,\002)= \002,g12.5)"; static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002" "', DIAG='\002,a1,\002', N=\002,i5,\002, NB=\002,i4,\002, type" " \002,i2,\002, test(\002,i2,\002)= \002,g12" ".5)"; static char fmt_9997[] = "(\002 NORM='\002,a1,\002', UPLO ='\002,a1,\002" "', N=\002,i5,\002,\002,11x,\002 type \002,i2,\002, test(\002,i2" ",\002)=\002,g12.5)"; static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002', '\002,a1,\002',\002,i5,\002, ... ), type \002,i2," "\002, test(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2], a__2[3], a__3[4]; integer i__1, i__2, i__3[2], i__4, i__5[3], i__6[4]; char ch__1[2], ch__2[3], ch__3[4]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *, char **, integer *, integer *, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, n, nb, in, lda, inb; char diag[1]; integer imat, info; char path[3]; integer irhs, nrhs; char norm[1], uplo[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer idiag; doublereal scale; integer nfail, iseed[4]; extern logical lsame_(char *, char *); doublereal rcond, anorm; integer itran; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); char trans[1]; integer iuplo, nerrs; doublereal dummy; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), ztrt01_(char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *), ztrt02_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *), ztrt03_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *); char xtype[1]; extern /* Subroutine */ int ztrt05_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *), ztrt06_(doublereal *, doublereal *, char *, char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc, rcondi; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); doublereal rcondo, ainvnm; extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *); extern doublereal zlantr_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal result[9]; extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *, integer *), zlattr_(integer *, char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublereal *, integer *), ztrcon_(char *, char *, char *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, doublereal *, integer *), zerrtr_(char *, integer *), ztrrfs_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), ztrtri_(char *, char *, integer *, doublecomplex *, integer *, integer *), ztrtrs_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___27 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9996, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKTR tests ZTRTRI, -TRS, -RFS, and -CON, and ZLATRS */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The leading dimension of the work arrays. */ /* NMAX >= the maximum value of N in NVAL. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AINV (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --xact; --x; --b; --ainv; --a; --nsval; --nbval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "TR", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrtr_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL */ n = nval[in]; lda = max(1,n); *(unsigned char *)xtype = 'N'; for (imat = 1; imat <= 10; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L80; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Call ZLATTR to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "ZLATTR", (ftnlen)32, (ftnlen)6); zlattr_(&imat, uplo, "No transpose", diag, iseed, &n, &a[1], & lda, &x[1], &work[1], &rwork[1], &info); /* Set IDIAG = 1 for non-unit matrices, 2 for unit. */ if (lsame_(diag, "N")) { idiag = 1; } else { idiag = 2; } i__2 = *nnb; for (inb = 1; inb <= i__2; ++inb) { /* Do for each blocksize in NBVAL */ nb = nbval[inb]; xlaenv_(&c__1, &nb); /* + TEST 1 */ /* Form the inverse of A. */ zlacpy_(uplo, &n, &n, &a[1], &lda, &ainv[1], &lda); s_copy(srnamc_1.srnamt, "ZTRTRI", (ftnlen)32, (ftnlen)6); ztrtri_(uplo, diag, &n, &ainv[1], &lda, &info); /* Check error code from ZTRTRI. */ if (info != 0) { /* Writing concatenation */ i__3[0] = 1, a__1[0] = uplo; i__3[1] = 1, a__1[1] = diag; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); alaerh_(path, "ZTRTRI", &info, &c__0, ch__1, &n, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } /* Compute the infinity-norm condition number of A. */ anorm = zlantr_("I", uplo, diag, &n, &n, &a[1], &lda, & rwork[1]); ainvnm = zlantr_("I", uplo, diag, &n, &n, &ainv[1], &lda, &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anorm / ainvnm; } /* Compute the residual for the triangular matrix times */ /* its inverse. Also compute the 1-norm condition number */ /* of A. */ ztrt01_(uplo, diag, &n, &a[1], &lda, &ainv[1], &lda, & rcondo, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___27.ciunit = *nout; s_wsfe(&io___27); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* Skip remaining tests if not the first block size. */ if (inb != 1) { goto L60; } i__4 = *nns; for (irhs = 1; irhs <= i__4; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } /* + TEST 2 */ /* Solve and compute residual for op(A)*x = b. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, ( ftnlen)6); zlarhs_(path, xtype, uplo, trans, &n, &n, &c__0, & idiag, &nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "ZTRTRS", (ftnlen)32, ( ftnlen)6); ztrtrs_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &x[1], &lda, &info); /* Check error code from ZTRTRS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = uplo; i__5[1] = 1, a__2[1] = trans; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "ZTRTRS", &info, &c__0, ch__2, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } /* This line is needed on a Sun SPARCstation. */ if (n > 0) { dummy = a[1].r; } ztrt02_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &x[1], &lda, &b[1], &lda, &work[1], & rwork[1], &result[1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution */ /* and compute error bounds. */ s_copy(srnamc_1.srnamt, "ZTRRFS", (ftnlen)32, ( ftnlen)6); ztrrfs_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[1], &lda, &rwork[1], & rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from ZTRRFS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = uplo; i__5[1] = 1, a__2[1] = trans; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "ZTRRFS", &info, &c__0, ch__2, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); ztrt05_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not */ /* pass the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += 5; /* L30: */ } /* L40: */ } /* + TEST 7 */ /* Get an estimate of RCOND = 1/CNDNUM. */ for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } s_copy(srnamc_1.srnamt, "ZTRCON", (ftnlen)32, (ftnlen) 6); ztrcon_(norm, uplo, diag, &n, &a[1], &lda, &rcond, & work[1], &rwork[1], &info); /* Check error code from ZTRCON. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = norm; i__5[1] = 1, a__2[1] = uplo; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "ZTRCON", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } ztrt06_(&rcond, &rcondc, uplo, diag, &n, &a[1], &lda, &rwork[1], &result[6]); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L50: */ } L60: ; } /* L70: */ } L80: ; } /* Use pathological test matrices to test ZLATRS. */ for (imat = 11; imat <= 18; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L110; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, and A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; /* Call ZLATTR to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "ZLATTR", (ftnlen)32, (ftnlen)6); zlattr_(&imat, uplo, trans, diag, iseed, &n, &a[1], &lda, &x[1], &work[1], &rwork[1], &info); /* + TEST 8 */ /* Solve the system op(A)*x = b. */ s_copy(srnamc_1.srnamt, "ZLATRS", (ftnlen)32, (ftnlen)6); zcopy_(&n, &x[1], &c__1, &b[1], &c__1); zlatrs_(uplo, trans, diag, "N", &n, &a[1], &lda, &b[1], & scale, &rwork[1], &info); /* Check error code from ZLATRS. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__3[0] = uplo; i__6[1] = 1, a__3[1] = trans; i__6[2] = 1, a__3[2] = diag; i__6[3] = 1, a__3[3] = "N"; s_cat(ch__3, a__3, i__6, &c__4, (ftnlen)4); alaerh_(path, "ZLATRS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } ztrt03_(uplo, trans, diag, &n, &c__1, &a[1], &lda, &scale, &rwork[1], &c_b99, &b[1], &lda, &x[1], &lda, & work[1], &result[7]); /* + TEST 9 */ /* Solve op(A)*X = b again with NORMIN = 'Y'. */ zcopy_(&n, &x[1], &c__1, &b[n + 1], &c__1); zlatrs_(uplo, trans, diag, "Y", &n, &a[1], &lda, &b[n + 1] , &scale, &rwork[1], &info); /* Check error code from ZLATRS. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__3[0] = uplo; i__6[1] = 1, a__3[1] = trans; i__6[2] = 1, a__3[2] = diag; i__6[3] = 1, a__3[3] = "Y"; s_cat(ch__3, a__3, i__6, &c__4, (ftnlen)4); alaerh_(path, "ZLATRS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } ztrt03_(uplo, trans, diag, &n, &c__1, &a[1], &lda, &scale, &rwork[1], &c_b99, &b[n + 1], &lda, &x[1], &lda, &work[1], &result[8]); /* Print information about the tests that did not pass */ /* the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___40.ciunit = *nout; s_wsfe(&io___40); do_fio(&c__1, "ZLATRS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } if (result[8] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, "ZLATRS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "Y", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__9, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[8], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } nrun += 2; /* L90: */ } /* L100: */ } L110: ; } /* L120: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKTR */ } /* zchktr_ */
/* Subroutine */ int zchkpo_(logical *dotype, integer *nn, integer *nval, integer *nnb, integer *nbval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio " "=\002,g12.5)"; static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g" "12.5)"; static char fmt_9997[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002" ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)" ; /* System generated locals */ integer i__1, i__2, i__3, i__4; /* Local variables */ integer i__, k, n, nb, in, kl, ku, lda, inb, ioff, mode, imat, info; char path[3], dist[1]; integer irhs, nrhs; char uplo[1], type__[1]; integer nrun; integer nfail, iseed[4]; doublereal rcond; integer nimat; doublereal anorm; integer iuplo, izero, nerrs; logical zerot; char xtype[1]; doublereal rcondc; doublereal cndnum; doublereal result[8]; /* Fortran I/O blocks */ static cilist io___33 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKPO tests ZPOTRF, -TRI, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NBVAL) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AFAC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AINV (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX+2*NSMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nbval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PO", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrpo_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 9; if (n <= 0) { nimat = 1; } izero = 0; i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L110; } /* Skip types 3, 4, or 5 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 5; if (zerot && n < imat - 2) { goto L110; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } /* For types 3-5, zero one row and column of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; /* Set row and column IZERO of A to 0. */ if (iuplo == 1) { i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ i__3 = lda + 1; zlaipd_(&n, &a[1], &i__3, &c__0); /* Do for each value of NB in NBVAL */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the L*L' or U'*U factorization of the matrix. */ zlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)32, (ftnlen)6); zpotrf_(uplo, &n, &afac[1], &lda, &info); /* Check error code from ZPOTRF. */ if (info != izero) { alaerh_(path, "ZPOTRF", &info, &izero, uplo, &n, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); goto L90; } /* Skip the tests if INFO is not 0. */ if (info != 0) { goto L90; } /* + TEST 1 */ /* Reconstruct matrix from factors and compute residual. */ zlacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda); zpot01_(uplo, &n, &a[1], &lda, &ainv[1], &lda, &rwork[1], result); /* + TEST 2 */ /* Form the inverse and compute the residual. */ zlacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda); s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)32, (ftnlen)6); zpotri_(uplo, &n, &ainv[1], &lda, &info); /* Check error code from ZPOTRI. */ if (info != 0) { alaerh_(path, "ZPOTRI", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } zpot03_(uplo, &n, &a[1], &lda, &ainv[1], &lda, &work[1], & lda, &rwork[1], &rcondc, &result[1]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 1; k <= 2; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___33.ciunit = *nout; s_wsfe(&io___33); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += 2; /* Skip the rest of the tests unless this is the first */ /* blocksize. */ if (inb != 1) { goto L90; } i__4 = *nns; for (irhs = 1; irhs <= i__4; ++irhs) { nrhs = nsval[irhs]; /* + TEST 3 */ /* Solve and compute residual for A * X = B . */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen) 6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, & nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)32, (ftnlen) 6); zpotrs_(uplo, &n, &nrhs, &afac[1], &lda, &x[1], &lda, &info); /* Check error code from ZPOTRS. */ if (info != 0) { alaerh_(path, "ZPOTRS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], & lda); zpot02_(uplo, &n, &nrhs, &a[1], &lda, &x[1], &lda, & work[1], &lda, &rwork[1], &result[2]); /* + TEST 4 */ /* Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); /* + TESTS 5, 6, and 7 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)32, (ftnlen) 6); zporfs_(uplo, &n, &nrhs, &a[1], &lda, &afac[1], &lda, &b[1], &lda, &x[1], &lda, &rwork[1], &rwork[ nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from ZPORFS. */ if (info != 0) { alaerh_(path, "ZPORFS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[4]); zpot05_(uplo, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], &rwork[ nrhs + 1], &result[5]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L70: */ } nrun += 5; /* L80: */ } /* + TEST 8 */ /* Get an estimate of RCOND = 1/CNDNUM. */ anorm = zlanhe_("1", uplo, &n, &a[1], &lda, &rwork[1]); s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)32, (ftnlen)6); zpocon_(uplo, &n, &afac[1], &lda, &anorm, &rcond, &work[1] , &rwork[1], &info); /* Check error code from ZPOCON. */ if (info != 0) { alaerh_(path, "ZPOCON", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[7] = dget06_(&rcond, &rcondc); /* Print the test ratio if it is .GE. THRESH. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; L90: ; } L100: ; } L110: ; } /* L120: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKPO */ } /* zchkpo_ */
/* Subroutine */ int zdrvsp_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char facts[1*2] = "F" "N"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a" "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, " "ratio =\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6[2]; char ch__1[2]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static char fact[1]; static integer ioff, mode, imat, info; static char path[3], dist[1], uplo[1], type__[1]; static integer nrun, i__, j, k, n, ifact, nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); static integer nbmin; static doublereal rcond; static integer nimat; static doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); static integer iuplo, izero, i1, i2, k1, nerrs; extern /* Subroutine */ int zspt01_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zppt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); static logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zspt02_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); static char xtype[1]; extern /* Subroutine */ int zspsv_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *); static integer nb, in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer ku, nt; static doublereal rcondc; static char packit[1]; extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *); static doublereal cndnum, ainvnm; extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); extern doublereal zlansp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *), zlatsp_(char *, integer *, doublecomplex *, integer *); static doublereal result[6]; extern /* Subroutine */ int zsptrf_(char *, integer *, doublecomplex *, integer *, integer *), zsptri_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zerrvx_(char *, integer *), zspsvx_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); static integer lda, npp; /* Fortran I/O blocks */ static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZDRVSP tests the driver routines ZSPSV and -SVX. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix dimension N. NRHS (input) INTEGER The number of right hand side vectors to be generated for each linear system. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for N, used in dimensioning the work arrays. A (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) AFAC (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) AINV (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) WORK (workspace) COMPLEX*16 array, dimension (NMAX*max(2,NRHS)) RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "SP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); npp = n * (n + 1) / 2; *(unsigned char *)xtype = 'N'; nimat = 11; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L170; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L170; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { if (iuplo == 1) { *(unsigned char *)uplo = 'U'; *(unsigned char *)packit = 'C'; } else { *(unsigned char *)uplo = 'L'; *(unsigned char *)packit = 'R'; } if (imat != 11) { /* Set up parameters with ZLATB4 and generate a test matrix with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, & mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, & work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L160; } /* For types 3-6, zero one or more rows and columns of the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { if (iuplo == 1) { /* Set the first IZERO rows and columns to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L60: */ } ioff += j; /* L70: */ } } else { /* Set the last IZERO rows and columns to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L80: */ } ioff = ioff + n - j; /* L90: */ } } } } else { izero = 0; } } else { /* Use a special block diagonal matrix to test alternate code for the 2-by-2 blocks. */ zlatsp_(uplo, &n, &a[1], iseed); } for (ifact = 1; ifact <= 2; ++ifact) { /* Do first for FACT = 'F', then for other values. */ *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 1]; /* Compute the condition number for comparison with the value returned by ZSPSVX. */ if (zerot) { if (ifact == 1) { goto L150; } rcondc = 0.; } else if (ifact == 1) { /* Compute the 1-norm of A. */ anorm = zlansp_("1", uplo, &n, &a[1], &rwork[1]); /* Factor the matrix A. */ zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); zsptrf_(uplo, &n, &afac[1], &iwork[1], &info); /* Compute inv(A) and take its norm. */ zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1); zsptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], & info); ainvnm = zlansp_("1", uplo, &n, &ainv[1], &rwork[1]); /* Compute the 1-norm condition number of A. */ if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, & a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, & info); *(unsigned char *)xtype = 'C'; /* --- Test ZSPSV --- */ if (ifact == 2) { zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); /* Factor the matrix and solve the system using ZSPSV. */ s_copy(srnamc_1.srnamt, "ZSPSV ", (ftnlen)6, (ftnlen) 6); zspsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], & lda, &info); /* Adjust the expected value of INFO to account for pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from ZSPSV . */ if (info != k) { alaerh_(path, "ZSPSV ", &info, &k, uplo, &n, &n, & c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L120; } else if (info != 0) { goto L120; } /* Reconstruct matrix from factors and compute residual. */ zspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1] , &lda, &rwork[1], result); /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); zspt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not pass the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, "ZSPSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; L120: ; } /* --- Test ZSPSVX --- */ if (ifact == 2 && npp > 0) { zlaset_("Full", &npp, &c__1, &c_b61, &c_b61, &afac[1], &npp); } zlaset_("Full", &n, nrhs, &c_b61, &c_b61, &x[1], &lda); /* Solve the system and compute the condition number and error bounds using ZSPSVX. */ s_copy(srnamc_1.srnamt, "ZSPSVX", (ftnlen)6, (ftnlen)6); zspsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], & rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info); /* Adjust the expected value of INFO to account for pivoting. */ k = izero; if (k > 0) { L130: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L130; } } else if (iwork[k] != k) { k = iwork[k]; goto L130; } } /* Check the error code from ZSPSVX. */ if (info != k) { /* Writing concatenation */ i__6[0] = 1, a__1[0] = fact; i__6[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2); alaerh_(path, "ZSPSVX", &info, &k, ch__1, &n, &n, & c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L150; } if (info == 0) { if (ifact >= 2) { /* Reconstruct matrix from factors and compute residual. */ zspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], & ainv[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); zspt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* Check the error bounds from iterative refinement. */ zppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], & lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from ZSPSVX with the computed value in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, "ZSPSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L140: */ } nrun = nrun + 7 - k1; L150: ; } L160: ; } L170: ; } /* L180: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVSP */ } /* zdrvsp_ */
/* Subroutine */ int zchktb_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *ab, doublecomplex *ainv, doublecomplex * b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002" "', DIAG='\002,a1,\002', N=\002,i5,\002, K" "D=\002,i5,\002, NRHS=\002,i5,\002, type \002,i2,\002, test(\002," "i2,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002',\002,i5,\002,\002,i5,\002, ... ), type \002,i2" ",\002, test(\002,i2,\002)=\002,g12.5)"; static char fmt_9997[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002', '\002,a1,\002',\002,i5,\002,\002,i5,\002, ... )" ", type \002,i2,\002, test(\002,i1,\002)=\002,g12.5)"; /* System generated locals */ address a__1[3], a__2[4]; integer i__1, i__2, i__3, i__4, i__5, i__6[3], i__7[4]; char ch__1[3], ch__2[4]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *, char **, integer *, integer *, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer ldab; static char diag[1]; static integer imat, info; static char path[3]; static integer irhs, nrhs; static char norm[1], uplo[1]; static integer nrun, i__, j, k; extern /* Subroutine */ int alahd_(integer *, char *); static integer idiag, n; static doublereal scale; static integer nfail, iseed[4]; extern logical lsame_(char *, char *); static doublereal rcond; static integer nimat; static doublereal anorm; static integer itran; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ), ztbt02_(char *, char *, char *, integer *, integer *, integer * , doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *), ztbt03_(char *, char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *); static char trans[1]; static integer iuplo, nerrs; extern /* Subroutine */ int ztbt05_(char *, char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer * , doublereal *, doublereal *, doublereal *), ztbt06_(doublereal *, doublereal *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), ztbsv_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static char xtype[1]; static integer nimat2, kd, ik, in, nk; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static doublereal rcondc, rcondi; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); static doublereal rcondo, ainvnm; extern doublereal zlantb_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zlatbs_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *, integer *), zlattb_(integer *, char *, char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublereal *, integer *) , ztbcon_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); extern doublereal zlantr_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int ztbrfs_(char *, char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * , doublecomplex *, doublereal *, integer *); static doublereal result[8]; extern /* Subroutine */ int zerrtr_(char *, integer *), ztbtrs_( char *, char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); static integer lda; /* Fortran I/O blocks */ static cilist io___39 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University December 3, 1999 Purpose ======= ZCHKTB tests ZTBTRS, -RFS, and -CON, and ZLATBS. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The leading dimension of the work arrays. NMAX >= the maximum value of N in NVAL. AB (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) AINV (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) WORK (workspace) COMPLEX*16 array, dimension (NMAX*max(3,NSMAX)) RWORK (workspace) DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX)) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --rwork; --work; --xact; --x; --b; --ainv; --ab; --nsval; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "TB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrtr_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL */ n = nval[in]; lda = max(1,n); *(unsigned char *)xtype = 'N'; nimat = 9; nimat2 = 17; if (n <= 0) { nimat = 1; nimat2 = 10; } /* Computing MIN */ i__2 = n + 1; nk = min(i__2,4); i__2 = nk; for (ik = 1; ik <= i__2; ++ik) { /* Do for KD = 0, N, (3N-1)/4, and (N+1)/4. This order makes it easier to skip redundant values for small values of N. */ if (ik == 1) { kd = 0; } else if (ik == 2) { kd = max(n,0); } else if (ik == 3) { kd = (n * 3 - 1) / 4; } else if (ik == 4) { kd = (n + 1) / 4; } ldab = kd + 1; i__3 = nimat; for (imat = 1; imat <= i__3; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L90; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Call ZLATTB to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "ZLATTB", (ftnlen)6, (ftnlen)6); zlattb_(&imat, uplo, "No transpose", diag, iseed, &n, &kd, &ab[1], &ldab, &x[1], &work[1], &rwork[1], &info); /* Set IDIAG = 1 for non-unit matrices, 2 for unit. */ if (lsame_(diag, "N")) { idiag = 1; } else { idiag = 2; } /* Form the inverse of A so we can get a good estimate of RCONDC = 1/(norm(A) * norm(inv(A))). */ zlaset_("Full", &n, &n, &c_b14, &c_b15, &ainv[1], &lda); if (lsame_(uplo, "U")) { i__4 = n; for (j = 1; j <= i__4; ++j) { ztbsv_(uplo, "No transpose", diag, &j, &kd, &ab[1] , &ldab, &ainv[(j - 1) * lda + 1], &c__1); /* L20: */ } } else { i__4 = n; for (j = 1; j <= i__4; ++j) { i__5 = n - j + 1; ztbsv_(uplo, "No transpose", diag, &i__5, &kd, & ab[(j - 1) * ldab + 1], &ldab, &ainv[(j - 1) * lda + j], &c__1); /* L30: */ } } /* Compute the 1-norm condition number of A. */ anorm = zlantb_("1", uplo, diag, &n, &kd, &ab[1], &ldab, & rwork[1]); ainvnm = zlantr_("1", uplo, diag, &n, &n, &ainv[1], &lda, &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondo = 1.; } else { rcondo = 1. / anorm / ainvnm; } /* Compute the infinity-norm condition number of A. */ anorm = zlantb_("I", uplo, diag, &n, &kd, &ab[1], &ldab, & rwork[1]); ainvnm = zlantr_("I", uplo, diag, &n, &n, &ainv[1], &lda, &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anorm / ainvnm; } i__4 = *nns; for (irhs = 1; irhs <= i__4; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } /* + TEST 1 Solve and compute residual for op(A)*x = b. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, ( ftnlen)6); zlarhs_(path, xtype, uplo, trans, &n, &n, &kd, & idiag, &nrhs, &ab[1], &ldab, &xact[1], & lda, &b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "ZTBTRS", (ftnlen)6, ( ftnlen)6); ztbtrs_(uplo, trans, diag, &n, &kd, &nrhs, &ab[1], &ldab, &x[1], &lda, &info); /* Check error code from ZTBTRS. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__1[0] = uplo; i__6[1] = 1, a__1[1] = trans; i__6[2] = 1, a__1[2] = diag; s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)3); alaerh_(path, "ZTBTRS", &info, &c__0, ch__1, & n, &n, &kd, &kd, &nrhs, &imat, &nfail, &nerrs, nout); } ztbt02_(uplo, trans, diag, &n, &kd, &nrhs, &ab[1], &ldab, &x[1], &lda, &b[1], &lda, &work[1] , &rwork[1], result); /* + TEST 2 Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[1]); /* + TESTS 3, 4, and 5 Use iterative refinement to improve the solution and compute error bounds. */ s_copy(srnamc_1.srnamt, "ZTBRFS", (ftnlen)6, ( ftnlen)6); ztbrfs_(uplo, trans, diag, &n, &kd, &nrhs, &ab[1], &ldab, &b[1], &lda, &x[1], &lda, &rwork[ 1], &rwork[nrhs + 1], &work[1], &rwork[( nrhs << 1) + 1], &info); /* Check error code from ZTBRFS. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__1[0] = uplo; i__6[1] = 1, a__1[1] = trans; i__6[2] = 1, a__1[2] = diag; s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)3); alaerh_(path, "ZTBRFS", &info, &c__0, ch__1, & n, &n, &kd, &kd, &nrhs, &imat, &nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); ztbt05_(uplo, trans, diag, &n, &kd, &nrhs, &ab[1], &ldab, &b[1], &lda, &x[1], &lda, &xact[1] , &lda, &rwork[1], &rwork[nrhs + 1], & result[3]); /* Print information about the tests that did not pass the threshold. */ for (k = 1; k <= 5; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&kd, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L40: */ } nrun += 5; /* L50: */ } /* L60: */ } /* + TEST 6 Get an estimate of RCOND = 1/CNDNUM. */ for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } s_copy(srnamc_1.srnamt, "ZTBCON", (ftnlen)6, (ftnlen) 6); ztbcon_(norm, uplo, diag, &n, &kd, &ab[1], &ldab, & rcond, &work[1], &rwork[1], &info); /* Check error code from ZTBCON. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__1[0] = norm; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = diag; s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)3); alaerh_(path, "ZTBCON", &info, &c__0, ch__1, &n, & n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs, nout); } ztbt06_(&rcond, &rcondc, uplo, diag, &n, &kd, &ab[1], &ldab, &rwork[1], &result[5]); /* Print the test ratio if it is .GE. THRESH. */ if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, "ZTBCON", (ftnlen)6); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__6, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[5], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L70: */ } /* L80: */ } L90: ; } /* Use pathological test matrices to test ZLATBS. */ i__3 = nimat2; for (imat = 10; imat <= i__3; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, and A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[ itran - 1]; /* Call ZLATTB to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "ZLATTB", (ftnlen)6, (ftnlen) 6); zlattb_(&imat, uplo, trans, diag, iseed, &n, &kd, &ab[ 1], &ldab, &x[1], &work[1], &rwork[1], &info); /* + TEST 7 Solve the system op(A)*x = b */ s_copy(srnamc_1.srnamt, "ZLATBS", (ftnlen)6, (ftnlen) 6); zcopy_(&n, &x[1], &c__1, &b[1], &c__1); zlatbs_(uplo, trans, diag, "N", &n, &kd, &ab[1], & ldab, &b[1], &scale, &rwork[1], &info); /* Check error code from ZLATBS. */ if (info != 0) { /* Writing concatenation */ i__7[0] = 1, a__2[0] = uplo; i__7[1] = 1, a__2[1] = trans; i__7[2] = 1, a__2[2] = diag; i__7[3] = 1, a__2[3] = "N"; s_cat(ch__2, a__2, i__7, &c__4, (ftnlen)4); alaerh_(path, "ZLATBS", &info, &c__0, ch__2, &n, & n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs, nout); } ztbt03_(uplo, trans, diag, &n, &kd, &c__1, &ab[1], & ldab, &scale, &rwork[1], &c_b90, &b[1], &lda, &x[1], &lda, &work[1], &result[6]); /* + TEST 8 Solve op(A)*x = b again with NORMIN = 'Y'. */ zcopy_(&n, &x[1], &c__1, &b[1], &c__1); zlatbs_(uplo, trans, diag, "Y", &n, &kd, &ab[1], & ldab, &b[1], &scale, &rwork[1], &info); /* Check error code from ZLATBS. */ if (info != 0) { /* Writing concatenation */ i__7[0] = 1, a__2[0] = uplo; i__7[1] = 1, a__2[1] = trans; i__7[2] = 1, a__2[2] = diag; i__7[3] = 1, a__2[3] = "Y"; s_cat(ch__2, a__2, i__7, &c__4, (ftnlen)4); alaerh_(path, "ZLATBS", &info, &c__0, ch__2, &n, & n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs, nout); } ztbt03_(uplo, trans, diag, &n, &kd, &c__1, &ab[1], & ldab, &scale, &rwork[1], &c_b90, &b[1], &lda, &x[1], &lda, &work[1], &result[7]); /* Print information about the tests that did not pass the threshold. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___43.ciunit = *nout; s_wsfe(&io___43); do_fio(&c__1, "ZLATBS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, "ZLATBS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "Y", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } nrun += 2; /* L100: */ } /* L110: */ } L120: ; } /* L130: */ } /* L140: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKTB */ } /* zchktb_ */
/* Subroutine */ int zchksy_(logical *dotype, integer *nn, integer *nval, integer *nnb, integer *nbval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio " "=\002,g12.5)"; static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g" "12.5)"; static char fmt_9997[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002" ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)" ; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer ioff, mode, imat, info; static char path[3], dist[1]; static integer irhs, nrhs; static char uplo[1], type__[1]; static integer nrun, i__, j, k; extern /* Subroutine */ int alahd_(integer *, char *); static integer n, nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); static doublereal rcond; static integer nimat; static doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); static integer iuplo, izero, i1, i2, nerrs, lwork; extern /* Subroutine */ int zpot05_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); static logical zerot; static char xtype[1]; extern /* Subroutine */ int zsyt01_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zsyt02_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ), zsyt03_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *), zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *); static integer nb, in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer ku, nt; static doublereal rcondc; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); static doublereal cndnum; static logical trfcon; extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal result[8]; extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zsycon_(char *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *, doublecomplex *, integer *), zlatsy_(char *, integer *, doublecomplex *, integer *, integer *), zerrsy_(char *, integer *), zsyrfs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer * , doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zsytrf_(char *, integer *, doublecomplex *, integer *, integer *, doublecomplex * , integer *, integer *), zsytri_(char *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *), zsytrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); static integer lda, inb; /* Fortran I/O blocks */ static cilist io___39 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University December 7, 1999 Purpose ======= ZCHKSY tests ZSYTRF, -TRI, -TRS, -RFS, and -CON. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix dimension N. NNB (input) INTEGER The number of values of NB contained in the vector NBVAL. NBVAL (input) INTEGER array, dimension (NBVAL) The values of the blocksize NB. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for N, used in dimensioning the work arrays. A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) AFAC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) AINV (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) WORK (workspace) COMPLEX*16 array, dimension (NMAX*max(2,NSMAX)) RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NSMAX) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nbval; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrsy_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 11; if (n <= 0) { nimat = 1; } izero = 0; i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L170; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L170; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (imat != 11) { /* Set up parameters with ZLATB4 and generate a test matrix with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, & mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "N", &a[1], &lda, &work[ 1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L160; } /* For types 3-6, zero one or more rows and columns of the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * lda; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { if (iuplo == 1) { /* Set the first IZERO rows to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L60: */ } ioff += lda; /* L70: */ } } else { /* Set the last IZERO rows to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L80: */ } ioff += lda; /* L90: */ } } } } else { izero = 0; } } else { /* Use a special block diagonal matrix to test alternate code for the 2 x 2 blocks. */ zlatsy_(uplo, &n, &a[1], &lda, iseed); } /* Do for each value of NB in NBVAL */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the L*D*L' or U*D*U' factorization of the matrix. */ zlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); lwork = max(2,nb) * lda; s_copy(srnamc_1.srnamt, "ZSYTRF", (ftnlen)6, (ftnlen)6); zsytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &ainv[1], & lwork, &info); /* Adjust the expected value of INFO to account for pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from ZSYTRF. */ if (info != k) { alaerh_(path, "ZSYTRF", &info, &k, uplo, &n, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } if (info != 0) { trfcon = TRUE_; } else { trfcon = FALSE_; } /* + TEST 1 Reconstruct matrix from factors and compute residual. */ zsyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[1], &ainv[1], &lda, &rwork[1], result); nt = 1; /* + TEST 2 Form the inverse and compute the residual. */ if (inb == 1 && ! trfcon) { zlacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda); s_copy(srnamc_1.srnamt, "ZSYTRI", (ftnlen)6, (ftnlen) 6); zsytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1], &info); /* Check error code from ZSYTRI. */ if (info != 0) { alaerh_(path, "ZSYTRI", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } zsyt03_(uplo, &n, &a[1], &lda, &ainv[1], &lda, &work[ 1], &lda, &rwork[1], &rcondc, &result[1]); nt = 2; } /* Print information about the tests that did not pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; /* Skip the other tests if this is not the first block size. */ if (inb > 1) { goto L150; } /* Do only the condition estimate if INFO is not 0. */ if (trfcon) { rcondc = 0.; goto L140; } i__4 = *nns; for (irhs = 1; irhs <= i__4; ++irhs) { nrhs = nsval[irhs]; /* + TEST 3 Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen) 6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, & nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZSYTRS", (ftnlen)6, (ftnlen) 6); zsytrs_(uplo, &n, &nrhs, &afac[1], &lda, &iwork[1], & x[1], &lda, &info); /* Check error code from ZSYTRS. */ if (info != 0) { alaerh_(path, "ZSYTRS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], & lda); zsyt02_(uplo, &n, &nrhs, &a[1], &lda, &x[1], &lda, & work[1], &lda, &rwork[1], &result[2]); /* + TEST 4 Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); /* + TESTS 5, 6, and 7 Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "ZSYRFS", (ftnlen)6, (ftnlen) 6); zsyrfs_(uplo, &n, &nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], &b[1], &lda, &x[1], &lda, &rwork[1] , &rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from ZSYRFS. */ if (info != 0) { alaerh_(path, "ZSYRFS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[4]); zpot05_(uplo, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], &rwork[ nrhs + 1], &result[5]); /* Print information about the tests that did not pass the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L120: */ } nrun += 5; /* L130: */ } /* + TEST 8 Get an estimate of RCOND = 1/CNDNUM. */ L140: anorm = zlansy_("1", uplo, &n, &a[1], &lda, &rwork[1]); s_copy(srnamc_1.srnamt, "ZSYCON", (ftnlen)6, (ftnlen)6); zsycon_(uplo, &n, &afac[1], &lda, &iwork[1], &anorm, & rcond, &work[1], &info); /* Check error code from ZSYCON. */ if (info != 0) { alaerh_(path, "ZSYCON", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[7] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; L150: ; } L160: ; } L170: ; } /* L180: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKSY */ } /* zchksy_ */