int fmd_fmri_replaced(nvlist_t *nvl) { uint64_t pool_guid, vdev_guid; cbdata_t cb; int ret; (void) nvlist_lookup_uint64(nvl, FM_FMRI_ZFS_POOL, &pool_guid); cb.cb_guid = pool_guid; cb.cb_pool = NULL; if (zpool_iter(g_zfs, find_pool, &cb) != 1) return (FMD_OBJ_STATE_NOT_PRESENT); if (nvlist_lookup_uint64(nvl, FM_FMRI_ZFS_VDEV, &vdev_guid) != 0) { zpool_close(cb.cb_pool); return (FMD_OBJ_STATE_STILL_PRESENT); } ret = (find_vdev(cb.cb_pool, vdev_guid) != NULL) ? FMD_OBJ_STATE_STILL_PRESENT : FMD_OBJ_STATE_NOT_PRESENT; zpool_close(cb.cb_pool); return (ret); }
int fmd_fmri_present(nvlist_t *nvl) { uint64_t pool_guid, vdev_guid; cbdata_t cb; int ret; (void) nvlist_lookup_uint64(nvl, FM_FMRI_ZFS_POOL, &pool_guid); cb.cb_guid = pool_guid; cb.cb_pool = NULL; if (zpool_iter(g_zfs, find_pool, &cb) != 1) return (0); if (nvlist_lookup_uint64(nvl, FM_FMRI_ZFS_VDEV, &vdev_guid) != 0) { zpool_close(cb.cb_pool); return (1); } ret = (find_vdev(cb.cb_pool, vdev_guid) != NULL); zpool_close(cb.cb_pool); return (ret); }
int zfs_deliver_dle(nvlist_t *nvl) { char *devname; if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) { syseventd_print(9, "zfs_deliver_event: no physpath\n"); return (-1); } if (strncmp(devname, DEVICE_PREFIX, strlen(DEVICE_PREFIX)) != 0) { syseventd_print(9, "zfs_deliver_event: invalid " "device '%s'", devname); return (-1); } /* * We try to find the device using the physical * path that has been supplied. We need to strip off * the /devices prefix before starting our search. */ devname += strlen(DEVICE_PREFIX); if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) { syseventd_print(9, "zfs_deliver_event: device '%s' not" " found\n", devname); return (1); } return (0); }
/* * Given a /devices path, lookup the corresponding devid for each minor node, * and find any vdevs with matching devids. Doing this straight up would be * rather inefficient, O(minor nodes * vdevs in system), so we take advantage of * the fact that each devid ends with "/<minornode>". Once we find any valid * minor node, we chop off the portion after the last slash, and then search for * matching vdevs, which is O(vdevs in system). */ static boolean_t devid_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) { size_t len = strlen(devpath) + sizeof ("/devices") + sizeof (PHYS_PATH) - 1; char *fullpath; int fd; ddi_devid_t devid; char *devidstr, *fulldevid; dev_data_t data = { 0 }; /* * Try to open a known minor node. */ fullpath = alloca(len); (void) snprintf(fullpath, len, "/devices%s%s", devpath, PHYS_PATH); if ((fd = open(fullpath, O_RDONLY)) < 0) return (B_FALSE); /* * Determine the devid as a string, with no trailing slash for the minor * node. */ if (devid_get(fd, &devid) != 0) { (void) close(fd); return (B_FALSE); } (void) close(fd); if ((devidstr = devid_str_encode(devid, NULL)) == NULL) { devid_free(devid); return (B_FALSE); } len = strlen(devidstr) + 2; fulldevid = alloca(len); (void) snprintf(fulldevid, len, "%s/", devidstr); data.dd_compare = fulldevid; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_DEVID; data.dd_found = B_FALSE; data.dd_isdisk = wholedisk; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); devid_str_free(devidstr); devid_free(devid); return (data.dd_found); }
nvlist_t * zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) { verify(import->poolname == NULL || import->guid == 0); if (import->unique) import->exists = zpool_iter(hdl, name_or_guid_exists, import); if (import->cachefile != NULL) return (zpool_find_import_cached(hdl, import->cachefile, import->poolname, import->guid)); return (zpool_find_import_impl(hdl, import)); }
/* * Given a physical device path, iterate over all (pool, vdev) pairs which * correspond to the given path. */ static boolean_t devpath_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) { dev_data_t data = { 0 }; data.dd_compare = devpath; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; data.dd_found = B_FALSE; data.dd_isdisk = wholedisk; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); }
/* * Given a device identifier, find any vdevs with a matching devid. * On Linux we can match devid directly which is always a whole disk. */ static boolean_t devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice) { dev_data_t data = { 0 }; data.dd_compare = devid; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_DEVID; data.dd_found = B_FALSE; data.dd_islabeled = is_slice; data.dd_new_devid = devid; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); }
/* * Given a physical device location, iterate over all * (pool, vdev) pairs which correspond to that location. */ static boolean_t devphys_iter(const char *physical, const char *devid, zfs_process_func_t func, boolean_t is_slice) { dev_data_t data = { 0 }; data.dd_compare = physical; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; data.dd_found = B_FALSE; data.dd_islabeled = is_slice; data.dd_new_devid = devid; /* used by auto replace code */ (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); }
static void zfs_purge_cases(fmd_hdl_t *hdl) { zfs_case_t *zcp; uu_list_walk_t *walk; libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); /* * There is no way to open a pool by GUID, or lookup a vdev by GUID. No * matter what we do, we're going to have to stomach an O(vdevs * cases) * algorithm. In reality, both quantities are likely so small that * neither will matter. Given that iterating over pools is more * expensive than iterating over the in-memory case list, we opt for a * 'present' flag in each case that starts off cleared. We then iterate * over all pools, marking those that are still present, and removing * those that aren't found. * * Note that we could also construct an FMRI and rely on * fmd_nvl_fmri_present(), but this would end up doing the same search. */ /* * Mark the cases as not present. */ for (zcp = uu_list_first(zfs_cases); zcp != NULL; zcp = uu_list_next(zfs_cases, zcp)) zcp->zc_present = B_FALSE; /* * Iterate over all pools and mark the pools and vdevs found. If this * fails (most probably because we're out of memory), then don't close * any of the cases and we cannot be sure they are accurate. */ if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) return; /* * Remove those cases which were not found. */ walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); while ((zcp = uu_list_walk_next(walk)) != NULL) { if (!zcp->zc_present) fmd_case_close(hdl, zcp->zc_case); } uu_list_walk_end(walk); }
/* * This function handles the ESC_DEV_DLE event. */ static int zfs_deliver_dle(nvlist_t *nvl) { char *devname; if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) { zed_log_msg(LOG_INFO, "zfs_deliver_event: no physpath"); return (-1); } if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) { zed_log_msg(LOG_INFO, "zfs_deliver_event: device '%s' not " "found", devname); return (1); } return (0); }
/* * Called when we receive a VDEV_CHECK event, which indicates a device could not * be opened during initial pool open, but the autoreplace property was set on * the pool. In this case, we treat it as if it were an add event. */ static int zfs_deliver_check(nvlist_t *nvl) { dev_data_t data = { 0 }; if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &data.dd_pool_guid) != 0 || nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &data.dd_vdev_guid) != 0 || data.dd_vdev_guid == 0) return (0); data.dd_isdisk = B_TRUE; data.dd_func = zfs_process_add; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (0); }
/* * Called when we receive a VDEV_CHECK event, which indicates a device could not * be opened during initial pool open, but the autoreplace property was set on * the pool. In this case, we treat it as if it were an add event. */ static int zfs_deliver_check(nvlist_t *nvl) { dev_data_t data = { 0 }; if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &data.dd_pool_guid) != 0 || nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &data.dd_vdev_guid) != 0 || data.dd_vdev_guid == 0) return (0); zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu", data.dd_pool_guid, data.dd_vdev_guid); data.dd_func = zfs_process_add; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (0); }
/* * Create a list of pools based on the given arguments. If we're given no * arguments, then iterate over all pools in the system and add them to the AVL * tree. Otherwise, add only those pool explicitly specified on the command * line. */ zpool_list_t * pool_list_get(int argc, char **argv, zprop_list_t **proplist, int *err) { zpool_list_t *zlp; zlp = safe_malloc(sizeof (zpool_list_t)); zlp->zl_pool = uu_avl_pool_create("zfs_pool", sizeof (zpool_node_t), offsetof(zpool_node_t, zn_avlnode), zpool_compare, UU_DEFAULT); if (zlp->zl_pool == NULL) zpool_no_memory(); if ((zlp->zl_avl = uu_avl_create(zlp->zl_pool, NULL, UU_DEFAULT)) == NULL) zpool_no_memory(); zlp->zl_proplist = proplist; if (argc == 0) { (void) zpool_iter(g_zfs, add_pool, zlp); zlp->zl_findall = B_TRUE; } else { int i; for (i = 0; i < argc; i++) { zpool_handle_t *zhp; if ((zhp = zpool_open_canfail(g_zfs, argv[i])) != NULL) { if (add_pool(zhp, zlp) != 0) *err = B_TRUE; } else { *err = B_TRUE; } } } return (zlp); }
int fmd_fmri_unusable(nvlist_t *nvl) { uint64_t pool_guid, vdev_guid; cbdata_t cb; nvlist_t *vd; int ret; (void) nvlist_lookup_uint64(nvl, FM_FMRI_ZFS_POOL, &pool_guid); cb.cb_guid = pool_guid; cb.cb_pool = NULL; if (zpool_iter(g_zfs, find_pool, &cb) != 1) return (1); if (nvlist_lookup_uint64(nvl, FM_FMRI_ZFS_VDEV, &vdev_guid) != 0) { ret = (zpool_get_state(cb.cb_pool) == POOL_STATE_UNAVAIL); zpool_close(cb.cb_pool); return (ret); } vd = find_vdev(cb.cb_pool, vdev_guid); if (vd == NULL) { ret = 1; } else { vdev_stat_t *vs; uint_t c; (void) nvlist_lookup_uint64_array(vd, ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &c); ret = (vs->vs_state < VDEV_STATE_DEGRADED); } zpool_close(cb.cb_pool); return (ret); }
/* * This function handles the ESC_DEV_DLE device change event. Use the * provided vdev guid when looking up a disk or partition, when the guid * is not present assume the entire disk is owned by ZFS and append the * expected -part1 partition information then lookup by physical path. */ static int zfs_deliver_dle(nvlist_t *nvl) { char *devname, name[MAXPATHLEN]; uint64_t guid; if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { sprintf(name, "%llu", (u_longlong_t)guid); } else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) { strlcpy(name, devname, MAXPATHLEN); zfs_append_partition(name, MAXPATHLEN); } else { zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath"); } if (zpool_iter(g_zfshdl, zfsdle_vdev_online, name) != 1) { zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not " "found", name); return (1); } return (0); }
ssize_t fmd_fmri_nvl2str(nvlist_t *nvl, char *buf, size_t buflen) { uint64_t pool_guid, vdev_guid; cbdata_t cb; ssize_t len; const char *name; char guidbuf[64]; (void) nvlist_lookup_uint64(nvl, FM_FMRI_ZFS_POOL, &pool_guid); /* * Attempt to convert the pool guid to a name. */ cb.cb_guid = pool_guid; cb.cb_pool = NULL; if (zpool_iter(g_zfs, find_pool, &cb) == 1) { name = zpool_get_name(cb.cb_pool); } else { (void) snprintf(guidbuf, sizeof (guidbuf), "%llx", pool_guid); name = guidbuf; } if (nvlist_lookup_uint64(nvl, FM_FMRI_ZFS_VDEV, &vdev_guid) == 0) len = snprintf(buf, buflen, "%s://pool=%s/vdev=%llx", FM_FMRI_SCHEME_ZFS, name, vdev_guid); else len = snprintf(buf, buflen, "%s://pool=%s", FM_FMRI_SCHEME_ZFS, name); if (cb.cb_pool) zpool_close(cb.cb_pool); return (len); }
/* * Search for any new pools, adding them to the list. We only add pools when no * options were given on the command line. Otherwise, we keep the list fixed as * those that were explicitly specified. */ void pool_list_update(zpool_list_t *zlp) { if (zlp->zl_findall) (void) zpool_iter(g_zfs, add_pool, zlp); }
/* * Determines if the pool is in use. If so, it returns true and the state of * the pool as well as the name of the pool. Both strings are allocated and * must be freed by the caller. */ int zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, boolean_t *inuse) { nvlist_t *config; char *name; boolean_t ret; uint64_t guid, vdev_guid; zpool_handle_t *zhp; nvlist_t *pool_config; uint64_t stateval, isspare; aux_cbdata_t cb = { 0 }; boolean_t isactive; *inuse = B_FALSE; if (zpool_read_label(fd, &config, NULL) != 0 && errno == ENOMEM) { (void) no_memory(hdl); return (-1); } if (config == NULL) return (0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &stateval) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0); if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); } switch (stateval) { case POOL_STATE_EXPORTED: /* * A pool with an exported state may in fact be imported * read-only, so check the in-core state to see if it's * active and imported read-only. If it is, set * its state to active. */ if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && (zhp = zpool_open_canfail(hdl, name)) != NULL) { if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) stateval = POOL_STATE_ACTIVE; /* * All we needed the zpool handle for is the * readonly prop check. */ zpool_close(zhp); } ret = B_TRUE; break; case POOL_STATE_ACTIVE: /* * For an active pool, we have to determine if it's really part * of a currently active pool (in which case the pool will exist * and the guid will be the same), or whether it's part of an * active pool that was disconnected without being explicitly * exported. */ if (pool_active(hdl, name, guid, &isactive) != 0) { nvlist_free(config); return (-1); } if (isactive) { /* * Because the device may have been removed while * offlined, we only report it as active if the vdev is * still present in the config. Otherwise, pretend like * it's not in use. */ if ((zhp = zpool_open_canfail(hdl, name)) != NULL && (pool_config = zpool_get_config(zhp, NULL)) != NULL) { nvlist_t *nvroot; verify(nvlist_lookup_nvlist(pool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); ret = find_guid(nvroot, vdev_guid); } else { ret = B_FALSE; } /* * If this is an active spare within another pool, we * treat it like an unused hot spare. This allows the * user to create a pool with a hot spare that currently * in use within another pool. Since we return B_TRUE, * libdiskmgt will continue to prevent generic consumers * from using the device. */ if (ret && nvlist_lookup_uint64(config, ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) stateval = POOL_STATE_SPARE; if (zhp != NULL) zpool_close(zhp); } else { stateval = POOL_STATE_POTENTIALLY_ACTIVE; ret = B_TRUE; } break; case POOL_STATE_SPARE: /* * For a hot spare, it can be either definitively in use, or * potentially active. To determine if it's in use, we iterate * over all pools in the system and search for one with a spare * with a matching guid. * * Due to the shared nature of spares, we don't actually report * the potentially active case as in use. This means the user * can freely create pools on the hot spares of exported pools, * but to do otherwise makes the resulting code complicated, and * we end up having to deal with this case anyway. */ cb.cb_zhp = NULL; cb.cb_guid = vdev_guid; cb.cb_type = ZPOOL_CONFIG_SPARES; if (zpool_iter(hdl, find_aux, &cb) == 1) { name = (char *)zpool_get_name(cb.cb_zhp); ret = B_TRUE; } else { ret = B_FALSE; } break; case POOL_STATE_L2CACHE: /* * Check if any pool is currently using this l2cache device. */ cb.cb_zhp = NULL; cb.cb_guid = vdev_guid; cb.cb_type = ZPOOL_CONFIG_L2CACHE; if (zpool_iter(hdl, find_aux, &cb) == 1) { name = (char *)zpool_get_name(cb.cb_zhp); ret = B_TRUE; } else { ret = B_FALSE; } break; default: ret = B_FALSE; } if (ret) { if ((*namestr = zfs_strdup(hdl, name)) == NULL) { if (cb.cb_zhp) zpool_close(cb.cb_zhp); nvlist_free(config); return (-1); } *state = (pool_state_t)stateval; } if (cb.cb_zhp) zpool_close(cb.cb_zhp); nvlist_free(config); *inuse = ret; return (0); }