Example #1
1
/* Subroutine */ int zdrvpp_(logical *dotype, integer *nn, integer *nval,
                             integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax,
                             doublecomplex *a, doublecomplex *afac, doublecomplex *asav,
                             doublecomplex *b, doublecomplex *bsav, doublecomplex *x,
                             doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal *
                             rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char facts[1*3] = "F" "N" "E";
    static char packs[1*2] = "C" "R";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
                             ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
                             "1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1,\002"
                             ", test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
                             "1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
                             "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, k, n, k1, in, kl, ku, nt, lda, npp;
    char fact[1];
    integer ioff, mode;
    doublereal amax;
    char path[3];
    integer imat, info;
    char dist[1], uplo[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nfact;
    extern doublereal dget06_(doublereal *, doublereal *);
    extern logical lsame_(char *, char *);
    char equed[1];
    doublereal roldc, rcond, scond;
    integer nimat;
    doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
                                        integer *, doublecomplex *, integer *, doublereal *, doublereal *
                                       );
    logical equil;
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int zppt01_(char *, integer *, doublecomplex *,
                                        doublecomplex *, doublereal *, doublereal *), zppt02_(
                                            char *, integer *, integer *, doublecomplex *, doublecomplex *,
                                            integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
                                       doublecomplex *, integer *), zppt05_(char *, integer *, integer *,
                                               doublecomplex *, doublecomplex *, integer *, doublecomplex *,
                                               integer *, doublecomplex *, integer *, doublereal *, doublereal *,
                                               doublereal *);
    char xtype[1];
    extern /* Subroutine */ int zppsv_(char *, integer *, integer *,
                                       doublecomplex *, doublecomplex *, integer *, integer *),
                                                     zlatb4_(char *, integer *, integer *, integer *, char *, integer *
                                                             , integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *),
                                                     alaerh_(char *, char *, integer *, integer *, char *, integer *,
                                                             integer *, integer *, integer *, integer *, integer *, integer *,
                                                             integer *, integer *);
    logical prefac;
    doublereal rcondc;
    logical nofact;
    char packit[1];
    integer iequed;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer
                                        *, integer *);
    doublereal cndnum;
    extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *,
                                        integer *);
    doublereal ainvnm;
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *,
                              doublereal *);
    extern /* Subroutine */ int zlaqhp_(char *, integer *, doublecomplex *,
                                        doublereal *, doublereal *, doublereal *, char *),
                                                   zlacpy_(char *, integer *, integer *, doublecomplex *, integer *,
                                                           doublecomplex *, integer *), zlarhs_(char *, char *,
                                                                   char *, char *, integer *, integer *, integer *, integer *,
                                                                   integer *, doublecomplex *, integer *, doublecomplex *, integer *,
                                                                   doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *,
                                                                           doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *,
                                                                                   doublereal *, integer *, doublereal *, doublereal *, integer *,
                                                                                   integer *, char *, doublecomplex *, integer *, doublecomplex *,
                                                                                   integer *);
    doublereal result[6];
    extern /* Subroutine */ int zppequ_(char *, integer *, doublecomplex *,
                                        doublereal *, doublereal *, doublereal *, integer *),
                                                   zpptrf_(char *, integer *, doublecomplex *, integer *),
                                                   zpptri_(char *, integer *, doublecomplex *, integer *),
                                                   zerrvx_(char *, integer *), zppsvx_(char *, char *,
                                                           integer *, integer *, doublecomplex *, doublecomplex *, char *,
                                                           doublereal *, doublecomplex *, integer *, doublecomplex *,
                                                           integer *, doublereal *, doublereal *, doublereal *,
                                                           doublecomplex *, doublereal *, integer *);

    /* Fortran I/O blocks */
    static cilist io___49 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9998, 0 };



    /*  -- LAPACK test routine (version 3.1) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  ZDRVPP tests the driver routines ZPPSV and -SVX. */

    /*  Arguments */
    /*  ========= */

    /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
    /*          The matrix types to be used for testing.  Matrices of type j */
    /*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
    /*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

    /*  NN      (input) INTEGER */
    /*          The number of values of N contained in the vector NVAL. */

    /*  NVAL    (input) INTEGER array, dimension (NN) */
    /*          The values of the matrix dimension N. */

    /*  NRHS    (input) INTEGER */
    /*          The number of right hand side vectors to be generated for */
    /*          each linear system. */

    /*  THRESH  (input) DOUBLE PRECISION */
    /*          The threshold value for the test ratios.  A result is */
    /*          included in the output file if RESULT >= THRESH.  To have */
    /*          every test ratio printed, use THRESH = 0. */

    /*  TSTERR  (input) LOGICAL */
    /*          Flag that indicates whether error exits are to be tested. */

    /*  NMAX    (input) INTEGER */
    /*          The maximum value permitted for N, used in dimensioning the */
    /*          work arrays. */

    /*  A       (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */

    /*  AFAC    (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */

    /*  ASAV    (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */

    /*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

    /*  BSAV    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

    /*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

    /*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

    /*  S       (workspace) DOUBLE PRECISION array, dimension (NMAX) */

    /*  WORK    (workspace) COMPLEX*16 array, dimension */
    /*                      (NMAX*max(3,NRHS)) */

    /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */

    /*  NOUT    (input) INTEGER */
    /*          The unit number for output. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. Local Arrays .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Scalars in Common .. */
    /*     .. */
    /*     .. Common blocks .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
        iseed[i__ - 1] = iseedy[i__ - 1];
        /* L10: */
    }

    /*     Test the error exits */

    if (*tsterr) {
        zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

    /*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
        n = nval[in];
        lda = max(n,1);
        npp = n * (n + 1) / 2;
        *(unsigned char *)xtype = 'N';
        nimat = 9;
        if (n <= 0) {
            nimat = 1;
        }

        i__2 = nimat;
        for (imat = 1; imat <= i__2; ++imat) {

            /*           Do the tests only if DOTYPE( IMAT ) is true. */

            if (! dotype[imat]) {
                goto L130;
            }

            /*           Skip types 3, 4, or 5 if the matrix size is too small. */

            zerot = imat >= 3 && imat <= 5;
            if (zerot && n < imat - 2) {
                goto L130;
            }

            /*           Do first for UPLO = 'U', then for UPLO = 'L' */

            for (iuplo = 1; iuplo <= 2; ++iuplo) {
                *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
                *(unsigned char *)packit = *(unsigned char *)&packs[iuplo - 1]
                                           ;

                /*              Set up parameters with ZLATB4 and generate a test matrix */
                /*              with ZLATMS. */

                zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode,
                        &cndnum, dist);
                rcondc = 1. / cndnum;

                s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
                zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
                        cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
                            1], &info);

                /*              Check error code from ZLATMS. */

                if (info != 0) {
                    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1,
                            &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
                    goto L120;
                }

                /*              For types 3-5, zero one row and column of the matrix to */
                /*              test that INFO is returned correctly. */

                if (zerot) {
                    if (imat == 3) {
                        izero = 1;
                    } else if (imat == 4) {
                        izero = n;
                    } else {
                        izero = n / 2 + 1;
                    }

                    /*                 Set row and column IZERO of A to 0. */

                    if (iuplo == 1) {
                        ioff = (izero - 1) * izero / 2;
                        i__3 = izero - 1;
                        for (i__ = 1; i__ <= i__3; ++i__) {
                            i__4 = ioff + i__;
                            a[i__4].r = 0., a[i__4].i = 0.;
                            /* L20: */
                        }
                        ioff += izero;
                        i__3 = n;
                        for (i__ = izero; i__ <= i__3; ++i__) {
                            i__4 = ioff;
                            a[i__4].r = 0., a[i__4].i = 0.;
                            ioff += i__;
                            /* L30: */
                        }
                    } else {
                        ioff = izero;
                        i__3 = izero - 1;
                        for (i__ = 1; i__ <= i__3; ++i__) {
                            i__4 = ioff;
                            a[i__4].r = 0., a[i__4].i = 0.;
                            ioff = ioff + n - i__;
                            /* L40: */
                        }
                        ioff -= izero;
                        i__3 = n;
                        for (i__ = izero; i__ <= i__3; ++i__) {
                            i__4 = ioff + i__;
                            a[i__4].r = 0., a[i__4].i = 0.;
                            /* L50: */
                        }
                    }
                } else {
                    izero = 0;
                }

                /*              Set the imaginary part of the diagonals. */

                if (iuplo == 1) {
                    zlaipd_(&n, &a[1], &c__2, &c__1);
                } else {
                    zlaipd_(&n, &a[1], &n, &c_n1);
                }

                /*              Save a copy of the matrix A in ASAV. */

                zcopy_(&npp, &a[1], &c__1, &asav[1], &c__1);

                for (iequed = 1; iequed <= 2; ++iequed) {
                    *(unsigned char *)equed = *(unsigned char *)&equeds[
                                                  iequed - 1];
                    if (iequed == 1) {
                        nfact = 3;
                    } else {
                        nfact = 1;
                    }

                    i__3 = nfact;
                    for (ifact = 1; ifact <= i__3; ++ifact) {
                        *(unsigned char *)fact = *(unsigned char *)&facts[
                                                     ifact - 1];
                        prefac = lsame_(fact, "F");
                        nofact = lsame_(fact, "N");
                        equil = lsame_(fact, "E");

                        if (zerot) {
                            if (prefac) {
                                goto L100;
                            }
                            rcondc = 0.;

                        } else if (! lsame_(fact, "N"))
                        {

                            /*                       Compute the condition number for comparison with */
                            /*                       the value returned by ZPPSVX (FACT = 'N' reuses */
                            /*                       the condition number from the previous iteration */
                            /*                          with FACT = 'F'). */

                            zcopy_(&npp, &asav[1], &c__1, &afac[1], &c__1);
                            if (equil || iequed > 1) {

                                /*                          Compute row and column scale factors to */
                                /*                          equilibrate the matrix A. */

                                zppequ_(uplo, &n, &afac[1], &s[1], &scond, &
                                        amax, &info);
                                if (info == 0 && n > 0) {
                                    if (iequed > 1) {
                                        scond = 0.;
                                    }

                                    /*                             Equilibrate the matrix. */

                                    zlaqhp_(uplo, &n, &afac[1], &s[1], &scond,
                                            &amax, equed);
                                }
                            }

                            /*                       Save the condition number of the */
                            /*                       non-equilibrated system for use in ZGET04. */

                            if (equil) {
                                roldc = rcondc;
                            }

                            /*                       Compute the 1-norm of A. */

                            anorm = zlanhp_("1", uplo, &n, &afac[1], &rwork[1]
                                           );

                            /*                       Factor the matrix A. */

                            zpptrf_(uplo, &n, &afac[1], &info);

                            /*                       Form the inverse of A. */

                            zcopy_(&npp, &afac[1], &c__1, &a[1], &c__1);
                            zpptri_(uplo, &n, &a[1], &info);

                            /*                       Compute the 1-norm condition number of A. */

                            ainvnm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]);
                            if (anorm <= 0. || ainvnm <= 0.) {
                                rcondc = 1.;
                            } else {
                                rcondc = 1. / anorm / ainvnm;
                            }
                        }

                        /*                    Restore the matrix A. */

                        zcopy_(&npp, &asav[1], &c__1, &a[1], &c__1);

                        /*                    Form an exact solution and set the right hand side. */

                        s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)
                               6);
                        zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku,
                                nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
                                lda, iseed, &info);
                        *(unsigned char *)xtype = 'C';
                        zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

                        if (nofact) {

                            /*                       --- Test ZPPSV  --- */

                            /*                       Compute the L*L' or U'*U factorization of the */
                            /*                       matrix and solve the system. */

                            zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
                            zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
                                    lda);

                            s_copy(srnamc_1.srnamt, "ZPPSV ", (ftnlen)6, (
                                       ftnlen)6);
                            zppsv_(uplo, &n, nrhs, &afac[1], &x[1], &lda, &
                                   info);

                            /*                       Check error code from ZPPSV . */

                            if (info != izero) {
                                alaerh_(path, "ZPPSV ", &info, &izero, uplo, &
                                        n, &n, &c_n1, &c_n1, nrhs, &imat, &
                                        nfail, &nerrs, nout);
                                goto L70;
                            } else if (info != 0) {
                                goto L70;
                            }

                            /*                       Reconstruct matrix from factors and compute */
                            /*                       residual. */

                            zppt01_(uplo, &n, &a[1], &afac[1], &rwork[1],
                                    result);

                            /*                       Compute residual of the computed solution. */

                            zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
                                    lda);
                            zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[
                                        1], &lda, &rwork[1], &result[1]);

                            /*                       Check solution from generated exact solution. */

                            zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
                                    rcondc, &result[2]);
                            nt = 3;

                            /*                       Print information about the tests that did not */
                            /*                       pass the threshold. */

                            i__4 = nt;
                            for (k = 1; k <= i__4; ++k) {
                                if (result[k - 1] >= *thresh) {
                                    if (nfail == 0 && nerrs == 0) {
                                        aladhd_(nout, path);
                                    }
                                    io___49.ciunit = *nout;
                                    s_wsfe(&io___49);
                                    do_fio(&c__1, "ZPPSV ", (ftnlen)6);
                                    do_fio(&c__1, uplo, (ftnlen)1);
                                    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&imat, (ftnlen)
                                           sizeof(integer));
                                    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&result[k - 1], (
                                               ftnlen)sizeof(doublereal));
                                    e_wsfe();
                                    ++nfail;
                                }
                                /* L60: */
                            }
                            nrun += nt;
L70:
                            ;
                        }

                        /*                    --- Test ZPPSVX --- */

                        if (! prefac && npp > 0) {
                            zlaset_("Full", &npp, &c__1, &c_b63, &c_b63, &
                                    afac[1], &npp);
                        }
                        zlaset_("Full", &n, nrhs, &c_b63, &c_b63, &x[1], &lda);
                        if (iequed > 1 && n > 0) {

                            /*                       Equilibrate the matrix if FACT='F' and */
                            /*                       EQUED='Y'. */

                            zlaqhp_(uplo, &n, &a[1], &s[1], &scond, &amax,
                                    equed);
                        }

                        /*                    Solve the system and compute the condition number */
                        /*                    and error bounds using ZPPSVX. */

                        s_copy(srnamc_1.srnamt, "ZPPSVX", (ftnlen)6, (ftnlen)
                               6);
                        zppsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], equed,
                                &s[1], &b[1], &lda, &x[1], &lda, &rcond, &
                                rwork[1], &rwork[*nrhs + 1], &work[1], &rwork[
                                    (*nrhs << 1) + 1], &info);

                        /*                    Check the error code from ZPPSVX. */

                        if (info != izero) {
                            /* Writing concatenation */
                            i__5[0] = 1, a__1[0] = fact;
                            i__5[1] = 1, a__1[1] = uplo;
                            s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
                            alaerh_(path, "ZPPSVX", &info, &izero, ch__1, &n,
                                    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
                                    nerrs, nout);
                            goto L90;
                        }

                        if (info == 0) {
                            if (! prefac) {

                                /*                          Reconstruct matrix from factors and compute */
                                /*                          residual. */

                                zppt01_(uplo, &n, &a[1], &afac[1], &rwork[(*
                                        nrhs << 1) + 1], result);
                                k1 = 1;
                            } else {
                                k1 = 2;
                            }

                            /*                       Compute residual of the computed solution. */

                            zlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
                                    , &lda);
                            zppt02_(uplo, &n, nrhs, &asav[1], &x[1], &lda, &
                                    work[1], &lda, &rwork[(*nrhs << 1) + 1], &
                                    result[1]);

                            /*                       Check solution from generated exact solution. */

                            if (nofact || prefac && lsame_(equed, "N")) {
                                zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
                                        &rcondc, &result[2]);
                            } else {
                                zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
                                        &roldc, &result[2]);
                            }

                            /*                       Check the error bounds from iterative */
                            /*                       refinement. */

                            zppt05_(uplo, &n, nrhs, &asav[1], &b[1], &lda, &x[
                                        1], &lda, &xact[1], &lda, &rwork[1], &
                                    rwork[*nrhs + 1], &result[3]);
                        } else {
                            k1 = 6;
                        }

                        /*                    Compare RCOND from ZPPSVX with the computed value */
                        /*                    in RCONDC. */

                        result[5] = dget06_(&rcond, &rcondc);

                        /*                    Print information about the tests that did not pass */
                        /*                    the threshold. */

                        for (k = k1; k <= 6; ++k) {
                            if (result[k - 1] >= *thresh) {
                                if (nfail == 0 && nerrs == 0) {
                                    aladhd_(nout, path);
                                }
                                if (prefac) {
                                    io___52.ciunit = *nout;
                                    s_wsfe(&io___52);
                                    do_fio(&c__1, "ZPPSVX", (ftnlen)6);
                                    do_fio(&c__1, fact, (ftnlen)1);
                                    do_fio(&c__1, uplo, (ftnlen)1);
                                    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, equed, (ftnlen)1);
                                    do_fio(&c__1, (char *)&imat, (ftnlen)
                                           sizeof(integer));
                                    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&result[k - 1], (
                                               ftnlen)sizeof(doublereal));
                                    e_wsfe();
                                } else {
                                    io___53.ciunit = *nout;
                                    s_wsfe(&io___53);
                                    do_fio(&c__1, "ZPPSVX", (ftnlen)6);
                                    do_fio(&c__1, fact, (ftnlen)1);
                                    do_fio(&c__1, uplo, (ftnlen)1);
                                    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&imat, (ftnlen)
                                           sizeof(integer));
                                    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&result[k - 1], (
                                               ftnlen)sizeof(doublereal));
                                    e_wsfe();
                                }
                                ++nfail;
                            }
                            /* L80: */
                        }
                        nrun = nrun + 7 - k1;
L90:
L100:
                        ;
                    }
                    /* L110: */
                }
L120:
                ;
            }
L130:
            ;
        }
        /* L140: */
    }

    /*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

    /*     End of ZDRVPP */

} /* zdrvpp_ */
Example #2
0
/* Subroutine */ int zhpgvx_(integer *itype, char *jobz, char *range, char *
	uplo, integer *n, doublecomplex *ap, doublecomplex *bp, doublereal *
	vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, 
	integer *m, doublereal *w, doublecomplex *z__, integer *ldz, 
	doublecomplex *work, doublereal *rwork, integer *iwork, integer *
	ifail, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;

    /* Local variables */
    integer j;
    char trans[1];
    logical upper, wantz;
    logical alleig, indeig, valeig;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  ZHPGVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a complex generalized Hermitian-definite eigenproblem, of the form */
/*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and */
/*  B are assumed to be Hermitian, stored in packed format, and B is also */
/*  positive definite.  Eigenvalues and eigenvectors can be selected by */
/*  specifying either a range of values or a range of indices for the */
/*  desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          Specifies the problem type to be solved: */
/*          = 1:  A*x = (lambda)*B*x */
/*          = 2:  A*B*x = (lambda)*x */
/*          = 3:  B*A*x = (lambda)*x */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, the contents of AP are destroyed. */

/*  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          B, packed columnwise in a linear array.  The j-th column of B */
/*          is stored in the array BP as follows: */
/*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */

/*          On exit, the triangular factor U or L from the Cholesky */
/*          factorization B = U**H*U or B = L*L**H, in the same storage */
/*          format as B. */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AP to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          On normal exit, the first M elements contain the selected */
/*          eigenvalues in ascending order. */

/*  Z       (output) COMPLEX*16 array, dimension (LDZ, N) */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          The eigenvectors are normalized as follows: */
/*          if ITYPE = 1 or 2, Z**H*B*Z = I; */
/*          if ITYPE = 3, Z**H*inv(B)*Z = I. */

/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) COMPLEX*16 array, dimension (2*N) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  ZPPTRF or ZHPEVX returned an error code: */
/*             <= N:  if INFO = i, ZHPEVX failed to converge; */
/*                    i eigenvectors failed to converge.  Their indices */
/*                    are stored in array IFAIL. */
/*             > N:   if INFO = N + i, for 1 <= i <= n, then the leading */
/*                    minor of order i of B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --bp;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N"))) {
	*info = -2;
    } else if (! (alleig || valeig || indeig)) {
	*info = -3;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -9;
	    }
	} else if (indeig) {
	    if (*il < 1) {
		*info = -10;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -11;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -16;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHPGVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    zpptrf_(uplo, n, &bp[1], info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    zhpgst_(itype, uplo, n, &ap[1], &bp[1], info);
    zhpevx_(jobz, range, uplo, n, &ap[1], vl, vu, il, iu, abstol, m, &w[1], &
	    z__[z_offset], ldz, &work[1], &rwork[1], &iwork[1], &ifail[1], 
	    info);

    if (wantz) {

/*        Backtransform eigenvectors to the original problem. */

	if (*info > 0) {
	    *m = *info - 1;
	}
	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'C';
	    }

	    i__1 = *m;
	    for (j = 1; j <= i__1; ++j) {
		ztpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
			1], &c__1);
	    }

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x; */
/*           backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'C';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    i__1 = *m;
	    for (j = 1; j <= i__1; ++j) {
		ztpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
			1], &c__1);
	    }
	}
    }

    return 0;

/*     End of ZHPGVX */

} /* zhpgvx_ */
Example #3
0
/* Subroutine */ int zerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal r__[4];
    doublecomplex w[8], x[4];
    char c2[2];
    doublereal r1[4], r2[4];
    doublecomplex af[16]	/* was [4][4] */;
    integer info;
    doublereal anrm, rcond;
    extern /* Subroutine */ int zpbtf2_(char *, integer *, integer *, 
	    doublecomplex *, integer *, integer *), zpotf2_(char *, 
	    integer *, doublecomplex *, integer *, integer *), 
	    alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zpbcon_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbequ_(char *, 
	     integer *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), zpbrfs_(char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbtrf_(char *, 
	     integer *, integer *, doublecomplex *, integer *, integer *), zpocon_(char *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zppcon_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpoequ_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *, doublereal *, integer *), zpbtrs_(
	    char *, integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *), zporfs_(char *, 
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
, integer *, doublecomplex *, integer *, doublecomplex *, integer 
	    *, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpotrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zpotri_(char *, integer *, 
	    doublecomplex *, integer *, integer *), zppequ_(char *, 
	    integer *, doublecomplex *, doublereal *, doublereal *, 
	    doublereal *, integer *), zpprfs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *, 
	     doublecomplex *, doublereal *, integer *), zpptrf_(char *
, integer *, doublecomplex *, integer *), zpptri_(char *, 
	    integer *, doublecomplex *, integer *), zpotrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *), zpptrs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRPO tests the error exits for the COMPLEX*16 routines */
/*  for Hermitian positive definite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        ZPOTRF */

	s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTF2 */

	s_copy(srnamc_1.srnamt, "ZPOTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRI */

	s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRS */

	s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPORFS */

	s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOCON */

	s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zpocon_("U", &c__1, a, &c__1, &d__1, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOEQU */

	s_copy(srnamc_1.srnamt, "ZPOEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        ZPPTRF */

	s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrf_("/", &c__0, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrf_("U", &c_n1, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRI */

	s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptri_("/", &c__0, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptri_("U", &c_n1, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRS */

	s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPRFS */

	s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPCON */

	s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	d__1 = -anrm;
	zppcon_("U", &c__1, a, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPEQU */

	s_copy(srnamc_1.srnamt, "ZPPEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        ZPBTRF */

	s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTF2 */

	s_copy(srnamc_1.srnamt, "ZPBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTRS */

	s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBRFS */

	s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBCON */

	s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zpbcon_("U", &c__1, &c__0, a, &c__1, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBEQU */

	s_copy(srnamc_1.srnamt, "ZPBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRPO */

} /* zerrpo_ */
Example #4
0
/* Subroutine */ int zppsv_(char *uplo, integer *n, integer *nrhs, 
	doublecomplex *ap, doublecomplex *b, integer *ldb, integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZPPSV computes the solution to a complex system of linear equations   
       A * X = B,   
    where A is an N-by-N Hermitian positive definite matrix stored in   
    packed format and X and B are N-by-NRHS matrices.   

    The Cholesky decomposition is used to factor A as   
       A = U**H* U,  if UPLO = 'U', or   
       A = L * L**H,  if UPLO = 'L',   
    where U is an upper triangular matrix and L is a lower triangular   
    matrix.  The factored form of A is then used to solve the system of   
    equations A * X = B.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix 
  
            A, packed columnwise in a linear array.  The j-th column of A 
  
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   

            On exit, if INFO = 0, the factor U or L from the Cholesky   
            factorization A = U**H*U or A = L*L**H, in the same storage   
            format as A.   

    B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the leading minor of order i of A is not   
                  positive definite, so the factorization could not be   
                  completed, and the solution has not been computed.   

    Further Details   
    ===============   

    The packed storage scheme is illustrated by the following example   
    when N = 4, UPLO = 'U':   

    Two-dimensional storage of the Hermitian matrix A:   

       a11 a12 a13 a14   
           a22 a23 a24   
               a33 a34     (aij = conjg(aji))   
                   a44   

    Packed storage of the upper triangle of A:   

    AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
    integer b_dim1, b_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), zpptrf_(
	    char *, integer *, doublecomplex *, integer *), zpptrs_(
	    char *, integer *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);


#define AP(I) ap[(I)-1]

#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]

    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPPSV ", &i__1);
	return 0;
    }

/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */

    zpptrf_(uplo, n, &AP(1), info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	zpptrs_(uplo, n, nrhs, &AP(1), &B(1,1), ldb, info);

    }
    return 0;

/*     End of ZPPSV */

} /* zppsv_ */
Example #5
0
/* Subroutine */ int zhpgvd_(integer *itype, char *jobz, char *uplo, integer *
                             n, doublecomplex *ap, doublecomplex *bp, doublereal *w, doublecomplex
                             *z__, integer *ldz, doublecomplex *work, integer *lwork, doublereal *
                             rwork, integer *lrwork, integer *iwork, integer *liwork, integer *
                             info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer j, neig;
    integer lwmin;
    char trans[1];
    logical upper, wantz;
    integer liwmin;
    integer lrwmin;
    logical lquery;

    /*  -- LAPACK driver routine (version 3.2) -- */
    /*     November 2006 */

    /*  Purpose */
    /*  ======= */

    /*  ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors */
    /*  of a complex generalized Hermitian-definite eigenproblem, of the form */
    /*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and */
    /*  B are assumed to be Hermitian, stored in packed format, and B is also */
    /*  positive definite. */
    /*  If eigenvectors are desired, it uses a divide and conquer algorithm. */

    /*  The divide and conquer algorithm makes very mild assumptions about */
    /*  floating point arithmetic. It will work on machines with a guard */
    /*  digit in add/subtract, or on those binary machines without guard */
    /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
    /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
    /*  without guard digits, but we know of none. */

    /*  Arguments */
    /*  ========= */

    /*  ITYPE   (input) INTEGER */
    /*          Specifies the problem type to be solved: */
    /*          = 1:  A*x = (lambda)*B*x */
    /*          = 2:  A*B*x = (lambda)*x */
    /*          = 3:  B*A*x = (lambda)*x */

    /*  JOBZ    (input) CHARACTER*1 */
    /*          = 'N':  Compute eigenvalues only; */
    /*          = 'V':  Compute eigenvalues and eigenvectors. */

    /*  UPLO    (input) CHARACTER*1 */
    /*          = 'U':  Upper triangles of A and B are stored; */
    /*          = 'L':  Lower triangles of A and B are stored. */

    /*  N       (input) INTEGER */
    /*          The order of the matrices A and B.  N >= 0. */

    /*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
    /*          On entry, the upper or lower triangle of the Hermitian matrix */
    /*          A, packed columnwise in a linear array.  The j-th column of A */
    /*          is stored in the array AP as follows: */
    /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
    /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

    /*          On exit, the contents of AP are destroyed. */

    /*  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
    /*          On entry, the upper or lower triangle of the Hermitian matrix */
    /*          B, packed columnwise in a linear array.  The j-th column of B */
    /*          is stored in the array BP as follows: */
    /*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
    /*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */

    /*          On exit, the triangular factor U or L from the Cholesky */
    /*          factorization B = U**H*U or B = L*L**H, in the same storage */
    /*          format as B. */

    /*  W       (output) DOUBLE PRECISION array, dimension (N) */
    /*          If INFO = 0, the eigenvalues in ascending order. */

    /*  Z       (output) COMPLEX*16 array, dimension (LDZ, N) */
    /*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
    /*          eigenvectors.  The eigenvectors are normalized as follows: */
    /*          if ITYPE = 1 or 2, Z**H*B*Z = I; */
    /*          if ITYPE = 3, Z**H*inv(B)*Z = I. */
    /*          If JOBZ = 'N', then Z is not referenced. */

    /*  LDZ     (input) INTEGER */
    /*          The leading dimension of the array Z.  LDZ >= 1, and if */
    /*          JOBZ = 'V', LDZ >= max(1,N). */

    /*  WORK    (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
    /*          On exit, if INFO = 0, WORK(1) returns the required LWORK. */

    /*  LWORK   (input) INTEGER */
    /*          The dimension of array WORK. */
    /*          If N <= 1,               LWORK >= 1. */
    /*          If JOBZ = 'N' and N > 1, LWORK >= N. */
    /*          If JOBZ = 'V' and N > 1, LWORK >= 2*N. */

    /*          If LWORK = -1, then a workspace query is assumed; the routine */
    /*          only calculates the required sizes of the WORK, RWORK and */
    /*          IWORK arrays, returns these values as the first entries of */
    /*          the WORK, RWORK and IWORK arrays, and no error message */
    /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

    /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
    /*          On exit, if INFO = 0, RWORK(1) returns the required LRWORK. */

    /*  LRWORK  (input) INTEGER */
    /*          The dimension of array RWORK. */
    /*          If N <= 1,               LRWORK >= 1. */
    /*          If JOBZ = 'N' and N > 1, LRWORK >= N. */
    /*          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */

    /*          If LRWORK = -1, then a workspace query is assumed; the */
    /*          routine only calculates the required sizes of the WORK, RWORK */
    /*          and IWORK arrays, returns these values as the first entries */
    /*          of the WORK, RWORK and IWORK arrays, and no error message */
    /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

    /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
    /*          On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */

    /*  LIWORK  (input) INTEGER */
    /*          The dimension of array IWORK. */
    /*          If JOBZ  = 'N' or N <= 1, LIWORK >= 1. */
    /*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N. */

    /*          If LIWORK = -1, then a workspace query is assumed; the */
    /*          routine only calculates the required sizes of the WORK, RWORK */
    /*          and IWORK arrays, returns these values as the first entries */
    /*          of the WORK, RWORK and IWORK arrays, and no error message */
    /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
    /*          > 0:  ZPPTRF or ZHPEVD returned an error code: */
    /*             <= N:  if INFO = i, ZHPEVD failed to converge; */
    /*                    i off-diagonal elements of an intermediate */
    /*                    tridiagonal form did not convergeto zero; */
    /*             > N:   if INFO = N + i, for 1 <= i <= n, then the leading */
    /*                    minor of order i of B is not positive definite. */
    /*                    The factorization of B could not be completed and */
    /*                    no eigenvalues or eigenvectors were computed. */

    /*  Further Details */
    /*  =============== */

    /*  Based on contributions by */
    /*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

    /*  ===================================================================== */

    /*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --bp;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;

    *info = 0;
    if (*itype < 1 || *itype > 3) {
        *info = -1;
    } else if (! (wantz || lsame_(jobz, "N"))) {
        *info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
        *info = -3;
    } else if (*n < 0) {
        *info = -4;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
        *info = -9;
    }

    if (*info == 0) {
        if (*n <= 1) {
            lwmin = 1;
            liwmin = 1;
            lrwmin = 1;
        } else {
            if (wantz) {
                lwmin = *n << 1;
                /* Computing 2nd power */
                i__1 = *n;
                lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
                liwmin = *n * 5 + 3;
            } else {
                lwmin = *n;
                lrwmin = *n;
                liwmin = 1;
            }
        }

        work[1].r = (doublereal) lwmin, work[1].i = 0.;
        rwork[1] = (doublereal) lrwmin;
        iwork[1] = liwmin;
        if (*lwork < lwmin && ! lquery) {
            *info = -11;
        } else if (*lrwork < lrwmin && ! lquery) {
            *info = -13;
        } else if (*liwork < liwmin && ! lquery) {
            *info = -15;
        }
    }

    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("ZHPGVD", &i__1);
        return 0;
    } else if (lquery) {
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    /*     Form a Cholesky factorization of B. */

    zpptrf_(uplo, n, &bp[1], info);
    if (*info != 0) {
        *info = *n + *info;
        return 0;
    }

    /*     Transform problem to standard eigenvalue problem and solve. */

    zhpgst_(itype, uplo, n, &ap[1], &bp[1], info);
    zhpevd_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1],
            lwork, &rwork[1], lrwork, &iwork[1], liwork, info);
    /* Computing MAX */
    d__1 = (doublereal) lwmin, d__2 = work[1].r;
    lwmin = (integer) max(d__1,d__2);
    /* Computing MAX */
    d__1 = (doublereal) lrwmin;
    lrwmin = (integer) max(d__1,rwork[1]);
    /* Computing MAX */
    d__1 = (doublereal) liwmin, d__2 = (doublereal) iwork[1];
    liwmin = (integer) max(d__1,d__2);

    if (wantz) {

        /*        Backtransform eigenvectors to the original problem. */

        neig = *n;
        if (*info > 0) {
            neig = *info - 1;
        }
        if (*itype == 1 || *itype == 2) {

            /*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
            /*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

            if (upper) {
                *(unsigned char *)trans = 'N';
            } else {
                *(unsigned char *)trans = 'C';
            }

            i__1 = neig;
            for (j = 1; j <= i__1; ++j) {
                ztpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
                        1], &c__1);
            }

        } else if (*itype == 3) {

            /*           For B*A*x=(lambda)*x; */
            /*           backtransform eigenvectors: x = L*y or U'*y */

            if (upper) {
                *(unsigned char *)trans = 'C';
            } else {
                *(unsigned char *)trans = 'N';
            }

            i__1 = neig;
            for (j = 1; j <= i__1; ++j) {
                ztpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
                        1], &c__1);
            }
        }
    }

    work[1].r = (doublereal) lwmin, work[1].i = 0.;
    rwork[1] = (doublereal) lrwmin;
    iwork[1] = liwmin;
    return 0;

    /*     End of ZHPGVD */

} /* zhpgvd_ */
Example #6
0
 int zppsv_(char *uplo, int *n, int *nrhs, 
	doublecomplex *ap, doublecomplex *b, int *ldb, int *info)
{
    /* System generated locals */
    int b_dim1, b_offset, i__1;

    /* Local variables */
    extern int lsame_(char *, char *);
    extern  int xerbla_(char *, int *), zpptrf_(
	    char *, int *, doublecomplex *, int *), zpptrs_(
	    char *, int *, int *, doublecomplex *, doublecomplex *, 
	    int *, int *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPPSV computes the solution to a complex system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N Hermitian positive definite matrix stored in */
/*  packed format and X and B are N-by-NRHS matrices. */

/*  The Cholesky decomposition is used to factor A as */
/*     A = U**H* U,  if UPLO = 'U', or */
/*     A = L * L**H,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is a lower triangular */
/*  matrix.  The factored form of A is then used to solve the system of */
/*  equations A * X = B. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H, in the same storage */
/*          format as A. */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= MAX(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i of A is not */
/*                positive definite, so the factorization could not be */
/*                completed, and the solution has not been computed. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the Hermitian matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = conjg(aji)) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < MAX(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPPSV ", &i__1);
	return 0;
    }

/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */

    zpptrf_(uplo, n, &ap[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	zpptrs_(uplo, n, nrhs, &ap[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of ZPPSV */

} /* zppsv_ */
Example #7
0
/* Subroutine */ int zerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    static doublereal anrm;
    static doublecomplex a[16]	/* was [4][4] */, b[4];
    static integer i__, j;
    static doublereal r__[4];
    static doublecomplex w[8], x[4];
    static doublereal rcond;
    static char c2[2];
    static doublereal r1[4], r2[4];
    static doublecomplex af[16]	/* was [4][4] */;
    extern /* Subroutine */ int zpbtf2_(char *, integer *, integer *, 
	    doublecomplex *, integer *, integer *), zpotf2_(char *, 
	    integer *, doublecomplex *, integer *, integer *), 
	    alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zpbcon_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbequ_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), zpbrfs_(char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbtrf_(char *,
	     integer *, integer *, doublecomplex *, integer *, integer *), zpocon_(char *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zppcon_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpoequ_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *, doublereal *, integer *), zpbtrs_(
	    char *, integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *), zporfs_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *, doublecomplex *, integer *, doublecomplex *, integer 
	    *, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpotrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zpotri_(char *, integer *, 
	    doublecomplex *, integer *, integer *), zppequ_(char *, 
	    integer *, doublecomplex *, doublereal *, doublereal *, 
	    doublereal *, integer *), zpprfs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *,
	     doublecomplex *, doublereal *, integer *), zpptrf_(char *
	    , integer *, doublecomplex *, integer *), zpptri_(char *, 
	    integer *, doublecomplex *, integer *), zpotrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *, integer *), zpptrs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



#define a_subscr(a_1,a_2) (a_2)*4 + a_1 - 5
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define af_subscr(a_1,a_2) (a_2)*4 + a_1 - 5
#define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    ZERRPO tests the error exits for the COMPLEX*16 routines   
    for Hermitian positive definite matrices.   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The LAPACK path name for the routines to be tested.   

    NUNIT   (input) INTEGER   
            The unit number for output.   

    ===================================================================== */


    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = a_subscr(i__, j);
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = af_subscr(i__, j);
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        ZPOTRF */

	s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTF2 */

	s_copy(srnamc_1.srnamt, "ZPOTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRI */

	s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRS */

	s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPORFS */

	s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOCON */

	s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zpocon_("U", &c__1, a, &c__1, &d__1, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOEQU */

	s_copy(srnamc_1.srnamt, "ZPOEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        ZPPTRF */

	s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrf_("/", &c__0, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrf_("U", &c_n1, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRI */

	s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptri_("/", &c__0, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptri_("U", &c_n1, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRS */

	s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPRFS */

	s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPCON */

	s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	d__1 = -anrm;
	zppcon_("U", &c__1, a, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPEQU */

	s_copy(srnamc_1.srnamt, "ZPPEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        ZPBTRF */

	s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTF2 */

	s_copy(srnamc_1.srnamt, "ZPBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTRS */

	s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBRFS */

	s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBCON */

	s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zpbcon_("U", &c__1, &c__0, a, &c__1, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBEQU */

	s_copy(srnamc_1.srnamt, "ZPBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRPO */

} /* zerrpo_ */
Example #8
0
/* Subroutine */ int zchkpp_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, 
	integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *
	ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char packs[1*2] = "C" "R";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, n, in, kl, ku, lda, npp, ioff, mode, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char uplo[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    integer iuplo, izero, nerrs;
    logical zerot;
    char xtype[1];
    doublereal rcondc;
    char packit[1];
    doublereal cndnum;
    doublereal result[8];

    /* Fortran I/O blocks */
    static cilist io___34 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___37 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZCHKPP tests ZPPTRF, -TRI, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AFAC    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINV    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrpo_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 9;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L100;
	    }

/*           Skip types 3, 4, or 5 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 5;
	    if (zerot && n < imat - 2) {
		goto L100;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		*(unsigned char *)packit = *(unsigned char *)&packs[iuplo - 1]
			;

/*              Set up parameters with ZLATB4 and generate a test matrix */
/*              with ZLATMS. */

		zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L90;
		}

/*              For types 3-5, zero one row and column of the matrix to */
/*              test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

/*                 Set row and column IZERO of A to 0. */

		    if (iuplo == 1) {
			ioff = (izero - 1) * izero / 2;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
			}
			ioff += izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0., a[i__4].i = 0.;
			    ioff += i__;
/* L30: */
			}
		    } else {
			ioff = izero;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0., a[i__4].i = 0.;
			    ioff = ioff + n - i__;
/* L40: */
			}
			ioff -= izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    zlaipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    zlaipd_(&n, &a[1], &n, &c_n1);
		}

/*              Compute the L*L' or U'*U factorization of the matrix. */

		npp = n * (n + 1) / 2;
		zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
		s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)32, (ftnlen)6);
		zpptrf_(uplo, &n, &afac[1], &info);

/*              Check error code from ZPPTRF. */

		if (info != izero) {
		    alaerh_(path, "ZPPTRF", &info, &izero, uplo, &n, &n, &
			    c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L90;
		}

/*              Skip the tests if INFO is not 0. */

		if (info != 0) {
		    goto L90;
		}

/* +    TEST 1 */
/*              Reconstruct matrix from factors and compute residual. */

		zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		zppt01_(uplo, &n, &a[1], &ainv[1], &rwork[1], result);

/* +    TEST 2 */
/*              Form the inverse and compute the residual. */

		zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)32, (ftnlen)6);
		zpptri_(uplo, &n, &ainv[1], &info);

/*              Check error code from ZPPTRI. */

		if (info != 0) {
		    alaerh_(path, "ZPPTRI", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		zppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[1], 
			&rcondc, &result[1]);

/*              Print information about the tests that did not pass */
/*              the threshold. */

		for (k = 1; k <= 2; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___34.ciunit = *nout;
			s_wsfe(&io___34);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
/* L60: */
		}
		nrun += 2;

		i__3 = *nns;
		for (irhs = 1; irhs <= i__3; ++irhs) {
		    nrhs = nsval[irhs];

/* +    TEST 3 */
/*              Solve and compute residual for  A * X = B. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

		    s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)32, (ftnlen)6);
		    zpptrs_(uplo, &n, &nrhs, &afac[1], &x[1], &lda, &info);

/*              Check error code from ZPPTRS. */

		    if (info != 0) {
			alaerh_(path, "ZPPTRS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    zppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], &
			    lda, &rwork[1], &result[2]);

/* +    TEST 4 */
/*              Check solution from generated exact solution. */

		    zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);

/* +    TESTS 5, 6, and 7 */
/*              Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)32, (ftnlen)6);
		    zpprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &b[1], &lda, &x[
			    1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], &
			    rwork[(nrhs << 1) + 1], &info);

/*              Check error code from ZPPRFS. */

		    if (info != 0) {
			alaerh_(path, "ZPPRFS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[4]);
		    zppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, 
			    &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &
			    result[5]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 3; k <= 7; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___37.ciunit = *nout;
			    s_wsfe(&io___37);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += 5;
/* L80: */
		}

/* +    TEST 8 */
/*              Get an estimate of RCOND = 1/CNDNUM. */

		anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]);
		s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)32, (ftnlen)6);
		zppcon_(uplo, &n, &afac[1], &anorm, &rcond, &work[1], &rwork[
			1], &info);

/*              Check error code from ZPPCON. */

		if (info != 0) {
		    alaerh_(path, "ZPPCON", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[7] = dget06_(&rcond, &rcondc);

/*              Print the test ratio if greater than or equal to THRESH. */

		if (result[7] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___39.ciunit = *nout;
		    s_wsfe(&io___39);
		    do_fio(&c__1, uplo, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
			    doublereal));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;

L90:
		;
	    }
L100:
	    ;
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZCHKPP */

} /* zchkpp_ */