Example #1
0
int
maingen(int argc, char** argv)
{
    uint8_t logs[256];
    uint8_t exps[255];
    unsigned int x;
    unsigned int i;
    
    x = 1;
    for( i = 0; i < 255; ++i ) {
        exps[i] = x;
        logs[x] = i;
        x <<= 1;
        if( x & 0x100 )
            x ^= 0x11d; /* Unset the 8th bit and mix in 0x1d */
    }
    logs[0] = 0; /* can't log(0) so just set it neatly to 0 */
    
    /* The above generation algorithm clearly demonstrates that
     * logs[exps[i]] == i for 0 <= i <= 254
     * exps[logs[i]] == i for 1 <= i <= 255
     */
    
    /* Spew out the tables */
    
    fprintf(stdout, "\
            /*\n\
            * This file is autogenerated by gfshare_maketable.\n\
            */\n\
            \n\
            static uint8_t logs[256] = {\n  ");
    for( i = 0; i < 256; ++i ) {
        fprintf(stdout, "0x%02x", logs[i]);
        if( i == 255 )
            fprintf(stdout, " };\n");
        else if( (i % 8) == 7 )
            fprintf(stdout, ",\n  ");
        else
            fprintf(stdout, ", ");
    }
    
    /* The exp table we output from 0 to 509 because that way when we
     * do the lagrange interpolation we don't have to be quite so strict
     * with staying inside the field which makes it quicker
     */
    
    fprintf(stdout, "\
            \n\
            static uint8_t exps[510] = {\n  ");
    for( i = 0; i < 510; ++i ) {
        fprintf(stdout, "0x%02x", exps[i % 255]); /* exps[255]==exps[0] */
        if( i == 509 )
            fprintf(stdout, " };\n");
        else if( (i % 8) == 7)
            fprintf(stdout, ",\n  ");
        else
            fprintf(stdout, ", ");
    }
    
    return 0;
}

void iguana_main(void *arg)
{
    int32_t usessl = 0, ismainnet = 1;
    struct supernet_info *myinfo; char *tmpstr,*helperargs,*coinargs,helperstr[512]; int32_t i;

    mycalloc(0,0,0);
    myinfo = SuperNET_MYINFO(0);
    FILE *fp; int32_t iter; void ztest(); ztest();
    strcpy(myinfo->NXTAPIURL,"http://127.0.0.1:7876/nxt");
    for (iter=0; iter<2; iter++)
    {
        if ( (fp= fopen(iter == 0 ? "nxtpasswords" : "fimpasswords","rb")) != 0 )
        {
            char line[4096],NXTaddr[64]; int32_t j; uint8_t pubkey[32];
            while ( fgets(line,sizeof(line),fp) > 0 )
            {
                j = (int32_t)strlen(line) - 1;
                line[j] = 0;
                calc_NXTaddr(NXTaddr,pubkey,(uint8_t *)line,j);
                printf("FORGING %s (%s)\n",NXTaddr,issue_startForging(myinfo,line));
            }
            fclose(fp);
        }
        strcpy(myinfo->NXTAPIURL,"http://127.0.0.1:7886/nxt");
    }
    if ( usessl == 0 )
        strcpy(myinfo->NXTAPIURL,"http://127.0.0.1:");
    else strcpy(myinfo->NXTAPIURL,"https://127.0.0.1:");
    if ( ismainnet != 0 )
        strcat(myinfo->NXTAPIURL,"7876/nxt");
    else strcat(myinfo->NXTAPIURL,"6876/nxt");

    if ( 0 )
    {
#ifndef _WIN32
        signal(SIGINT,sigint_func);
        signal(SIGILL,sigillegal_func);
        signal(SIGHUP,sighangup_func);
        //signal(SIGKILL,sigkill_func);
        signal(SIGABRT,sigabort_func);
        signal(SIGQUIT,sigquit_func);
        signal(SIGCHLD,sigchild_func);
        signal(SIGALRM,sigalarm_func);
        signal(SIGCONT,sigcontinue_func);
#endif
    }
   //iguana_chaingenesis(1,1403138561,0x1e0fffff,8359109,bits256_conv("fd1751cc6963d88feca94c0d01da8883852647a37a0a67ce254d62dd8c9d5b2b")); // BTCD
    //iguana_chaingenesis(1,1409839200,0x1e0fffff,64881664,bits256_conv("698a93a1cacd495a7a4fb3864ad8d06ed4421dedbc57f9aaad733ea53b1b5828")); // VPN
    iguana_chaingenesis(1,1317972665,0x1e0ffff0,2084524493,bits256_conv("97ddfbbae6be97fd6cdf3e7ca13232a3afff2353e29badfab7f73011edd4ced9")); // LTC

    iguana_initQ(&helperQ,"helperQ");
    OS_ensure_directory("help");
    OS_ensure_directory("confs");
    OS_ensure_directory("DB"), OS_ensure_directory("DB/ECB");
    OS_ensure_directory("tmp");
    if ( (tmpstr= SuperNET_JSON(myinfo,cJSON_Parse("{\"agent\":\"SuperNET\",\"method\":\"help\"}"),0)) != 0 )
    {
        if ( (API_json= cJSON_Parse(tmpstr)) != 0 && (API_json= jobj(API_json,"result")) != 0 )
            API_json = jobj(API_json,"API");
        free(tmpstr);
    }
    if ( IGUANA_NUMHELPERS == 0 )
        IGUANA_NUMHELPERS = 1;
    for (i=0; i<IGUANA_NUMHELPERS; i++)
    {
        sprintf(helperstr,"{\"name\":\"helper.%d\"}",i);
        helperargs = clonestr(helperstr);
        iguana_launch(iguana_coinadd("BTCD"),"iguana_helper",iguana_helper,helperargs,IGUANA_PERMTHREAD);
    }
    iguana_launch(iguana_coinadd("BTCD"),"rpcloop",iguana_rpcloop,SuperNET_MYINFO(0),IGUANA_PERMTHREAD);
    category_init(&MYINFO);
    if ( (coinargs= SuperNET_keysinit(&MYINFO,arg)) != 0 )
        iguana_launch(iguana_coinadd("BTCD"),"iguana_coins",iguana_coins,coinargs,IGUANA_PERMTHREAD);
    else if ( 1 )
    {
#ifdef __APPLE__
        sleep(1);
        char *str;
        strcpy(MYINFO.rpcsymbol,"BTC");
        iguana_launchcoin(MYINFO.rpcsymbol,cJSON_Parse("{}"));
        if ( 1 && (str= SuperNET_JSON(&MYINFO,cJSON_Parse("{\"agent\":\"iguana\",\"method\":\"addcoin\",\"services\":128,\"maxpeers\":3,\"newcoin\":\"BTC\",\"active\":0}"),0)) != 0 )
        {
            free(str);
            if ( 1 && (str= SuperNET_JSON(&MYINFO,cJSON_Parse("{\"agent\":\"iguana\",\"method\":\"addcoin\",\"services\":128,\"maxpeers\":3,\"newcoin\":\"BTCD\",\"active\":0}"),0)) != 0 )
            {
                free(str);
                if ( 0 && (str= SuperNET_JSON(&MYINFO,cJSON_Parse("{\"agent\":\"SuperNET\",\"method\":\"login\",\"handle\":\"alice\",\"password\":\"alice\",\"passphrase\":\"alice\"}"),0)) != 0 )
                {
                    free(str);
                    if ( (str= SuperNET_JSON(&MYINFO,cJSON_Parse("{\"agent\":\"SuperNET\",\"method\":\"login\",\"handle\":\"bob\",\"password\":\"bob\",\"passphrase\":\"bob\"}"),0)) != 0 )
                        free(str);
                }
            }
        }
        sleep(1);
#endif
    }
    if ( arg != 0 )
        SuperNET_JSON(&MYINFO,cJSON_Parse(arg),0);
    mainloop(&MYINFO);
}
Example #2
0
int
main(int argc, char *argv[])
{
	static const int ex_under = FE_UNDERFLOW | FE_INEXACT;	/* shorthand */
	static const int ex_over = FE_OVERFLOW | FE_INEXACT;
	long double ldbl_small, ldbl_eps, ldbl_max;

	printf("1..5\n");

#ifdef	__i386__
	fpsetprec(FP_PE);
#endif
	/*
	 * We can't use a compile-time constant here because gcc on
	 * FreeBSD/i386 assumes long doubles are truncated to the
	 * double format.
	 */
	ldbl_small = ldexpl(1.0, LDBL_MIN_EXP - LDBL_MANT_DIG);
	ldbl_eps = LDBL_EPSILON;
	ldbl_max = ldexpl(1.0 - ldbl_eps / 2, LDBL_MAX_EXP);

	/*
	 * Special cases involving zeroes.
	 */
#define	ztest(prec)							      \
	test##prec(copysign##prec(1.0, nextafter##prec(0.0, -0.0)), -1.0, 0); \
	test##prec(copysign##prec(1.0, nextafter##prec(-0.0, 0.0)), 1.0, 0);  \
	test##prec(copysign##prec(1.0, nexttoward##prec(0.0, -0.0)), -1.0, 0);\
	test##prec(copysign##prec(1.0, nexttoward##prec(-0.0, 0.0)), 1.0, 0)

	ztest();
	ztest(f);
	ztest(l);
#undef	ztest

#define	stest(next, eps, prec)					\
	test##prec(next(-0.0, 42.0), eps, ex_under);		\
	test##prec(next(0.0, -42.0), -eps, ex_under);		\
	test##prec(next(0.0, INFINITY), eps, ex_under);		\
	test##prec(next(-0.0, -INFINITY), -eps, ex_under)

	stest(nextafter, 0x1p-1074, );
	stest(nextafterf, 0x1p-149f, f);
	stest(nextafterl, ldbl_small, l);
	stest(nexttoward, 0x1p-1074, );
	stest(nexttowardf, 0x1p-149f, f);
	stest(nexttowardl, ldbl_small, l);
#undef	stest

	printf("ok 1 - next\n");

	/*
	 * `x == y' and NaN tests
	 */
	testall(42.0, 42.0, 42.0, 0);
	testall(-42.0, -42.0, -42.0, 0);
	testall(INFINITY, INFINITY, INFINITY, 0);
	testall(-INFINITY, -INFINITY, -INFINITY, 0);
	testall(NAN, 42.0, NAN, 0);
	testall(42.0, NAN, NAN, 0);
	testall(NAN, NAN, NAN, 0);

	printf("ok 2 - next\n");

	/*
	 * Tests where x is an ordinary normalized number
	 */
	testboth(1.0, 2.0, 1.0 + DBL_EPSILON, 0, );
	testboth(1.0, -INFINITY, 1.0 - DBL_EPSILON/2, 0, );
	testboth(1.0, 2.0, 1.0 + FLT_EPSILON, 0, f);
	testboth(1.0, -INFINITY, 1.0 - FLT_EPSILON/2, 0, f);
	testboth(1.0, 2.0, 1.0 + ldbl_eps, 0, l);
	testboth(1.0, -INFINITY, 1.0 - ldbl_eps/2, 0, l);

	testboth(-1.0, 2.0, -1.0 + DBL_EPSILON/2, 0, );
	testboth(-1.0, -INFINITY, -1.0 - DBL_EPSILON, 0, );
	testboth(-1.0, 2.0, -1.0 + FLT_EPSILON/2, 0, f);
	testboth(-1.0, -INFINITY, -1.0 - FLT_EPSILON, 0, f);
	testboth(-1.0, 2.0, -1.0 + ldbl_eps/2, 0, l);
	testboth(-1.0, -INFINITY, -1.0 - ldbl_eps, 0, l);

	/* Cases where nextafter(...) != nexttoward(...) */
	test(nexttoward(1.0, 1.0 + ldbl_eps), 1.0 + DBL_EPSILON, 0);
	testf(nexttowardf(1.0, 1.0 + ldbl_eps), 1.0 + FLT_EPSILON, 0);
	testl(nexttowardl(1.0, 1.0 + ldbl_eps), 1.0 + ldbl_eps, 0);

	printf("ok 3 - next\n");

	/*
	 * Tests at word boundaries, normalization boundaries, etc.
	 */
	testboth(0x1.87654ffffffffp+0, INFINITY, 0x1.87655p+0, 0, );
	testboth(0x1.87655p+0, -INFINITY, 0x1.87654ffffffffp+0, 0, );
	testboth(0x1.fffffffffffffp+0, INFINITY, 0x1p1, 0, );
	testboth(0x1p1, -INFINITY, 0x1.fffffffffffffp+0, 0, );
	testboth(0x0.fffffffffffffp-1022, INFINITY, 0x1p-1022, 0, );
	testboth(0x1p-1022, -INFINITY, 0x0.fffffffffffffp-1022, ex_under, );

	testboth(0x1.fffffep0f, INFINITY, 0x1p1, 0, f);
	testboth(0x1p1, -INFINITY, 0x1.fffffep0f, 0, f);
	testboth(0x0.fffffep-126f, INFINITY, 0x1p-126f, 0, f);
	testboth(0x1p-126f, -INFINITY, 0x0.fffffep-126f, ex_under, f);

#if LDBL_MANT_DIG == 53
	testboth(0x1.87654ffffffffp+0L, INFINITY, 0x1.87655p+0L, 0, l);
	testboth(0x1.87655p+0L, -INFINITY, 0x1.87654ffffffffp+0L, 0, l);
	testboth(0x1.fffffffffffffp+0L, INFINITY, 0x1p1L, 0, l);
	testboth(0x1p1L, -INFINITY, 0x1.fffffffffffffp+0L, 0, l);
	testboth(0x0.fffffffffffffp-1022L, INFINITY, 0x1p-1022L, 0, l);
	testboth(0x1p-1022L, -INFINITY, 0x0.fffffffffffffp-1022L, ex_under, l);
#elif LDBL_MANT_DIG == 64 && !defined(__i386)
	testboth(0x1.87654321fffffffep+0L, INFINITY, 0x1.87654322p+0L, 0, l);
	testboth(0x1.87654322p+0L, -INFINITY, 0x1.87654321fffffffep+0L, 0, l);
	testboth(0x1.fffffffffffffffep0L, INFINITY, 0x1p1L, 0, l);
	testboth(0x1p1L, -INFINITY, 0x1.fffffffffffffffep0L, 0, l);
	testboth(0x0.fffffffffffffffep-16382L, INFINITY, 0x1p-16382L, 0, l);
	testboth(0x1p-16382L, -INFINITY,
	    0x0.fffffffffffffffep-16382L, ex_under, l);
#elif LDBL_MANT_DIG == 113
	testboth(0x1.876543210987ffffffffffffffffp+0L, INFINITY,
	    0x1.876543210988p+0, 0, l);
	testboth(0x1.876543210988p+0L, -INFINITY,
	    0x1.876543210987ffffffffffffffffp+0L, 0, l);
	testboth(0x1.ffffffffffffffffffffffffffffp0L, INFINITY, 0x1p1L, 0, l);
	testboth(0x1p1L, -INFINITY, 0x1.ffffffffffffffffffffffffffffp0L, 0, l);
	testboth(0x0.ffffffffffffffffffffffffffffp-16382L, INFINITY,
	    0x1p-16382L, 0, l);
	testboth(0x1p-16382L, -INFINITY,
	    0x0.ffffffffffffffffffffffffffffp-16382L, ex_under, l);
#endif

	printf("ok 4 - next\n");

	/*
	 * Overflow tests
	 */
	test(idd(nextafter(DBL_MAX, INFINITY)), INFINITY, ex_over);
	test(idd(nextafter(INFINITY, 0.0)), DBL_MAX, 0);
	test(idd(nexttoward(DBL_MAX, DBL_MAX * 2.0L)), INFINITY, ex_over);
#if LDBL_MANT_DIG > 53
	test(idd(nexttoward(INFINITY, DBL_MAX * 2.0L)), DBL_MAX, 0);
#endif

	testf(idf(nextafterf(FLT_MAX, INFINITY)), INFINITY, ex_over);
	testf(idf(nextafterf(INFINITY, 0.0)), FLT_MAX, 0);
	testf(idf(nexttowardf(FLT_MAX, FLT_MAX * 2.0)), INFINITY, ex_over);
	testf(idf(nexttowardf(INFINITY, FLT_MAX * 2.0)), FLT_MAX, 0);

	testboth(ldbl_max, INFINITY, INFINITY, ex_over, l);
	testboth(INFINITY, 0.0, ldbl_max, 0, l);

	printf("ok 5 - next\n");

	return (0);
}
Example #3
0
ATF_TC_BODY(Zone, tc)
{
	ztest("%z");
}
Example #4
0
int main(int argc, char** argv) {

    ros::init(argc, argv, "eigen_test");
    ros::NodeHandle nh_jntPub; // node handle for joint command publisher

 //   ros::Publisher pub_joint_commands; //
//    pub_joint_commands = nh_jntPub.advertise<atlas_msgs::AtlasCommand>("/atlas/atlas_command", 1, true); 
    
    ROS_INFO("test eigen program");
    
    Eigen::Matrix3f A;
    Eigen::Vector3f b;
    A << 1,2,3, 4,5,6, 7,8,10;
    
    A(1,2)=0; // how to access one element of matrix; start from 0; no warning out of range...
    
 
    b << 3,3,4;
    std::cout <<"b = "<<b <<std::endl;   
    
    // column operaton: replace first column of A with vector b:
    A.col(0)= b;  // could copy columns of matrices w/ A.col(0) = B.col(0);
    
    std::cout <<"A = "<<A <<std::endl;

    Eigen::MatrixXd mat1 = Eigen::MatrixXd::Zero(6, 6); //6x6 matrix full of zeros
    Eigen::MatrixXd mat2 = Eigen::MatrixXd::Identity(6, 6); //6x6 identity matrix  

    std::cout<<mat1<<std::endl;
    std::cout<<mat2<<std::endl;

    Eigen::Vector3f xtest = A.colPivHouseholderQr().solve(b);
    std::cout<<"soln xtest = "<<xtest<<std::endl;
    
    Eigen::Vector3f x = A.partialPivLu().solve(b); //dec.solve(b); //A.colPivHouseholderQr().solve(b);
    std::cout<<"soln x = "<<x<<std::endl;
    
    Eigen::Vector3f btest = A*x;
    std::cout<<"test soln: A*x = " <<btest<<std::endl;
    
    //extend to 6x6 test: v = M*z, find z using 2 methods
    // use double-precision matrices/vectors
    Eigen::MatrixXd M = Eigen::MatrixXd::Random(6,6);

    std::cout<<"test 6x6: M = "<<M<<std::endl;
    Eigen::VectorXd v(6);   
    v << 1,2,3,4,5,6;
    std::cout<<"v = "<<v<<std::endl;
    Eigen::VectorXd z(6); 
    Eigen::VectorXd ztest(6);   
    ztest = M.colPivHouseholderQr().solve(v);
    std::cout<<"soln ztest = "<<ztest<<std::endl;
    z = M.partialPivLu().solve(v);   
    std::cout<<"soln 6x6: z = "<<z<<std::endl;
    Eigen::VectorXd vtest(6);
    vtest = M*z;
    std::cout<<"test soln: M*z = "<<vtest<<std::endl;

    // .norm() operator...
    double relative_error = (M*z - v).norm() / v.norm(); // norm() is L2 norm
    std::cout << "The relative error is:\n" << relative_error << std::endl;

    
    std::cout<<"dot prod, v, z: "<< v.dot(z)<<std::endl;
    std::cout<<"cross prod, b-cross-x: " << b.cross(x)<<std::endl;
    
    
    
    return 0;
}
Example #5
0
int
main(int argc, char **argv)
{
    double starttime, endtime;
    int ntasks, myrank;
    char name[128];                      
    int namelen;
    MPI_Status status;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
    MPI_Comm_size(MPI_COMM_WORLD, &ntasks);

    MPI_Get_processor_name(name,&namelen);

    /* Get a few OpenMP parameters.                                               */
    int O_P  = omp_get_num_procs();          /* get number of OpenMP processors       */
    int O_T  = omp_get_num_threads();        /* get number of OpenMP threads          */
    int O_ID = omp_get_thread_num();         /* get OpenMP thread ID                  */
    //printf("name:%s   M_ID:%d  O_ID:%d  O_P:%d  O_T:%d\n", name,myrank,O_ID,O_P,O_T);

    FILE *f;
    char line[LINE_SIZE];
    int numlines = 0;

    exprinfo *exprannot = NULL;
    char **glines = NULL;

    f = fopen("gene_list.txt", "r");
    while(fgets(line, LINE_SIZE, f)) {
        glines = (char**)realloc(glines, sizeof(char*)*(numlines+1));
        glines[numlines] = strdup(line);

        char *pch = strtok (line,",");
        char * gene = pch;

        pch = strtok (NULL, ",");
        int chr = atoi(trimwhitespace(pch));

        exprannot = (exprinfo*)realloc(exprannot,sizeof(exprinfo)*(numlines+1));

        exprannot[numlines].gene      = strdup(gene);
        exprannot[numlines].chr       = chr;

        if (!exprannot) printf("not allcoated\n");
        numlines++;
    }
    fclose(f);
    f = fopen("probe_id_mapping.txt", "r");
    numlines = 0;

    free(glines[0]);
    free(glines);

    probeinfo *records = NULL;
    char **lines = NULL;

    while(fgets(line, LINE_SIZE, f)) {              
        lines = (char**)realloc(lines, sizeof(char*)*(numlines+1));
        lines[numlines] = strdup(line);

        char *pch = strtok (line,",");
        int probeid = atoi(pch);

        pch = strtok (NULL, ",");
        char * gene = pch;

        pch = strtok (NULL, ",");
        int chr = atoi(trimwhitespace(pch));

        records = (probeinfo*)realloc(records,sizeof(probeinfo)*(numlines+1));

        records[numlines].probeid   = probeid;
        records[numlines].chr       = chr;
        records[numlines].gene      = strdup(gene);
        if (!records) printf("not allcoated\n");
        numlines++;

    }
    free(lines[0]);
    free(lines);

    fclose(f);


    int NUM_GENES = numlines;
    unsigned long x_nr, x_nc, y_nr, y_nc;

    double **X = h5_read("x.h5", 1, "/X",         &x_nr, &x_nc);
    double **Y = h5_read("filtered_probes.h5", 1, "/FilteredProbes", &y_nr, &y_nc);

    //printf("loaded X, num rows = %d, num cols = %d\n", x_nr, x_nc);
    //printf("loaded Y, num rows = %d, num cols = %d\n", y_nr, y_nc);

    unsigned long total_mem = (x_nr * y_nc);
    double **RHO   = create2dArray(x_nr, y_nc);
    
    int gene, probe, tid, work_completed;
    work_completed = 0;

    
    int BLOCK_SIZE = NUM_ROWS/ntasks;
    int offset = myrank*BLOCK_SIZE;
    int STOP_IDX = offset+BLOCK_SIZE;
    if (NUM_ROWS - STOP_IDX < BLOCK_SIZE)
        STOP_IDX = NUM_ROWS;

   // printf("offset = %d, for rank %d, with ntasks = %d, and BLOCK_SIZE = %d, STOP_IDX = %d\n", 
    //            offset, myrank, ntasks, BLOCK_SIZE, STOP_IDX);

    int num_sig_found = 0; 
    starttime = MPI_Wtime();

    #pragma omp parallel \
     for shared(X, Y, RHO, BLOCK_SIZE, offset, work_completed) \
     private(probe,gene, tid)
    for (gene = offset; gene < STOP_IDX; gene++) {
       for (probe = 0; probe < NUM_COLS; probe++) {
           double *x = getrowvec(X, gene, BUFFER_SIZE);
           double *y = getcolvec(Y, probe, BUFFER_SIZE);

           double avgx = mean(x, BUFFER_SIZE);
           double * xcentered = sub(x, avgx, BUFFER_SIZE);
                    
           double avgy = mean(y, BUFFER_SIZE);
           double * ycentered = sub(y, avgy, BUFFER_SIZE);
           
           double * prod_result = prod(xcentered, ycentered, BUFFER_SIZE);
           double sum_prod = sum(prod_result, BUFFER_SIZE);

           double stdX = stddev(x, avgx, BUFFER_SIZE);
           double stdY = stddev(y, avgy, BUFFER_SIZE);
           double rho  = sum_prod/((BUFFER_SIZE-1)*(stdX*stdY));

           RHO[gene][probe] = rho;
           if (work_completed % 10000 == 0) {
               tid = omp_get_thread_num();
               printf("rank = %d, work = %d, result[%d,%d] from %d = %f\n", myrank, work_completed,
                    gene, probe, tid, rho);
           }
           work_completed++;
           free(x);
           free(y);
           free(xcentered);
           free(ycentered);
           free(prod_result);

       }
    }
    //printf("********* %d FINISHED **********\n", myrank);

    //f = fopen("significant.txt", "a");
    #pragma omp parallel for shared(RHO,exprannot, records)
    for (int i = 0; i < NUM_ROWS; i++) {
        for (int j = 0; j < NUM_COLS; j++) {
            double zscore = ztest(RHO[i][j],BUFFER_SIZE);
            /*
            if (zscore > 5.0) {

                fprintf(f, "%d,%d,%f,%f,%d,%s,%d,%s\n", 
                        i, j, zscore, RHO[i][j], records[j].chr, records[j].gene, exprannot[i].chr,exprannot[i].gene);
                if (i*j%1000 == 0)
                    printf("%d,%d,%f,%f,%d,%s,%d,%s\n", 
                        i, j, zscore, RHO[i][j], records[j].chr, records[j].gene, exprannot[i].chr,exprannot[i].gene);
            }
            */
        }
    }
    //fclose(f);
    endtime   = MPI_Wtime();
    free(X[0]);
    free(X);
    free(Y[0]);
    free(Y);
    printf("rank %d - elapse time - %f\n",myrank, endtime-starttime);
    //for (int i = 0; i < NUM_ROWS; i++) {
        //printf("%s,%d\n", exprannot[i].gene, exprannot[i].chr);
    //}
    //printf("rank %d FINISHED\n",myrank);
    //h5_write(RHO, NUM_ROWS, NUM_COLS, "rho_omp.h5", "/rho");
    free(RHO[0]);
    free(exprannot);
    free(records);
    free(RHO);

  MPI_Finalize();
  return 0;
}