ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, SymbolRef Sym) { const RangeSet *Ranges = State->get<ConstraintRange>(Sym); // If we don't have any information about this symbol, it's underconstrained. if (!Ranges) return ConditionTruthVal(); // If we have a concrete value, see if it's zero. if (const llvm::APSInt *Value = Ranges->getConcreteValue()) return *Value == 0; BasicValueFactory &BV = getBasicVals(); APSIntType IntType = BV.getAPSIntType(Sym->getType()); llvm::APSInt Zero = IntType.getZeroValue(); // Check if zero is in the set of possible values. if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty()) return false; // Zero is a possible value, but it is not the /only/ possible value. return ConditionTruthVal(); }
ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef State, const SymExpr *LHS, BinaryOperator::Opcode Op, const llvm::APSInt &Int) { assert(BinaryOperator::isComparisonOp(Op) && "Non-comparison ops should be rewritten as comparisons to zero."); SymbolRef Sym = LHS; // Simplification: translate an assume of a constraint of the form // "(exp comparison_op expr) != 0" to true into an assume of // "exp comparison_op expr" to true. (And similarly, an assume of the form // "(exp comparison_op expr) == 0" to true into an assume of // "exp comparison_op expr" to false.) if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) { if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym)) if (BinaryOperator::isComparisonOp(SE->getOpcode())) return assume(State, nonloc::SymbolVal(Sym), (Op == BO_NE ? true : false)); } // Get the type used for calculating wraparound. BasicValueFactory &BVF = getBasicVals(); APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType()); // We only handle simple comparisons of the form "$sym == constant" // or "($sym+constant1) == constant2". // The adjustment is "constant1" in the above expression. It's used to // "slide" the solution range around for modular arithmetic. For example, // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to // the subclasses of SimpleConstraintManager to handle the adjustment. llvm::APSInt Adjustment = WraparoundType.getZeroValue(); computeAdjustment(Sym, Adjustment); // Convert the right-hand side integer as necessary. APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int)); llvm::APSInt ConvertedInt = ComparisonType.convert(Int); // Prefer unsigned comparisons. if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) Adjustment.setIsSigned(false); switch (Op) { default: llvm_unreachable("invalid operation not caught by assertion above"); case BO_EQ: return assumeSymEQ(State, Sym, ConvertedInt, Adjustment); case BO_NE: return assumeSymNE(State, Sym, ConvertedInt, Adjustment); case BO_GT: return assumeSymGT(State, Sym, ConvertedInt, Adjustment); case BO_GE: return assumeSymGE(State, Sym, ConvertedInt, Adjustment); case BO_LT: return assumeSymLT(State, Sym, ConvertedInt, Adjustment); case BO_LE: return assumeSymLE(State, Sym, ConvertedInt, Adjustment); } // end switch }