Example #1
0
void Rover::send_rangefinder(mavlink_channel_t chan)
{
    float distance_cm;
    float voltage;
    bool got_one = false;

    // report smaller distance of all rangefinders
    for (uint8_t i=0; i<rangefinder.num_sensors(); i++) {
        AP_RangeFinder_Backend *s = rangefinder.get_backend(i);
        if (s == nullptr) {
            continue;
        }
        if (!got_one ||
            s->distance_cm() < distance_cm) {
            distance_cm = s->distance_cm();
            voltage = s->voltage_mv();
            got_one = true;
        }
    }
    if (!got_one) {
        // no relevant data found
        return;
    }

    mavlink_msg_rangefinder_send(
        chan,
        distance_cm * 0.01f,
        voltage);
}
Example #2
0
MAV_DISTANCE_SENSOR RangeFinder::get_mav_distance_sensor_type_orient(enum Rotation orientation) const
{
    AP_RangeFinder_Backend *backend = find_instance(orientation);
    if (backend == nullptr) {
        return MAV_DISTANCE_SENSOR_UNKNOWN;
    }
    return backend->get_mav_distance_sensor_type();
}
Example #3
0
uint8_t RangeFinder::range_valid_count_orient(enum Rotation orientation) const
{
    AP_RangeFinder_Backend *backend = find_instance(orientation);
    if (backend == nullptr) {
        return 0;
    }
    return backend->range_valid_count();
}
Example #4
0
const Vector3f &RangeFinder::get_pos_offset_orient(enum Rotation orientation) const
{
    AP_RangeFinder_Backend *backend = find_instance(orientation);
    if (backend == nullptr) {
        return pos_offset_zero;
    }
    return backend->get_pos_offset();
}
Example #5
0
int16_t RangeFinder::ground_clearance_cm_orient(enum Rotation orientation) const
{
    AP_RangeFinder_Backend *backend = find_instance(orientation);
    if (backend == nullptr) {
        return 0;
    }
    return backend->ground_clearance_cm();
}
Example #6
0
bool RangeFinder::has_data_orient(enum Rotation orientation) const
{
    AP_RangeFinder_Backend *backend = find_instance(orientation);
    if (backend == nullptr) {
        return false;
    }
    return backend->has_data();
}
Example #7
0
uint16_t RangeFinder::voltage_mv_orient(enum Rotation orientation) const
{
    AP_RangeFinder_Backend *backend = find_instance(orientation);
    if (backend == nullptr) {
        return 0;
    }
    return backend->voltage_mv();
}
Example #8
0
RangeFinder::RangeFinder_Status RangeFinder::status_orient(enum Rotation orientation) const
{
    AP_RangeFinder_Backend *backend = find_instance(orientation);
    if (backend == nullptr) {
        return RangeFinder_NotConnected;
    }
    return backend->status();
}
Example #9
0
uint32_t RangeFinder::last_reading_ms(enum Rotation orientation) const
{
    AP_RangeFinder_Backend *backend = find_instance(orientation);
    if (backend == nullptr) {
        return 0;
    }
    return backend->last_reading_ms();
}
Example #10
0
// find first range finder instance with the specified orientation
AP_RangeFinder_Backend *RangeFinder::find_instance(enum Rotation orientation) const
{
    for (uint8_t i=0; i<num_instances; i++) {
        AP_RangeFinder_Backend *backend = get_backend(i);
        if (backend == nullptr) {
            continue;
        }
        if (backend->orientation() != orientation) {
            continue;
        }
        return backend;
    }
    return nullptr;
}
Example #11
0
// update error mask of sensors and subsystems. The mask
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set
// then it indicates that the sensor or subsystem is present but
// not functioning correctly.
void Rover::update_sensor_status_flags(void)
{
    // default sensors present
    control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;

    // first what sensors/controllers we have
    if (g.compass_enabled) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG;  // compass present
    }
    if (gps.status() > AP_GPS::NO_GPS) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
    }
    if (g2.visual_odom.enabled()) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
    }
    if (rover.DataFlash.logging_present()) {  // primary logging only (usually File)
        control_sensors_present |= MAV_SYS_STATUS_LOGGING;
    }
    if (rover.g2.proximity.get_status() > AP_Proximity::Proximity_NotConnected) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
    }

    // all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually
    control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL &
                                                         ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION &
                                                         ~MAV_SYS_STATUS_SENSOR_YAW_POSITION &
                                                         ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL &
                                                         ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS &
                                                         ~MAV_SYS_STATUS_LOGGING &
                                                         ~MAV_SYS_STATUS_SENSOR_BATTERY);
    if (control_mode->attitude_stabilized()) {
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // 3D angular rate control
    }
    if (control_mode->is_autopilot_mode()) {
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
    }

    if (rover.DataFlash.logging_enabled()) {
        control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
    }

    // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
    if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
    }

    if (battery.num_instances() > 0) {
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY;
    }

    // default to all healthy except compass and gps which we set individually
    control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS);
    if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
    }
    if (gps.is_healthy()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
    }
    if (g2.visual_odom.enabled() && !g2.visual_odom.healthy()) {
        control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION;
    }
    if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
        control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
    }
    if (!ins.get_accel_health_all()) {
        control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
    }

    if (ahrs.initialised() && !ahrs.healthy()) {
        // AHRS subsystem is unhealthy
        control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
    }

    if (rangefinder.num_sensors() > 0) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
        if (g.rangefinder_trigger_cm > 0) {
            control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
        }
        AP_RangeFinder_Backend *s = rangefinder.get_backend(0);
        if (s != nullptr && s->has_data()) {
            control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
        }
    }
    if (rover.g2.proximity.get_status() < AP_Proximity::Proximity_Good) {
        control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_LASER_POSITION;
    }
    if (rover.DataFlash.logging_failed()) {
        control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
    }

    if (!battery.healthy() || battery.has_failsafed()) {
        control_sensors_enabled &= ~MAV_SYS_STATUS_SENSOR_BATTERY;
    }

    if (!initialised || ins.calibrating()) {
        // while initialising the gyros and accels are not enabled
        control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
        control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
    }
#if FRSKY_TELEM_ENABLED == ENABLED
    // give mask of error flags to Frsky_Telemetry
    frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present);
#endif
}
// select the height measurement to be fused from the available baro, range finder and GPS sources
void NavEKF2_core::selectHeightForFusion()
{
    // Read range finder data and check for new data in the buffer
    // This data is used by both height and optical flow fusion processing
    readRangeFinder();
    rangeDataToFuse = storedRange.recall(rangeDataDelayed,imuDataDelayed.time_ms);

    // correct range data for the body frame position offset relative to the IMU
    // the corrected reading is the reading that would have been taken if the sensor was
    // co-located with the IMU
    if (rangeDataToFuse) {
        AP_RangeFinder_Backend *sensor = frontend->_rng.get_backend(rangeDataDelayed.sensor_idx);
        if (sensor != nullptr) {
            Vector3f posOffsetBody = sensor->get_pos_offset() - accelPosOffset;
            if (!posOffsetBody.is_zero()) {
                Vector3f posOffsetEarth = prevTnb.mul_transpose(posOffsetBody);
                rangeDataDelayed.rng += posOffsetEarth.z / prevTnb.c.z;
            }
        }
    }

    // read baro height data from the sensor and check for new data in the buffer
    readBaroData();
    baroDataToFuse = storedBaro.recall(baroDataDelayed, imuDataDelayed.time_ms);

    // select height source
    if (extNavUsedForPos) {
        // always use external vision as the hight source if using for position.
        activeHgtSource = HGT_SOURCE_EV;
    } else if (((frontend->_useRngSwHgt > 0) || (frontend->_altSource == 1)) && (imuSampleTime_ms - rngValidMeaTime_ms < 500)) {
        if (frontend->_altSource == 1) {
            // always use range finder
            activeHgtSource = HGT_SOURCE_RNG;
        } else {
            // determine if we are above or below the height switch region
            float rangeMaxUse = 1e-4f * (float)frontend->_rng.max_distance_cm_orient(ROTATION_PITCH_270) * (float)frontend->_useRngSwHgt;
            bool aboveUpperSwHgt = (terrainState - stateStruct.position.z) > rangeMaxUse;
            bool belowLowerSwHgt = (terrainState - stateStruct.position.z) < 0.7f * rangeMaxUse;

            // If the terrain height is consistent and we are moving slowly, then it can be
            // used as a height reference in combination with a range finder
            // apply a hysteresis to the speed check to prevent rapid switching
            float horizSpeed = norm(stateStruct.velocity.x, stateStruct.velocity.y);
            bool dontTrustTerrain = ((horizSpeed > frontend->_useRngSwSpd) && filterStatus.flags.horiz_vel) || !terrainHgtStable;
            float trust_spd_trigger = MAX((frontend->_useRngSwSpd - 1.0f),(frontend->_useRngSwSpd * 0.5f));
            bool trustTerrain = (horizSpeed < trust_spd_trigger) && terrainHgtStable;

            /*
             * Switch between range finder and primary height source using height above ground and speed thresholds with
             * hysteresis to avoid rapid switching. Using range finder for height requires a consistent terrain height
             * which cannot be assumed if the vehicle is moving horizontally.
            */
            if ((aboveUpperSwHgt || dontTrustTerrain) && (activeHgtSource == HGT_SOURCE_RNG)) {
                // cannot trust terrain or range finder so stop using range finder height
                if (frontend->_altSource == 0) {
                    activeHgtSource = HGT_SOURCE_BARO;
                } else if (frontend->_altSource == 2) {
                    activeHgtSource = HGT_SOURCE_GPS;
                }
            } else if (belowLowerSwHgt && trustTerrain && (activeHgtSource != HGT_SOURCE_RNG)) {
                // reliable terrain and range finder so start using range finder height
                activeHgtSource = HGT_SOURCE_RNG;
            }
        }
    } else if ((frontend->_altSource == 2) && ((imuSampleTime_ms - lastTimeGpsReceived_ms) < 500) && validOrigin && gpsAccuracyGood) {
        activeHgtSource = HGT_SOURCE_GPS;
    } else if ((frontend->_altSource == 3) && validOrigin && rngBcnGoodToAlign) {
        activeHgtSource = HGT_SOURCE_BCN;
    } else {
        activeHgtSource = HGT_SOURCE_BARO;
    }

    // Use Baro alt as a fallback if we lose range finder, GPS or external nav
    bool lostRngHgt = ((activeHgtSource == HGT_SOURCE_RNG) && ((imuSampleTime_ms - rngValidMeaTime_ms) > 500));
    bool lostGpsHgt = ((activeHgtSource == HGT_SOURCE_GPS) && ((imuSampleTime_ms - lastTimeGpsReceived_ms) > 2000));
    bool lostExtNavHgt = ((activeHgtSource == HGT_SOURCE_EV) && ((imuSampleTime_ms - extNavMeasTime_ms) > 2000));
    if (lostRngHgt || lostGpsHgt || lostExtNavHgt) {
        activeHgtSource = HGT_SOURCE_BARO;
    }

    // if there is new baro data to fuse, calculate filtered baro data required by other processes
    if (baroDataToFuse) {
        // calculate offset to baro data that enables us to switch to Baro height use during operation
        if  (activeHgtSource != HGT_SOURCE_BARO) {
            calcFiltBaroOffset();
        }
        // filtered baro data used to provide a reference for takeoff
        // it is is reset to last height measurement on disarming in performArmingChecks()
        if (!getTakeoffExpected()) {
            const float gndHgtFiltTC = 0.5f;
            const float dtBaro = frontend->hgtAvg_ms*1.0e-3f;
            float alpha = constrain_float(dtBaro / (dtBaro+gndHgtFiltTC),0.0f,1.0f);
            meaHgtAtTakeOff += (baroDataDelayed.hgt-meaHgtAtTakeOff)*alpha;
        }
    }

    // If we are not using GPS as the primary height sensor, correct EKF origin height so that
    // combined local NED position height and origin height remains consistent with the GPS altitude
    // This also enables the GPS height to be used as a backup height source
    if (gpsDataToFuse &&
            (((frontend->_originHgtMode & (1 << 0)) && (activeHgtSource == HGT_SOURCE_BARO)) ||
            ((frontend->_originHgtMode & (1 << 1)) && (activeHgtSource == HGT_SOURCE_RNG)))
            ) {
        correctEkfOriginHeight();
    }

    // Select the height measurement source
    if (extNavDataToFuse && (activeHgtSource == HGT_SOURCE_EV)) {
        hgtMea = -extNavDataDelayed.pos.z;
        posDownObsNoise = sq(constrain_float(extNavDataDelayed.posErr, 0.1f, 10.0f));
    } else if (rangeDataToFuse && (activeHgtSource == HGT_SOURCE_RNG)) {
        // using range finder data
        // correct for tilt using a flat earth model
        if (prevTnb.c.z >= 0.7) {
            // calculate height above ground
            hgtMea  = MAX(rangeDataDelayed.rng * prevTnb.c.z, rngOnGnd);
            // correct for terrain position relative to datum
            hgtMea -= terrainState;
            // enable fusion
            fuseHgtData = true;
            velPosObs[5] = -hgtMea;
            // set the observation noise
            posDownObsNoise = sq(constrain_float(frontend->_rngNoise, 0.1f, 10.0f));
            // add uncertainty created by terrain gradient and vehicle tilt
            posDownObsNoise += sq(rangeDataDelayed.rng * frontend->_terrGradMax) * MAX(0.0f , (1.0f - sq(prevTnb.c.z)));
        } else {
            // disable fusion if tilted too far
            fuseHgtData = false;
        }
    } else if  (gpsDataToFuse && (activeHgtSource == HGT_SOURCE_GPS)) {
        // using GPS data
        hgtMea = gpsDataDelayed.hgt;
        // enable fusion
        velPosObs[5] = -hgtMea;
        fuseHgtData = true;
        // set the observation noise using receiver reported accuracy or the horizontal noise scaled for typical VDOP/HDOP ratio
        if (gpsHgtAccuracy > 0.0f) {
            posDownObsNoise = sq(constrain_float(gpsHgtAccuracy, 1.5f * frontend->_gpsHorizPosNoise, 100.0f));
        } else {
            posDownObsNoise = sq(constrain_float(1.5f * frontend->_gpsHorizPosNoise, 0.1f, 10.0f));
        }
    } else if (baroDataToFuse && (activeHgtSource == HGT_SOURCE_BARO)) {
        // using Baro data
        hgtMea = baroDataDelayed.hgt - baroHgtOffset;
        // enable fusion
        velPosObs[5] = -hgtMea;
        fuseHgtData = true;
        // set the observation noise
        posDownObsNoise = sq(constrain_float(frontend->_baroAltNoise, 0.1f, 10.0f));
        // reduce weighting (increase observation noise) on baro if we are likely to be in ground effect
        if (getTakeoffExpected() || getTouchdownExpected()) {
            posDownObsNoise *= frontend->gndEffectBaroScaler;
        }
        // If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
        // This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
        if (motorsArmed && getTakeoffExpected()) {
            hgtMea = MAX(hgtMea, meaHgtAtTakeOff);
        }
    } else {
        fuseHgtData = false;
    }

    // If we haven't fused height data for a while, then declare the height data as being timed out
    // set timeout period based on whether we have vertical GPS velocity available to constrain drift
    hgtRetryTime_ms = (useGpsVertVel && !velTimeout) ? frontend->hgtRetryTimeMode0_ms : frontend->hgtRetryTimeMode12_ms;
    if (imuSampleTime_ms - lastHgtPassTime_ms > hgtRetryTime_ms) {
        hgtTimeout = true;
    } else {
        hgtTimeout = false;
    }
}