void make_biconnected_planar(Graph& g,
                             PlanarEmbedding embedding,
                             EdgeIndexMap em,
                             AddEdgeVisitor& vis
                            )
{
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename graph_traits<Graph>::edges_size_type edge_size_t;
    typedef typename
    property_traits<PlanarEmbedding>::value_type embedding_value_t;
    typedef typename embedding_value_t::const_iterator embedding_iterator_t;
    typedef iterator_property_map
    <std::vector<std::size_t>::iterator, EdgeIndexMap> component_map_t;

    edge_size_t n_edges(num_edges(g));
    std::vector<vertex_t> articulation_points;
    std::vector<edge_size_t> component_vector(n_edges);
    component_map_t component_map(component_vector.begin(), em);

    biconnected_components(g, component_map,
                           std::back_inserter(articulation_points));

    typename std::vector<vertex_t>::iterator ap, ap_end;
    ap_end = articulation_points.end();
    for(ap = articulation_points.begin(); ap != ap_end; ++ap)
    {
        vertex_t v(*ap);
        embedding_iterator_t pi = embedding[v].begin();
        embedding_iterator_t pi_end = embedding[v].end();
        edge_size_t previous_component(n_edges + 1);
        vertex_t previous_vertex = graph_traits<Graph>::null_vertex();

        for(; pi != pi_end; ++pi)
        {
            edge_t e(*pi);
            vertex_t e_source(source(e,g));
            vertex_t e_target(target(e,g));

            //Skip self-loops and parallel edges
            if (e_source == e_target || previous_vertex == e_target)
                continue;

            vertex_t current_vertex = e_source == v ? e_target : e_source;
            edge_size_t current_component = component_map[e];
            if (previous_vertex != graph_traits<Graph>::null_vertex() &&
                    current_component != previous_component)
            {
                vis.visit_vertex_pair(current_vertex, previous_vertex, g);
            }
            previous_vertex = current_vertex;
            previous_component = current_component;
        }
    }

}
  void make_connected(Graph& g, VertexIndexMap vm, AddEdgeVisitor& vis)
  {
    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
    typedef iterator_property_map< typename std::vector<v_size_t>::iterator,
                                   VertexIndexMap
                                  > vertex_to_v_size_map_t;

    std::vector<v_size_t> component_vector(num_vertices(g));
    vertex_to_v_size_map_t component(component_vector.begin(), vm);
    std::vector<vertex_t> vertices_by_component(num_vertices(g));

    v_size_t num_components = connected_components(g, component);

    if (num_components < 2)
      return;

    vertex_iterator_t vi, vi_end;
    tie(vi,vi_end) = vertices(g);
    std::copy(vi, vi_end, vertices_by_component.begin());

    bucket_sort(vertices_by_component.begin(),
                vertices_by_component.end(),
                component,
                num_components
                );

    typedef typename std::vector<vertex_t>::iterator vec_of_vertices_itr_t;

    vec_of_vertices_itr_t ci_end = vertices_by_component.end();
    vec_of_vertices_itr_t ci_prev = vertices_by_component.begin();
    if (ci_prev == ci_end)
      return;

    for(vec_of_vertices_itr_t ci = boost::next(ci_prev); 
        ci != ci_end;  ci_prev = ci, ++ci
        )
      {
        if (component[*ci_prev] != component[*ci])
          vis.visit_vertex_pair(*ci_prev, *ci, g);
      }

  }