Example #1
0
void CountPrimaries(TH1F *hMultCount) {

  if (hMultCount==0) hMultCount = new TH1F("mult","averaged multiplicity (charg. prim)",80,-4.,4.);
  
  AliRunLoader *rl = AliRunLoader::Open("galice.root");
  rl->SetKineFileName("Kinematics.root");
  rl->LoadHeader();
  rl->LoadKinematics(); 
  Int_t nEvents = rl->GetNumberOfEvents();
  cout<< "N events "<<nEvents<<endl;
  for(Int_t iEv=0; iEv<nEvents; iEv++){
    rl->GetEvent(iEv);
    AliStack *s = rl->Stack();
    for(Int_t iP=0; iP<s->GetNtrack(); iP++ ){
      TParticle *p = s->Particle(iP);
      if (!(s->IsPhysicalPrimary(iP))) continue;
      Float_t eta = p->Eta();
      if (p->Pt()>0.06) {
	hMultCount->Fill(eta);
      }
    }
  }

  hMultCount->DrawCopy();
  rl->UnloadHeader();
  rl->UnloadKinematics();
  delete rl;



}
Example #2
0
Int_t printDigits()
{

    AliRunLoader *rl = AliRunLoader::Open("galice.root");

    AliPHOSLoader *prl = (AliPHOSLoader*)rl->GetDetectorLoader("PHOS");

    prl->LoadDigits("READ");
    //prl->LoadDigits();

    Int_t nDigits = 0;
    Int_t nSimEvents = rl->GetNumberOfEvents();
    for (Int_t ev = 0; ev < nSimEvents; ev++)
    {
        rl->GetEvent(ev);

        Int_t nPhosDigits = prl->Digits()->GetEntries();

        //Int_t nDigsFound = 0;
        std::cout << "Number of digits found: " << nPhosDigits << std::endl;
        TClonesArray *phosDigits = prl->Digits();

        for (Int_t iDig = 0; iDig < nPhosDigits; iDig++)
        {
            //const AliPHOSDigit *digit = prl->Digit(iDig);
            AliPHOSDigit *digit = (AliPHOSDigit*)phosDigits->At(iDig);
            nDigits++;
	    //if(digit->GetTime() > 1.4e-08 && digit->GetTime() < 1.6e-08)
            std::cout <<"#: " << iDig << " ID: " << digit->GetId() << " " << "Energy: " << digit->GetEnergy() << " Time: " << digit->GetTime() << " N_prim: " << digit->GetNprimary() <<  " " << digit->GetTimeR() << std::endl;
        }
    }
  return 0;
}
Example #3
0
void Kin2Txt() {
  AliRunLoader* rl = AliRunLoader::Open("galice.root");
  rl->LoadKinematics();
  rl->LoadHeader();

  TH1* hM  = new TH1D("hM",  "TreeK;M#(){#pi^{+}#pi^{-}} #(){GeV/#it{c}^{2}}", 100, 0., 2.);
  TH1* hPt = new TH1D("hPt", "TreeK;P_{T}#(){#pi^{+}#pi^{-}} #(){GeV/#it{c}}", 100, 0., 1.);
  TH1* hY  = new TH1D("hY",  "TreeK;Y#(){#pi^{+}#pi^{-}}",                     160,-8., 8.);
  std::ofstream ofs("rho0.txt");
  
  AliStack *stack = NULL;
  TParticle *part = NULL;
  TLorentzVector v[2], vSum;
  for (Int_t i=0, n(rl->GetNumberOfEvents()); i<n; ++i) {
    rl->GetEvent(i);
    stack = rl->Stack();

    Int_t nPrimary(0);
    for (Int_t j(0), m(stack->GetNtrack()); j<m; ++j) {
      part = stack->Particle(j);
      if (part->IsPrimary())
	part->Momentum(v[nPrimary++]);
    }
    if (nPrimary != 2) {
      Printf("Error: nPrimary=%d != 2", nPrimary);
      continue;
    }
    vSum = v[0] + v[1];
    hM->Fill(vSum.M());
    hPt->Fill(vSum.Perp());
    hY->Fill(vSum.Rapidity());
    ofs << std::fixed << std::setprecision(4)
	<< vSum.M() << " " << vSum.Perp() << " " << vSum.Rapidity() << " "
	<< v[0].Eta() << " " << v[0].Px() << " " << v[0].Py() << " " << v[0].Pz() << " "
	<< v[1].Eta() << " " << v[1].Px() << " " << v[1].Py() << " " << v[1].Pz()
	<< std::endl;
  }
  hM->Draw();
  c1->SaveAs("TreeK.pdf(");
  hPt->Draw();
  c1->SaveAs("TreeK.pdf");
  hY->Draw();
  c1->SaveAs("TreeK.pdf)");
}
Example #4
0
void plots() {

  gSystem->Load("libEVGEN"); // Needs to be!

  AliRunLoader* rl = AliRunLoader::Open("galice.root");
  rl->LoadKinematics();
  rl->LoadHeader();

  // 4pi histograms
  TH1* hM    = new TH1D("hM",  "DIME #rho#rho;M_{4#pi} #(){GeV/#it{c}^{2}}", 100,  1.0, 3.0);
  TH1* hPt   = new TH1D("hPt", "DIME #rho#rho;p_{T}#(){4#pi} #(){GeV/#it{c}}", 100,  0.0, 3.0);

  // pi+- histograms
  TH1* hPt1   = new TH1D("hPt1", "DIME #rho#rho;p_{T}#(){#pi^{#pm}} #(){Gev/#it{c}}",  100, 0.0, 3.0);

  AliStack* stack = NULL;
  TParticle* part = NULL;
  TLorentzVector v[4];
  TLorentzVector vSum;

  // Loop over events
  for (Int_t i = 0; i < rl->GetNumberOfEvents(); ++i) {

    rl->GetEvent(i);
    stack = rl->Stack();
    Int_t nPrimary = 0;

    // Loop over all particles
    for (Int_t j = 0; j < stack->GetNtrack(); ++j) {
      part = stack->Particle(j);           // Get particle
      part->Print();                       // Print contents

      if (abs(part->GetPdgCode()) == 211   // Is pi+ or pi-
          & part->GetStatusCode() == 1     // Is stable final state
          & stack->IsPhysicalPrimary(j)) { // Is from generator level

        part->Momentum(v[nPrimary]);       // Set content of v
        ++nPrimary;
      }
    }
    if (nPrimary != 4) {
      printf("Error: nPrimary=%d != 4 \n", nPrimary);
      continue;
    }

    // 4-vector sum
    vSum = v[0] + v[1] + v[2] + v[3];

    // Fill 4pi histograms
    hM->Fill(vSum.M());
    hPt->Fill(vSum.Perp());

    // Fill pi+- histograms
    for (Int_t k = 0; k < 4; ++k) {
      hPt1->Fill(v[k].Perp());
    }
    printf("\n");
  }

  // Save plots as pdf
  hM->Draw();    c1->SaveAs("plotM.pdf");
  hPt->Draw();   c1->SaveAs("plotPt.pdf");
  hPt1->Draw();  c1->SaveAs("plotPt1.pdf");

}
Example #5
0
void TestEMCALSDigit()
{
  
  // Getting EMCAL Detector and Geometry.
  
  AliRunLoader *rl = AliRunLoader::Open("galice.root",AliConfig::GetDefaultEventFolderName(),"read");
  
  if (rl == 0x0)
    cout<<"Can not instatiate the Run Loader"<<endl;
  
  rl->LoadgAlice();//Needed to get geometry
  
  AliEMCALLoader *emcalLoader = dynamic_cast<AliEMCALLoader*>
    (rl->GetDetectorLoader("EMCAL"));
  
  TGeoManager::Import("geometry.root");
  
  AliRun * alirun   = rl->GetAliRun(); // Needed to get Geometry
  AliEMCALGeometry * geom ;
  if(alirun){
    AliEMCAL * emcal  = (AliEMCAL*)alirun->GetDetector("EMCAL");
    geom = emcal->GetGeometry();
  }
  
  if (geom == 0) cout<<"Did not get geometry from EMCALLoader"<<endl;
  else   geom->PrintGeometry();
  
  //Load Digits
  rl->LoadSDigits("EMCAL");
  
  //Get maximum number of events
  Int_t maxevent =  rl->GetNumberOfEvents();
  cout<<"Number of events "<<maxevent<<endl;
  //maxevent = 10 ;
  
  Int_t iEvent  = -1 ;
  Float_t amp   = -1 ;
  Float_t time  = -1 ;
  Int_t id      = -1 ;
  Int_t iSupMod =  0 ;
  Int_t iTower  =  0 ;
  Int_t iIphi   =  0 ;
  Int_t iIeta   =  0 ;
  Int_t iphi    =  0 ;
  Int_t ieta    =  0 ;
  
  AliEMCALDigit * dig;
  
  for ( iEvent=0; iEvent<maxevent; iEvent++)
    {
      cout <<  " ======> Event " << iEvent << endl ;
      //Load Event
      rl->GetEvent(iEvent);
      
      //Fill array of digits
      TClonesArray *digits = emcalLoader->SDigits();
      
      //Get digits from the list      
      for(Int_t idig = 0; idig< digits->GetEntries();idig++){
	//cout<<">> idig "<<idig<<endl;
	dig = static_cast<AliEMCALDigit *>(digits->At(idig)) ;
	
	if(dig != 0){
	  id   = dig->GetId() ; //cell (digit) label
	  amp  = dig->GetAmplitude(); //amplitude in cell (digit)
	  time = dig->GetTime();//time of creation of digit after collision
	  
	  cout<<"Cell ID "<<id<<" Amp "<<amp<<endl;//" time "<<time<<endl;
	  
	  //Geometry methods  
	  if(geom){
	    geom->GetCellIndex(id,iSupMod,iTower,iIphi,iIeta); 
	    //Gives SuperModule and Tower numbers
	    geom->GetCellPhiEtaIndexInSModule(iSupMod,iTower,
					      iIphi, iIeta,iphi,ieta);
	    //Gives label of cell in eta-phi position per each supermodule
	    cout<< "SModule "<<iSupMod<<"; Tower "<<iTower <<"; Eta "<<iIeta
		<<"; Phi "<<iIphi<<"; Cell Eta "<<ieta<<"; Cell Phi "<<iphi<<endl;
	  }
	}
	else
	  cout<<"Digit pointer 0x0"<<endl;
      }
      
    }


}
Example #6
0
Bool_t CheckESD(const char* gAliceFileName = "galice.root", 
		const char* esdFileName = "AliESDs.root")
{
// check the content of the ESD
 
  // check values
  Int_t    checkNGenLow = 1;

  Double_t checkEffLow = 0.5;
  Double_t checkEffSigma = 3;
  Double_t checkFakeHigh = 0.5;
  Double_t checkFakeSigma = 3;

  Double_t checkResPtInvHigh = 5;
  Double_t checkResPtInvSigma = 3;
  Double_t checkResPhiHigh = 10;
  Double_t checkResPhiSigma = 3;
  Double_t checkResThetaHigh = 10;
  Double_t checkResThetaSigma = 3;

  Double_t checkPIDEffLow = 0.5;
  Double_t checkPIDEffSigma = 3;
  Double_t checkResTOFHigh = 500;
  Double_t checkResTOFSigma = 3;

  Double_t checkPHOSNLow = 5;
  Double_t checkPHOSEnergyLow = 0.3;
  Double_t checkPHOSEnergyHigh = 1.0;
  Double_t checkEMCALNLow = 50;
  Double_t checkEMCALEnergyLow = 0.05;
  Double_t checkEMCALEnergyHigh = 1.0;

  Double_t checkMUONNLow = 1;
  Double_t checkMUONPtLow = 0.5;
  Double_t checkMUONPtHigh = 10.;

  Double_t cutPtV0 = 0.3;
  Double_t checkV0EffLow = 0.02;
  Double_t checkV0EffSigma = 3;
  Double_t cutPtCascade = 0.5;
  Double_t checkCascadeEffLow = 0.01;
  Double_t checkCascadeEffSigma = 3;

  // open run loader and load gAlice, kinematics and header
  AliRunLoader* runLoader = AliRunLoader::Open(gAliceFileName);
  if (!runLoader) {
    Error("CheckESD", "getting run loader from file %s failed", 
	    gAliceFileName);
    return kFALSE;
  }
  runLoader->LoadgAlice();
  gAlice = runLoader->GetAliRun();
  if (!gAlice) {
    Error("CheckESD", "no galice object found");
    return kFALSE;
  }
  runLoader->LoadKinematics();
  runLoader->LoadHeader();

  // open the ESD file
  TFile* esdFile = TFile::Open(esdFileName);
  if (!esdFile || !esdFile->IsOpen()) {
    Error("CheckESD", "opening ESD file %s failed", esdFileName);
    return kFALSE;
  }
  AliESDEvent * esd = new AliESDEvent;
  TTree* tree = (TTree*) esdFile->Get("esdTree");
  if (!tree) {
    Error("CheckESD", "no ESD tree found");
    return kFALSE;
  }
  esd->ReadFromTree(tree);

  // efficiency and resolution histograms
  Int_t nBinsPt = 15;
  Float_t minPt = 0.1;
  Float_t maxPt = 3.1;
  TH1F* hGen = CreateHisto("hGen", "generated tracks", 
			   nBinsPt, minPt, maxPt, "p_{t} [GeV/c]", "N");
  TH1F* hRec = CreateHisto("hRec", "reconstructed tracks", 
			   nBinsPt, minPt, maxPt, "p_{t} [GeV/c]", "N");
  Int_t nGen = 0;
  Int_t nRec = 0;
  Int_t nFake = 0;

  TH1F* hResPtInv = CreateHisto("hResPtInv", "", 100, -10, 10, 
           "(p_{t,rec}^{-1}-p_{t,sim}^{-1}) / p_{t,sim}^{-1} [%]", "N");
  TH1F* hResPhi = CreateHisto("hResPhi", "", 100, -20, 20, 
			      "#phi_{rec}-#phi_{sim} [mrad]", "N");
  TH1F* hResTheta = CreateHisto("hResTheta", "", 100, -20, 20, 
				"#theta_{rec}-#theta_{sim} [mrad]", "N");

  // PID
  Int_t partCode[AliPID::kSPECIES] = 
    {kElectron, kMuonMinus, kPiPlus, kKPlus, kProton};
  const char* partName[AliPID::kSPECIES+1] = 
    {"electron", "muon", "pion", "kaon", "proton", "other"};
  Double_t partFrac[AliPID::kSPECIES] = 
    {0.01, 0.01, 0.85, 0.10, 0.05};
  Int_t identified[AliPID::kSPECIES+1][AliPID::kSPECIES];
  for (Int_t iGen = 0; iGen < AliPID::kSPECIES+1; iGen++) {
    for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) {
      identified[iGen][iRec] = 0;
    }
  }
  Int_t nIdentified = 0;

  // dE/dx and TOF
  TH2F* hDEdxRight = new TH2F("hDEdxRight", "", 300, 0, 3, 100, 0, 400);
  hDEdxRight->SetStats(kFALSE);
  hDEdxRight->GetXaxis()->SetTitle("p [GeV/c]");
  hDEdxRight->GetYaxis()->SetTitle("dE/dx_{TPC}");
  hDEdxRight->SetMarkerStyle(kFullCircle);
  hDEdxRight->SetMarkerSize(0.4);
  TH2F* hDEdxWrong = new TH2F("hDEdxWrong", "", 300, 0, 3, 100, 0, 400);
  hDEdxWrong->SetStats(kFALSE);
  hDEdxWrong->GetXaxis()->SetTitle("p [GeV/c]");
  hDEdxWrong->GetYaxis()->SetTitle("dE/dx_{TPC}");
  hDEdxWrong->SetMarkerStyle(kFullCircle);
  hDEdxWrong->SetMarkerSize(0.4);
  hDEdxWrong->SetMarkerColor(kRed);
  TH1F* hResTOFRight = CreateHisto("hResTOFRight", "", 100, -1000, 1000, 
				   "t_{TOF}-t_{track} [ps]", "N");
  TH1F* hResTOFWrong = CreateHisto("hResTOFWrong", "", 100, -1000, 1000, 
				   "t_{TOF}-t_{track} [ps]", "N");
  hResTOFWrong->SetLineColor(kRed);

  // calorimeters
  TH1F* hEPHOS = CreateHisto("hEPHOS", "PHOS", 100, 0, 50, "E [GeV]", "N");
  TH1F* hEEMCAL = CreateHisto("hEEMCAL", "EMCAL", 100, 0, 50, "E [GeV]", "N");

  // muons
  TH1F* hPtMUON = CreateHisto("hPtMUON", "MUON", 100, 0, 20, 
			      "p_{t} [GeV/c]", "N");

  // V0s and cascades
  TH1F* hMassK0 = CreateHisto("hMassK0", "K^{0}", 100, 0.4, 0.6, 
			      "M(#pi^{+}#pi^{-}) [GeV/c^{2}]", "N");
  TH1F* hMassLambda = CreateHisto("hMassLambda", "#Lambda", 100, 1.0, 1.2, 
				  "M(p#pi^{-}) [GeV/c^{2}]", "N");
  TH1F* hMassLambdaBar = CreateHisto("hMassLambdaBar", "#bar{#Lambda}", 
				     100, 1.0, 1.2, 
				     "M(#bar{p}#pi^{+}) [GeV/c^{2}]", "N");
  Int_t nGenV0s = 0;
  Int_t nRecV0s = 0;
  TH1F* hMassXi = CreateHisto("hMassXi", "#Xi", 100, 1.2, 1.5, 
			      "M(#Lambda#pi) [GeV/c^{2}]", "N");
  TH1F* hMassOmega = CreateHisto("hMassOmega", "#Omega", 100, 1.5, 1.8, 
				 "M(#LambdaK) [GeV/c^{2}]", "N");
  Int_t nGenCascades = 0;
  Int_t nRecCascades = 0;

  // loop over events
  for (Int_t iEvent = 0; iEvent < runLoader->GetNumberOfEvents(); iEvent++) {
    runLoader->GetEvent(iEvent);

    // select simulated primary particles, V0s and cascades
    AliStack* stack = runLoader->Stack();
    Int_t nParticles = stack->GetNtrack();
    TArrayF vertex(3);
    runLoader->GetHeader()->GenEventHeader()->PrimaryVertex(vertex);
    TObjArray selParticles;
    TObjArray selV0s;
    TObjArray selCascades;
    for (Int_t iParticle = 0; iParticle < nParticles; iParticle++) {
      TParticle* particle = stack->Particle(iParticle);
      if (!particle) continue;
      if (particle->Pt() < 0.001) continue;
      if (TMath::Abs(particle->Eta()) > 0.9) continue;
      TVector3 dVertex(particle->Vx() - vertex[0], 
		       particle->Vy() - vertex[1],
		       particle->Vz() - vertex[2]);
      if (dVertex.Mag() > 0.0001) continue;

      switch (TMath::Abs(particle->GetPdgCode())) {
      case kElectron:
      case kMuonMinus:
      case kPiPlus:
      case kKPlus:
      case kProton: {
	if (particle->Pt() > minPt) {
	  selParticles.Add(particle);
	  nGen++;
	  hGen->Fill(particle->Pt());
	}
	break;
      }
      case kK0Short:
      case kLambda0: {
	if (particle->Pt() > cutPtV0) {
	  nGenV0s++;
	  selV0s.Add(particle);
	}
	break;
      }
      case kXiMinus:
      case kOmegaMinus: {
	if (particle->Pt() > cutPtCascade) {
	  nGenCascades++;
	  selCascades.Add(particle);
	}
	break;
      }
      default: break;
      }
    }

    // get the event summary data
    tree->GetEvent(iEvent);
    if (!esd) {
      Error("CheckESD", "no ESD object found for event %d", iEvent);
      return kFALSE;
    }

    // loop over tracks
    for (Int_t iTrack = 0; iTrack < esd->GetNumberOfTracks(); iTrack++) {
      AliESDtrack* track = esd->GetTrack(iTrack);

      // select tracks of selected particles
      Int_t label = TMath::Abs(track->GetLabel());
      if (label > stack->GetNtrack()) continue;     // background
      TParticle* particle = stack->Particle(label);
      if (!selParticles.Contains(particle)) continue;
      if ((track->GetStatus() & AliESDtrack::kITSrefit) == 0) continue;
      if (track->GetConstrainedChi2() > 1e9) continue;
      selParticles.Remove(particle);   // don't count multiple tracks

      nRec++;
      hRec->Fill(particle->Pt());
      if (track->GetLabel() < 0) nFake++;

      // resolutions
      hResPtInv->Fill(100. * (TMath::Abs(track->GetSigned1Pt()) - 1./particle->Pt()) * 
		      particle->Pt());
      hResPhi->Fill(1000. * (track->Phi() - particle->Phi()));
      hResTheta->Fill(1000. * (track->Theta() - particle->Theta()));

      // PID
      if ((track->GetStatus() & AliESDtrack::kESDpid) == 0) continue;
      Int_t iGen = 5;
      for (Int_t i = 0; i < AliPID::kSPECIES; i++) {
	if (TMath::Abs(particle->GetPdgCode()) == partCode[i]) iGen = i;
      }
      Double_t probability[AliPID::kSPECIES];
      track->GetESDpid(probability);
      Double_t pMax = 0;
      Int_t iRec = 0;
      for (Int_t i = 0; i < AliPID::kSPECIES; i++) {
	probability[i] *= partFrac[i];
	if (probability[i] > pMax) {
	  pMax = probability[i];
	  iRec = i;
	}
      }
      identified[iGen][iRec]++;
      if (iGen == iRec) nIdentified++;

      // dE/dx and TOF
      Double_t time[AliPID::kSPECIES];
      track->GetIntegratedTimes(time);
      if (iGen == iRec) {
	hDEdxRight->Fill(particle->P(), track->GetTPCsignal());
        if ((track->GetStatus() & AliESDtrack::kTOFpid) != 0) {
	  hResTOFRight->Fill(track->GetTOFsignal() - time[iRec]);
	}
      } else {
	hDEdxWrong->Fill(particle->P(), track->GetTPCsignal());
        if ((track->GetStatus() & AliESDtrack::kTOFpid) != 0) {
	  hResTOFWrong->Fill(track->GetTOFsignal() - time[iRec]);
	}
      }
    }

    // loop over muon tracks
    {
    for (Int_t iTrack = 0; iTrack < esd->GetNumberOfMuonTracks(); iTrack++) {
      AliESDMuonTrack* muonTrack = esd->GetMuonTrack(iTrack);
      Double_t ptInv = TMath::Abs(muonTrack->GetInverseBendingMomentum());
      if (ptInv > 0.001) {
	hPtMUON->Fill(1./ptInv);
      }
    }
    }

    // loop over V0s
    for (Int_t iV0 = 0; iV0 < esd->GetNumberOfV0s(); iV0++) {
      AliESDv0* v0 = esd->GetV0(iV0);
      if (v0->GetOnFlyStatus()) continue;
      v0->ChangeMassHypothesis(kK0Short);
      hMassK0->Fill(v0->GetEffMass());
      v0->ChangeMassHypothesis(kLambda0);
      hMassLambda->Fill(v0->GetEffMass());
      v0->ChangeMassHypothesis(kLambda0Bar);
      hMassLambdaBar->Fill(v0->GetEffMass());

      Int_t negLabel = TMath::Abs(esd->GetTrack(v0->GetNindex())->GetLabel());
      if (negLabel > stack->GetNtrack()) continue;     // background
      Int_t negMother = stack->Particle(negLabel)->GetMother(0);
      if (negMother < 0) continue;
      Int_t posLabel = TMath::Abs(esd->GetTrack(v0->GetPindex())->GetLabel());
      if (posLabel > stack->GetNtrack()) continue;     // background
      Int_t posMother = stack->Particle(posLabel)->GetMother(0);
      if (negMother != posMother) continue;
      TParticle* particle = stack->Particle(negMother);
      if (!selV0s.Contains(particle)) continue;
      selV0s.Remove(particle);
      nRecV0s++;
    }

    // loop over Cascades
    for (Int_t iCascade = 0; iCascade < esd->GetNumberOfCascades(); 
	 iCascade++) {
      AliESDcascade* cascade = esd->GetCascade(iCascade);
      Double_t v0q;
      cascade->ChangeMassHypothesis(v0q,kXiMinus);
      hMassXi->Fill(cascade->GetEffMassXi());
      cascade->ChangeMassHypothesis(v0q,kOmegaMinus);
      hMassOmega->Fill(cascade->GetEffMassXi());

      Int_t negLabel = TMath::Abs(esd->GetTrack(cascade->GetNindex())
				  ->GetLabel());
      if (negLabel > stack->GetNtrack()) continue;     // background
      Int_t negMother = stack->Particle(negLabel)->GetMother(0);
      if (negMother < 0) continue;
      Int_t posLabel = TMath::Abs(esd->GetTrack(cascade->GetPindex())
				  ->GetLabel());
      if (posLabel > stack->GetNtrack()) continue;     // background
      Int_t posMother = stack->Particle(posLabel)->GetMother(0);
      if (negMother != posMother) continue;
      Int_t v0Mother = stack->Particle(negMother)->GetMother(0);
      if (v0Mother < 0) continue;
      Int_t bacLabel = TMath::Abs(esd->GetTrack(cascade->GetBindex())
				  ->GetLabel());
      if (bacLabel > stack->GetNtrack()) continue;     // background
      Int_t bacMother = stack->Particle(bacLabel)->GetMother(0);
      if (v0Mother != bacMother) continue;
      TParticle* particle = stack->Particle(v0Mother);
      if (!selCascades.Contains(particle)) continue;
      selCascades.Remove(particle);
      nRecCascades++;
    }

    // loop over the clusters
    {
      for (Int_t iCluster=0; iCluster<esd->GetNumberOfCaloClusters(); iCluster++) {
	AliESDCaloCluster * clust = esd->GetCaloCluster(iCluster);
	if (clust->IsPHOS()) hEPHOS->Fill(clust->E());
	if (clust->IsEMCAL()) hEEMCAL->Fill(clust->E());
      }
    }

  }

  // perform checks
  if (nGen < checkNGenLow) {
    Warning("CheckESD", "low number of generated particles: %d", Int_t(nGen));
  }

  TH1F* hEff = CreateEffHisto(hGen, hRec);

  Info("CheckESD", "%d out of %d tracks reconstructed including %d "
	 "fake tracks", nRec, nGen, nFake);
  if (nGen > 0) {
    // efficiency
    Double_t eff = nRec*1./nGen;
    Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGen);
    Double_t fake = nFake*1./nGen;
    Double_t fakeError = TMath::Sqrt(fake*(1.-fake) / nGen);
    Info("CheckESD", "eff = (%.1f +- %.1f) %%  fake = (%.1f +- %.1f) %%",
	 100.*eff, 100.*effError, 100.*fake, 100.*fakeError);

    if (eff < checkEffLow - checkEffSigma*effError) {
      Warning("CheckESD", "low efficiency: (%.1f +- %.1f) %%", 
	      100.*eff, 100.*effError);
    }
    if (fake > checkFakeHigh + checkFakeSigma*fakeError) {
      Warning("CheckESD", "high fake: (%.1f +- %.1f) %%", 
	      100.*fake, 100.*fakeError);
    }

    // resolutions
    Double_t res, resError;
    if (FitHisto(hResPtInv, res, resError)) {
      Info("CheckESD", "relative inverse pt resolution = (%.1f +- %.1f) %%",
	   res, resError);
      if (res > checkResPtInvHigh + checkResPtInvSigma*resError) {
	Warning("CheckESD", "bad pt resolution: (%.1f +- %.1f) %%", 
		res, resError);
      }
    }

    if (FitHisto(hResPhi, res, resError)) {
      Info("CheckESD", "phi resolution = (%.1f +- %.1f) mrad", res, resError);
      if (res > checkResPhiHigh + checkResPhiSigma*resError) {
	Warning("CheckESD", "bad phi resolution: (%.1f +- %.1f) mrad", 
		res, resError);
      }
    }

    if (FitHisto(hResTheta, res, resError)) {
      Info("CheckESD", "theta resolution = (%.1f +- %.1f) mrad", 
	   res, resError);
      if (res > checkResThetaHigh + checkResThetaSigma*resError) {
	Warning("CheckESD", "bad theta resolution: (%.1f +- %.1f) mrad", 
		res, resError);
      }
    }

    // PID
    if (nRec > 0) {
      Double_t eff = nIdentified*1./nRec;
      Double_t effError = TMath::Sqrt(eff*(1.-eff) / nRec);
      Info("CheckESD", "PID eff = (%.1f +- %.1f) %%", 
	   100.*eff, 100.*effError);
      if (eff < checkPIDEffLow - checkPIDEffSigma*effError) {
	Warning("CheckESD", "low PID efficiency: (%.1f +- %.1f) %%", 
		100.*eff, 100.*effError);
      }
    }

    printf("%9s:", "gen\\rec");
    for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) {
      printf("%9s", partName[iRec]);
    }
    printf("\n");
    for (Int_t iGen = 0; iGen < AliPID::kSPECIES+1; iGen++) {
      printf("%9s:", partName[iGen]);
      for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) {
	printf("%9d", identified[iGen][iRec]);
      }
      printf("\n");
    }

    if (FitHisto(hResTOFRight, res, resError)) {
      Info("CheckESD", "TOF resolution = (%.1f +- %.1f) ps", res, resError);
      if (res > checkResTOFHigh + checkResTOFSigma*resError) {
	Warning("CheckESD", "bad TOF resolution: (%.1f +- %.1f) ps", 
		res, resError);
      }
    }

    // calorimeters
    if (hEPHOS->Integral() < checkPHOSNLow) {
      Warning("CheckESD", "low number of PHOS particles: %d", 
	      Int_t(hEPHOS->Integral()));
    } else {
      Double_t mean = hEPHOS->GetMean();
      if (mean < checkPHOSEnergyLow) {
	Warning("CheckESD", "low mean PHOS energy: %.1f GeV", mean);
      } else if (mean > checkPHOSEnergyHigh) {
	Warning("CheckESD", "high mean PHOS energy: %.1f GeV", mean);
      }
    }

    if (hEEMCAL->Integral() < checkEMCALNLow) {
      Warning("CheckESD", "low number of EMCAL particles: %d", 
	      Int_t(hEEMCAL->Integral()));
    } else {
      Double_t mean = hEEMCAL->GetMean();
      if (mean < checkEMCALEnergyLow) {
	Warning("CheckESD", "low mean EMCAL energy: %.1f GeV", mean);
      } else if (mean > checkEMCALEnergyHigh) {
	Warning("CheckESD", "high mean EMCAL energy: %.1f GeV", mean);
      }
    }

    // muons
    if (hPtMUON->Integral() < checkMUONNLow) {
      Warning("CheckESD", "low number of MUON particles: %d", 
	      Int_t(hPtMUON->Integral()));
    } else {
      Double_t mean = hPtMUON->GetMean();
      if (mean < checkMUONPtLow) {
	Warning("CheckESD", "low mean MUON pt: %.1f GeV/c", mean);
      } else if (mean > checkMUONPtHigh) {
	Warning("CheckESD", "high mean MUON pt: %.1f GeV/c", mean);
      }
    }

    // V0s
    if (nGenV0s > 0) {
      Double_t eff = nRecV0s*1./nGenV0s;
      Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGenV0s);
      if (effError == 0) effError = checkV0EffLow / TMath::Sqrt(1.*nGenV0s);
      Info("CheckESD", "V0 eff = (%.1f +- %.1f) %%", 
	   100.*eff, 100.*effError);
      if (eff < checkV0EffLow - checkV0EffSigma*effError) {
	Warning("CheckESD", "low V0 efficiency: (%.1f +- %.1f) %%", 
		100.*eff, 100.*effError);
      }
    }

    // Cascades
    if (nGenCascades > 0) {
      Double_t eff = nRecCascades*1./nGenCascades;
      Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGenCascades);
      if (effError == 0) effError = checkV0EffLow / 
			   TMath::Sqrt(1.*nGenCascades);
      Info("CheckESD", "Cascade eff = (%.1f +- %.1f) %%", 
	   100.*eff, 100.*effError);
      if (eff < checkCascadeEffLow - checkCascadeEffSigma*effError) {
	Warning("CheckESD", "low Cascade efficiency: (%.1f +- %.1f) %%", 
		100.*eff, 100.*effError);
      }
    }
  }

  // draw the histograms if not in batch mode
  if (!gROOT->IsBatch()) {
    new TCanvas;
    hEff->DrawCopy();
    new TCanvas;
    hResPtInv->DrawCopy("E");
    new TCanvas;
    hResPhi->DrawCopy("E");
    new TCanvas;
    hResTheta->DrawCopy("E");
    new TCanvas;
    hDEdxRight->DrawCopy();
    hDEdxWrong->DrawCopy("SAME");
    new TCanvas;
    hResTOFRight->DrawCopy("E");
    hResTOFWrong->DrawCopy("SAME");
    new TCanvas;
    hEPHOS->DrawCopy("E");
    new TCanvas;
    hEEMCAL->DrawCopy("E");
    new TCanvas;
    hPtMUON->DrawCopy("E");
    new TCanvas;
    hMassK0->DrawCopy("E");
    new TCanvas;
    hMassLambda->DrawCopy("E");
    new TCanvas;
    hMassLambdaBar->DrawCopy("E");
    new TCanvas;
    hMassXi->DrawCopy("E");
    new TCanvas;
    hMassOmega->DrawCopy("E");
  }

  // write the output histograms to a file
  TFile* outputFile = TFile::Open("check.root", "recreate");
  if (!outputFile || !outputFile->IsOpen()) {
    Error("CheckESD", "opening output file check.root failed");
    return kFALSE;
  }
  hEff->Write();
  hResPtInv->Write();
  hResPhi->Write();
  hResTheta->Write();
  hDEdxRight->Write();
  hDEdxWrong->Write();
  hResTOFRight->Write();
  hResTOFWrong->Write();
  hEPHOS->Write();
  hEEMCAL->Write();
  hPtMUON->Write();
  hMassK0->Write();
  hMassLambda->Write();
  hMassLambdaBar->Write();
  hMassXi->Write();
  hMassOmega->Write();
  outputFile->Close();
  delete outputFile;

  // clean up
  delete hGen;
  delete hRec;
  delete hEff;
  delete hResPtInv;
  delete hResPhi;
  delete hResTheta;
  delete hDEdxRight;
  delete hDEdxWrong;
  delete hResTOFRight;
  delete hResTOFWrong;
  delete hEPHOS;
  delete hEEMCAL;
  delete hPtMUON;
  delete hMassK0;
  delete hMassLambda;
  delete hMassLambdaBar;
  delete hMassXi;
  delete hMassOmega;

  delete esd;
  esdFile->Close();
  delete esdFile;

  runLoader->UnloadHeader();
  runLoader->UnloadKinematics();
  delete runLoader;

  // result of check
  Info("CheckESD", "check of ESD was successfull");
  return kTRUE;
}
Example #7
0
Bool_t CheckESD(const char* gAliceFileName = "galice.root", 
		const char* esdFileName = "AliESDs.root")
{
  // open run loader and load gAlice, kinematics and header
  AliRunLoader* runLoader = AliRunLoader::Open(gAliceFileName);
  if (!runLoader) {
    Error("CheckESD", "getting run loader from file %s failed", 
	    gAliceFileName);
    return kFALSE;
  }
  runLoader->LoadgAlice();
  gAlice = runLoader->GetAliRun();
  if (!gAlice) {
    Error("CheckESD", "no galice object found");
    return kFALSE;
  }
  runLoader->LoadKinematics();
  runLoader->LoadHeader();

  // open the ESD file
  TFile* esdFile = TFile::Open(esdFileName);
  if (!esdFile || !esdFile->IsOpen()) {
    Error("CheckESD", "opening ESD file %s failed", esdFileName);
    return kFALSE;
  }
  AliESDEvent * esd = new AliESDEvent;
  TTree* tree = (TTree*) esdFile->Get("esdTree");
  if (!tree) {
    Error("CheckESD", "no ESD tree found");
    return kFALSE;
  }
  esd->ReadFromTree(tree);

  // loop over events
  for (Int_t iEvent = 0; iEvent < runLoader->GetNumberOfEvents(); iEvent++) {
    runLoader->GetEvent(iEvent);

    // get the event summary data
    tree->GetEvent(iEvent);
    if (!esd) {
      Error("CheckESD", "no ESD object found for event %d", iEvent);
      return kFALSE;
    }

  }

  // write the output histograms to a file
  TFile* outputFile = TFile::Open("check.root", "recreate");
  if (!outputFile || !outputFile->IsOpen()) {
    Error("CheckESD", "opening output file check.root failed");
    return kFALSE;
  }
  outputFile->Close();
  delete outputFile;

  delete esd;
  esdFile->Close();
  delete esdFile;

  runLoader->UnloadHeader();
  runLoader->UnloadKinematics();
  delete runLoader;

  // result of check
  Info("CheckESD", "check of ESD was successfull");
  return kTRUE;
}
Example #8
0
void CountTrackableMCs(TH1F *hAllMC, Bool_t onlyPrims,Bool_t onlyPion) {
  
  gSystem->Load("libITSUpgradeBase");
  gSystem->Load("libITSUpgradeSim");

 // open run loader and load gAlice, kinematics and header
  AliRunLoader* runLoader = AliRunLoader::Open("galice.root");
  if (!runLoader) {
    Error("Check kine", "getting run loader from file %s failed",
          "galice.root");
    return;
  }
  runLoader->LoadHeader();
  runLoader->LoadKinematics();
  runLoader->LoadTrackRefs();

  AliLoader *dl = runLoader->GetDetectorLoader("ITS");

  //Trackf
  TTree *trackRefTree = 0x0; 
  TClonesArray *trackRef = new TClonesArray("AliTrackReference",1000);

  //  TH1F *hRef = new TH1F("","",100,0,100);
  TH1F *hR = new TH1F("","",100,0,100);
  if (hAllMC==0) hAllMC = new TH1F("","",100,0.1,2);
  Float_t ptmin = hAllMC->GetBinCenter(1)-hAllMC->GetBinWidth(1)/2;
  Float_t ptmax = hAllMC->GetBinCenter(hAllMC->GetNbinsX())+hAllMC->GetBinWidth(hAllMC->GetNbinsX())/2;
  //  Int_t nAllMC = 0;

  // Detector geometry
  TArrayD rmin(0);   TArrayD rmax(0); 
  GetDetectorRadii(&rmin,&rmax);
  TArrayI nLaySigs(rmin.GetSize());

  printf("Counting trackable MC tracks ...\n");
  
  for(Int_t iEv =0; iEv<runLoader->GetNumberOfEvents(); iEv++){
    Int_t nTrackableTracks = 0;
    runLoader->GetEvent(iEv);
    AliStack* stack = runLoader->Stack();  
    printf("+++ event %i (of %d) +++++++++++++++++++++++  # total MCtracks: %d \n",iEv,runLoader->GetNumberOfEvents()-1,stack->GetNtrack());

    trackRefTree=runLoader->TreeTR();
    TBranch *br = trackRefTree->GetBranch("TrackReferences");
    if(!br) {
      printf("no TR branch available , exiting \n");
      return;
    }
    br->SetAddress(&trackRef);

    // init the trackRef tree 
    trackRefTree=runLoader->TreeTR();
    trackRefTree->SetBranchAddress("TrackReferences",&trackRef);
 
    // Count trackable MC tracks
    for (Int_t iMC=0; iMC<stack->GetNtrack(); iMC++) {

      TParticle* particle = stack->Particle(iMC); 
      if (TMath::Abs(particle->Eta())>etaCut) continue;
      if (onlyPrims && !stack->IsPhysicalPrimary(iMC)) continue;
      if (onlyPion && TMath::Abs(particle->GetPdgCode())!=211) continue;


      Bool_t isTrackable = 0;
      nLaySigs.Reset(0);
 
      trackRefTree->GetEntry(stack->TreeKEntry(iMC));
      Int_t nref=trackRef->GetEntriesFast();
      for(Int_t iref =0; iref<nref; iref++){
	AliTrackReference *trR = (AliTrackReference*)trackRef->At(iref);
	if(!trR) continue;
	if(trR->DetectorId()!=AliTrackReference::kITS) continue;
	Float_t radPos = trR->R();
	hR->Fill(radPos);
	for (Int_t il=0; il<rmin.GetSize();il++) {
	  if (radPos>=rmin.At(il)-0.1 && radPos<=rmax.At(il)+0.1) {
	    //	    cout<<"  in Layer "<<il<<" "<<radPos;
	    nLaySigs.AddAt(1.,il);
	    //	    cout<<" "<<nLaySigs.At(il)<<endl;
	  }
	}
      }

      if (nLaySigs.GetSum()>=3) {
	isTrackable =1;
	//	cout<<nLaySigs.GetSum()<<endl;
      }
      
      if (isTrackable) {
	Double_t ptMC = particle->Pt();
	//	Double_t etaMC = particle->Eta();
	//	if (ptMC>ptmin&&ptMC<ptmax) {nTrackableTracks++;hAllMC->Fill(ptMC);}
	if (ptMC>ptmin) {nTrackableTracks++;hAllMC->Fill(ptMC);}

      }

      
    } // entries tracks MC
    printf(" -> trackable MC tracks: %d (%d)\n",nTrackableTracks,hAllMC->GetEntries());
  }//entries Events
  

  hR->DrawCopy();
  hAllMC->DrawCopy();
  runLoader->UnloadHeader();
  runLoader->UnloadKinematics();
  delete runLoader;

}
Example #9
0
int getSimulatedDigits(TString digitdir)
{

    AliRunLoader *rl = AliRunLoader::Open(digitdir+TString("/galice.root"));

    AliPHOSLoader *prl = (AliPHOSLoader*)rl->GetDetectorLoader("PHOS");

    prl->LoadSDigits();
    prl->LoadDigits();

    Int_t nSimEvents = rl->GetNumberOfEvents();
    TFile *mydigitsFile = new TFile("mydigits.root", "RECREATE");
    TTree *mydigitTree = new TTree("mydigitTree", "mydigitTree");
    TClonesArray * mydigits = new TClonesArray(AliPHOSDigit::Class());
    mydigitTree->Branch("Digits", &mydigits);

    for (Int_t ev = 0; ev < nSimEvents; ev++)
    {
        rl->GetEvent(ev);

        Int_t nPhosDigits = prl->SDigits()->GetEntries();


        Int_t nDigsFound = 0;

        for (Int_t iDig = 0; iDig < nPhosDigits; iDig++)
        {
            const AliPHOSDigit *digit = prl->SDigit(iDig);

            Int_t id = digit->GetId();
            if (id > 3*geom->GetNPhi()*geom->GetNZ()) continue;

            for (Int_t n = 0; n < nDigsFound; n++)
            {
                AliPHOSDigit *tmpDig = (AliPHOSDigit*)mydigits->At(n);
                if (id == tmpDig->GetId())
                {
                    *tmpDig += *digit;
                    digit = 0;
                    break;
                }
            }
            if (digit)
            {
                AliPHOSDigit *newDig = new((*mydigits)[nDigsFound]) AliPHOSDigit(-1, id, (float)0.0, (float)0.0);
                *newDig += *digit;

                nDigsFound++;
            }
        }
        for(int i = 0; i <nDigsFound; i++)
        {

            AliPHOSDigit *tmpDig = (AliPHOSDigit*)mydigits->At(i);
            Int_t relId[4];
            geom->AbsToRelNumbering(tmpDig->GetId(), relId);

            // Some necessary ugly hacks needed at the moment, need to get these numbers from OCDB
            tmpDig->SetEnergy((float)((int)(tmpDig->GetEnergy()/phosCalibData->GetADCchannelEmc(relId[0], relId[3], relId[2]))));
            //std::cout << "Sample time step: " << phosCalibData->GetSampleTimeStep() << " " << phosCalibData->GetTimeShiftEmc(relId[0], relId[3], relId[2]) << geom << std::endl;
            tmpDig->SetTime(1.5e-8);
            tmpDig->SetTimeR(1.5e-8);
        }
        mydigitTree->Fill();
        mydigits->Clear("C");
    }
    mydigitsFile->Write();
    simTree = mydigitTree;
    //mydigit
    //mydigitsFile->Close();
    return 0;
}
Example #10
0
int mergeDigits(TString digitdir, Int_t /*simEvOffset*/)
{

    AliRunLoader *rl = AliRunLoader::Open(digitdir+TString("/galice.root"));

    AliPHOSLoader *prl = (AliPHOSLoader*)rl->GetDetectorLoader("PHOS");

    prl->LoadDigits("UPDATE");
    
    //prl->LoadDigits();

    Int_t nEvents = rl->GetNumberOfEvents();

    TClonesArray *mydigits = 0;
    simTree->SetBranchAddress("Digits", &mydigits);

    Int_t nDigits = 0;
    Int_t nEmbedDigits = 0;
    Int_t nOverlappingDigits = 0;
    Int_t nNewDigits = 0;
    
    Int_t nPhosDigits = prl->Digits()->GetEntries();

    Int_t nMyEvents = simTree->GetEntries();
    
    std::cout << "Number of real events: " << nEvents << std::endl;
    std::cout << "Number of sim events: " << nMyEvents << std::endl;
    nEvents = TMath::Min(nEvents, nMyEvents);
    std::cout << "Looping over: " << nEvents << std::endl;
	
    for (Int_t ev = 0; ev < nEvents; ev++)
    {
        rl->GetEvent(ev);
        
        simTree->GetEntry(ev);
        Int_t nMyDigits = mydigits->GetEntries();

        //Int_t nDigsFound = 0;
        nEmbedDigits += nMyDigits;
        TClonesArray *phosDigits = prl->Digits();
	nPhosDigits = prl->Digits()->GetEntries();
	
        for (Int_t iDig = 0; iDig < nPhosDigits; iDig++)
        {
            //const AliPHOSDigit *digit = prl->Digit(iDig);
            AliPHOSDigit *digit = (AliPHOSDigit*)phosDigits->At(iDig);
            nDigits++;
            for (Int_t n = 0; n < nMyDigits; n++)
            {
                AliPHOSDigit *myDigit = (AliPHOSDigit*)mydigits->At(n);
                if (digit->GetId() == myDigit->GetId())
                {
                    nOverlappingDigits++;
                    break;
                }
            }
        }
        if(nOverlappingDigits == nMyDigits)
        {
            std::cout << "Digits alredy embedded!" << std::endl;
            continue;
        }
        for (Int_t iDig = 0; iDig < nMyDigits; iDig++)
        {
            AliPHOSDigit *myDigit = (AliPHOSDigit*)mydigits->At(iDig);
            if (myDigit)
            {
                for (Int_t n = 0; n < nPhosDigits; n++)
                {
                    //const AliPHOSDigit *digit = prl->Digit(n);

                    AliPHOSDigit *digit = (AliPHOSDigit*)phosDigits->At(n);
                    if (digit->GetId() == myDigit->GetId())
                    {
                        digit->SetALTROSamplesHG(0, 0);
                        digit->SetALTROSamplesLG(0, 0);

                        *digit += *myDigit;
                        myDigit = 0;
                        break;
                    }
                }
                if (myDigit)
                {
                    TClonesArray *digArray = prl->Digits();
                    AliPHOSDigit *newDig =  new((*digArray)[nPhosDigits+nNewDigits]) AliPHOSDigit(*myDigit);

                    newDig->SetALTROSamplesHG(0, 0);
                    newDig->SetALTROSamplesLG(0, 0);
                    nNewDigits++;
                }
            }
        }
        phosDigits->Compress();
        Int_t ndigits = phosDigits->GetEntries() ;
	phosDigits->Sort();
        // Remove digits that are flagged bad in BCM. Then remove digits that are below threshold
        for (Int_t i = 0 ; i < ndigits ; i++)
        {
            AliPHOSDigit *digit = static_cast<AliPHOSDigit*>( phosDigits->At(i) ) ;
	    //std::cout << digit->GetId() << std::endl;
            if(digit->GetId())
            {
                vector<Int_t>::iterator it;
                it = std::find (badChannels.begin(), badChannels.end(), digit->GetId() );
                if(*it)
                {
                    digit->SetEnergy(0.0);
                }
            }
            if(digit->GetEnergy() <= recoParam->GetGlobalAltroThreshold())
	    {
	      phosDigits->RemoveAt(i);
	    }
        }
        //Set indexes in list of digits and make true digitization of the energy
        phosDigits->Compress();
        phosDigits->Sort();
	ndigits = phosDigits->GetEntries();
        for (Int_t i = 0 ; i < ndigits ; i++)
        {
            AliPHOSDigit *digit = static_cast<AliPHOSDigit*>( phosDigits->At(i) ) ;
            digit->SetIndexInList(i) ;
        }
        // -- create Digits branch
        Int_t bufferSize = 32000 ;

        TObjArray *branchList = prl->TreeD()->GetListOfBranches();

        branchList->RemoveAt(0);

        TBranch * digitsBranch = prl->TreeD()->Branch("PHOS","TClonesArray",&phosDigits,bufferSize);

        digitsBranch->Fill() ;
        prl->WriteDigits("OVERWRITE");
    }
    prl->WriteDigits("OVERWRITE");
    std::cout << "# Digits: " << nDigits << std::endl;
    std::cout << "# Embedded digits: " << nEmbedDigits << std::endl;
    std::cout << "# Overlapping digits: " << nOverlappingDigits << std::endl;
    std::cout << "# New digits: " << nNewDigits << std::endl;
    
    return 0;
}
Example #11
0
void digitsSPD(Int_t nevents, Int_t nfiles)
{

  TH1F * hadc = new TH1F ("hadc", "hadc",100, 0, 2);   
  TH1F * hadclog = new TH1F ("hadclog", "hadclog",100, -1, 1);   

  TDirectoryFile *tdf[100];      
  TDirectoryFile *tdfKine[100] ; 

  TTree *ttree[100];      
  TTree *ttreeKine[100];  


  TClonesArray *arr= NULL; // 

  //Run loader------------
  TString name;
  name = "galice.root";
  AliRunLoader* rlSig = AliRunLoader::Open(name.Data());

  // gAlice
  rlSig->LoadgAlice();
  gAlice = rlSig->GetAliRun();

  // Now load kinematics and event header
  rlSig->LoadKinematics();
  rlSig->LoadHeader();
  cout <<  rlSig->GetNumberOfEvents()<< endl;
  //----------------------

  
     //loop over events in the files
    for(Int_t event=0; event<nevents; event++){
      //printf("###event= %d\n", event + file*100);
      printf("###event= %d\n", event);

    tdf[event] = GetDirectory(event, "ITS", nfiles);
    if ( ! tdf[event] ) {
      cerr << "Event directory not found in " << nfiles <<  " files" << endl;
      exit(1);
    }      
    
      ttree[event] = (TTree*)tdf[event]->Get("TreeD");
          
      arr = NULL;
      ttree[event]->SetBranchAddress("ITSDigitsSPD", &arr);
   

      // Runloader -> gives particle Stack
      rlSig->GetEvent(event);
      AliStack * stack = rlSig->Stack(); 
      //stack->DumpPStack();


      // loop over tracks
      Int_t NumberPrim=0;
      for(Int_t iev=0; iev<ttree[event]->GetEntries(); iev++){
	ttree[event]->GetEntry(iev);

	
	for (Int_t j = 0; j < arr->GetEntries(); j++) {
	  AliITSdigit* digit = dynamic_cast<AliITSdigit*> (arr->At(j));
	  if (digit){
	    hadc->Fill(digit->GetSignal());
	    hadclog->Fill(TMath::Log10(digit->GetSignal()));
	
	  }
	}
      }

    }

  TFile fc("digits.ITS.SPD.root","RECREATE");
  fc.cd();
   
  hadc->Write();
  hadclog->Write();

  fc.Close();

}
Example #12
0
void compClusHitsMod2(int nev=-1)
{
  
  const int kSplit=0x1<<22;
  const int kSplCheck=0x1<<23;
  //
  gSystem->Load("libITSUpgradeBase");
  gSystem->Load("libITSUpgradeSim");
  gSystem->Load("libITSUpgradeRec");
  gROOT->SetStyle("Plain");

  AliCDBManager* man = AliCDBManager::Instance();
  man->SetDefaultStorage("local://$ALICE_ROOT/OCDB");
  man->SetSpecificStorage("GRP/GRP/Data",
        Form("local://%s",gSystem->pwd()));
  man->SetSpecificStorage("ITS/Align/Data",
        Form("local://%s",gSystem->pwd()));
  man->SetSpecificStorage("ITS/Calib/RecoParam",
        Form("local://%s",gSystem->pwd()));
  man->SetRun(0);

  TH1F* hL0A = new TH1F("hL0A", "Layer 0, polar angle", 20, 0, TMath::PiOver2());
  hL0A->SetDirectory(0);
  hL0A->GetXaxis()->SetTitle("#alpha");
  TH1F* hL0B = new TH1F("hL0B", "Layer 0, azimuthal angle", 20, 0, TMath::PiOver2());
  hL0B->SetDirectory(0);
  hL0B->GetXaxis()->SetTitle("#beta");

  TH1F* hL1A = new TH1F("hL1A", "Layer 1, polar angle", 20, 0, TMath::PiOver2());
  hL1A->SetDirectory(0);
  hL1A->GetXaxis()->SetTitle("#alpha");
  TH1F* hL1B = new TH1F("hL1B", "Layer 1, azimuthal angle", 20, 0, TMath::PiOver2());
  hL1B->SetDirectory(0);
  hL1B->GetXaxis()->SetTitle("#beta");

  TH1F* hL2A = new TH1F("hL2A", "Layer 2, polar angle", 20, 0, TMath::PiOver2());
  hL2A->SetDirectory(0);
  hL2A->GetXaxis()->SetTitle("#alpha");
  TH1F* hL2B = new TH1F("hL2B", "Layer 2, azimuthal angle", 20, 0, TMath::PiOver2());
  hL2B->SetDirectory(0);
  hL2B->GetXaxis()->SetTitle("#beta");

  TH1F* hL3A = new TH1F("hL3A", "Layer 3, polar angle", 20, 0, TMath::PiOver2());
  hL3A->SetDirectory(0);
  hL3A->GetXaxis()->SetTitle("#alpha");
  TH1F* hL3B = new TH1F("hL3B", "Layer 3, azimuthal angle", 20, 0, TMath::PiOver2());
  hL3B->SetDirectory(0);
  hL3B->GetXaxis()->SetTitle("#beta");

  TH1F* hL4A = new TH1F("hL4A", "Layer 4, polar angle", 20, 0, TMath::PiOver2());
  hL4A->SetDirectory(0);
  hL4A->GetXaxis()->SetTitle("#alpha");
  TH1F* hL4B = new TH1F("hL4B", "Layer 4, azimuthal angle", 20, 0, TMath::PiOver2());
  hL4B->SetDirectory(0);
  hL4B->GetXaxis()->SetTitle("#beta");

  TH1F* hL5A = new TH1F("hL5A", "Layer 5, polar angle", 20, 0, TMath::PiOver2());
  hL5A->SetDirectory(0);
  hL5A->GetXaxis()->SetTitle("#alpha");
  TH1F* hL5B = new TH1F("hL5B", "Layer 5, azimuthal angle", 20, 0, TMath::PiOver2());
  hL5B->SetDirectory(0);
  hL5B->GetXaxis()->SetTitle("#beta");

  TH1F* hL6A = new TH1F("hL6A", "Layer 6, polar angle", 20, 0, TMath::PiOver2());
  hL6A->SetDirectory(0);
  hL6A->GetXaxis()->SetTitle("#alpha");
  TH1F* hL6B = new TH1F("hL6B", "Layer 6, azimuthal angle", 20, 0, TMath::PiOver2());
  hL6B->SetDirectory(0);
  hL6B->GetXaxis()->SetTitle("#beta");

  gAlice=NULL;
  AliRunLoader* runLoader = AliRunLoader::Open("galice.root");
  runLoader->LoadgAlice();

  gAlice = runLoader->GetAliRun();

  runLoader->LoadHeader();
  runLoader->LoadKinematics();
  runLoader->LoadRecPoints();
  runLoader->LoadSDigits();
  runLoader->LoadHits();

  AliLoader *dl = runLoader->GetDetectorLoader("ITS");

  AliGeomManager::LoadGeometry("geometry.root");
  TObjArray algITS;
  AliGeomManager::LoadAlignObjsFromCDBSingleDet("ITS",algITS);
  AliGeomManager::ApplyAlignObjsToGeom(algITS);
  //
  AliITSUGeomTGeo* gm = new AliITSUGeomTGeo(kTRUE);
  AliITSMFTClusterPix::SetGeom(gm);
  //
  AliITSURecoDet *its = new AliITSURecoDet(gm, "ITSinterface");
  its->CreateClusterArrays();
  //
  Double_t xg1,yg1,zg1=0.,xg0,yg0,zg0=0.,tg0;
  Double_t xExit,yExit,zExit,xEnt,yEnt,zEnt,tof1;

  //
  TTree *cluTree = 0x0;
  TTree *hitTree = 0x0;
  TClonesArray *hitList=new TClonesArray("AliITSMFTHit");
  //
  Float_t xyzClGloF[3];
  Double_t xyzClGlo[3],xyzClTr[3];
  Int_t labels[3];
  int nLab = 0;
  int nlr=its->GetNLayersActive();
  int ntotev = (Int_t)runLoader->GetNumberOfEvents();

  printf("N Events : %i \n",ntotev);
  if (nev>0) ntotev = TMath::Min(nev,ntotev);
  //
  
  // output tree
  TFile* flOut = TFile::Open("clInfo.root","recreate");
  TTree* trOut = new TTree("clitsu","clitsu");
  clSumm cSum;
  trOut->Branch("evID", &cSum.evID ,"evID/I");
  trOut->Branch("volID",&cSum.volID,"volID/I");
  trOut->Branch("lrID", &cSum.lrID ,"lrID/I");  
  trOut->Branch("clID", &cSum.clID ,"clID/I");  
  trOut->Branch("nPix", &cSum.nPix ,"nPix/I");
  trOut->Branch("nX"  , &cSum.nX   ,"nX/I");
  trOut->Branch("nZ"  , &cSum.nZ   ,"nZ/I");
  trOut->Branch("q"   , &cSum.q    ,"q/I");
  trOut->Branch("pt"  , &cSum.pt   ,"pt/F");  
  trOut->Branch("eta"  ,&cSum.eta  ,"eta/F");  
  trOut->Branch("phi"  , &cSum.phi  ,"phi/F");  
  trOut->Branch("xyz",   cSum.xyz,  "xyz[3]/F");  
  trOut->Branch("dX"  , &cSum.dX   ,"dX/F");
  trOut->Branch("dY"  , &cSum.dY   ,"dY/F");
  trOut->Branch("dZ"  , &cSum.dZ   ,"dZ/F");  
  trOut->Branch("split",&cSum.split,"split/O");
  trOut->Branch("prim", &cSum.prim, "prim/O");
  trOut->Branch("pdg",  &cSum.pdg,  "pdg/I");
  trOut->Branch("ntr",  &cSum.ntr,  "ntr/I");
  trOut->Branch("alpha", &cSum.alpha, "alpha/F");
  trOut->Branch("beta", &cSum.beta, "beta/F");
  trOut->Branch("nRowPatt", &cSum.nRowPatt, "nRowPatt/I");
  trOut->Branch("nColPatt", &cSum.nColPatt, "nColPatt/I");

  TopDatabase DB;
  
  for (Int_t iEvent = 0; iEvent < ntotev; iEvent++) {
    printf("\n Event %i \n",iEvent);
    runLoader->GetEvent(iEvent);
    AliStack *stack = runLoader->Stack();
    cluTree=dl->TreeR();
    hitTree=dl->TreeH();
    hitTree->SetBranchAddress("ITS",&hitList);
    // 
    // read clusters
    for (int ilr=nlr;ilr--;) {
      TBranch* br = cluTree->GetBranch(Form("ITSRecPoints%d",ilr));
      if (!br) {printf("Did not find cluster branch for lr %d\n",ilr); exit(1);}
      br->SetAddress(its->GetLayerActive(ilr)->GetClustersAddress());
    }
    cluTree->GetEntry(0);
    its->ProcessClusters();
    //
    // read hits
    for(Int_t iEnt=0;iEnt<hitTree->GetEntries();iEnt++){//entries loop of the hits
      hitTree->GetEntry(iEnt);
      int nh = hitList->GetEntries();
      for(Int_t iHit=0; iHit<nh;iHit++){
        AliITSMFTHit *pHit = (AliITSMFTHit*)hitList->At(iHit);
        int mcID = pHit->GetTrack();
	//printf("MCid: %d %d %d Ch %d\n",iEnt,iHit, mcID, pHit->GetChip());
        TClonesArray* harr = arrMCTracks.GetEntriesFast()>mcID ? (TClonesArray*)arrMCTracks.At(mcID) : 0;
        if (!harr) {
          harr = new TClonesArray("AliITSMFTHit"); // 1st encounter of the MC track
          arrMCTracks.AddAtAndExpand(harr,mcID);
        }
        //
        new ( (*harr)[harr->GetEntriesFast()] ) AliITSMFTHit(*pHit);
      }
    }
    //    return;
    //
    // compare clusters and hits
    //
    printf(" tree entries: %lld\n",cluTree->GetEntries());
    //
    for (int ilr=0;ilr<nlr;ilr++) {
      AliITSURecoLayer* lr = its->GetLayerActive(ilr);
      TClonesArray* clr = lr->GetClusters();
      int nClu = clr->GetEntries();
      //printf("Layer %d : %d clusters\n",ilr,nClu);
      //
      for (int icl=0;icl<nClu;icl++) {
        AliITSMFTClusterPix *cl = (AliITSMFTClusterPix*)clr->At(icl);
        int modID = cl->GetVolumeId();

        //------------ check if this is a split cluster
        int sInL = modID - gm->GetFirstChipIndex(ilr);
        if (!cl->TestBit(kSplCheck)) {
          cl->SetBit(kSplCheck);
          // check if there is no other cluster with same label on this module
          AliITSURecoSens* sens = lr->GetSensor(sInL);
          int nclSn = sens->GetNClusters();
          int offs = sens->GetFirstClusterId();
          //  printf("To check for %d (mod:%d) N=%d from %d\n",icl,modID,nclSn,offs);
          for (int ics=0;ics<nclSn;ics++) {
            AliITSMFTClusterPix* clusT = (AliITSMFTClusterPix*)lr->GetCluster(offs+ics); // access to clusters
            if (clusT==cl) continue;
            for (int ilb0=0;ilb0<3;ilb0++) {
              int lb0 = cl->GetLabel(ilb0); if (lb0<=-1) break;
              for (int ilb1=0;ilb1<3;ilb1++) {
                int lb1 = clusT->GetLabel(ilb1); if (lb1<=-1) break;
                if (lb1==lb0) {
                  cl->SetBit(kSplit);
                  clusT->SetBit(kSplit);
                  /*
                  printf("Discard clusters of module %d:\n",modID);
                  cl->Print();
                  clusT->Print();
                  */
                  break;
                }
              }
            }
          }
        }
        //------------
        const AliITSMFTSegmentationPix* segm = gm->GetSegmentation(ilr);
        //
        cl->GetGlobalXYZ(xyzClGloF);
        int clsize = cl->GetNPix();
        for (int i=3;i--;) xyzClGlo[i] = xyzClGloF[i];
        const TGeoHMatrix* mat = gm->GetMatrixSens(modID);
        if (!mat) {printf("failed to get matrix for module %d\n",cl->GetVolumeId());}
        mat->MasterToLocal(xyzClGlo,xyzClTr);
        //
        int col,row;
        segm->LocalToDet(xyzClTr[0],xyzClTr[2],row,col); // effective col/row
        nLab = 0;
        for (int il=0;il<3;il++) {
          if (cl->GetLabel(il)>=0) labels[nLab++] = cl->GetLabel(il);
          else break;
        }
        // find hit info
        for (int il=0;il<nLab;il++) {
          TClonesArray* htArr = (TClonesArray*)arrMCTracks.At(labels[il]);
	  //printf("check %d/%d LB %d  %p\n",il,nLab,labels[il],htArr);
	  if (!htArr) {printf("did not find MChits for label %d ",labels[il]); cl->Print(); continue;}
          //
          int nh = htArr->GetEntriesFast();
          AliITSMFTHit *pHit=0;
          for (int ih=nh;ih--;) {
            AliITSMFTHit* tHit = (AliITSMFTHit*)htArr->At(ih);
            if (tHit->GetChip()!=modID) continue;
            pHit = tHit;
            break;
          }
          if (!pHit) {
            printf("did not find MChit for label %d on module %d ",il,modID); 
            cl->Print(); 
            htArr->Print();
            continue;
          }
          //
          pHit->GetPositionG(xg1,yg1,zg1);
          pHit->GetPositionG0(xg0,yg0,zg0,tg0);
          //
          double txyzH[3],gxyzH[3] = { (xg1+xg0)/2, (yg1+yg0)/2, (zg1+zg0)/2 };
          mat->MasterToLocal(gxyzH,txyzH);

          double rcl = TMath::Sqrt(xyzClTr[0]*xyzClTr[0]+xyzClTr[1]*xyzClTr[1]);
          double rht = TMath::Sqrt(txyzH[0]*txyzH[0]+txyzH[1]*txyzH[1]);
          //
          //Angles determination

          pHit->GetPositionL(xExit,yExit,zExit,gm);
          pHit->GetPositionL0(xEnt,yEnt,zEnt,tof1,gm);

          Double_t dirHit[3]={(xExit-xEnt),(yExit-yEnt),(zExit-zEnt)};

          /*double PG[3] = {(double)pHit->GetPXG(), (double)pHit->GetPYG(), (double)pHit->GetPZG()}; //Momentum at hit-point in Global Frame
          double PL[3];
          if (TMath::Abs(PG[0])<10e-7 && TMath::Abs(PG[1])<10e-7) {
            pHit->Dump();
            int lb = pHit->GetTrack();
            stack->Particle(lb)->Print();
            continue;
          }
          mat->MasterToLocalVect(PG,PL); //Momentum in local Frame
          //printf(">> %e %e   %e %e   %e %e\n",PG[0],PL[0],PG[1],PL[1],PG[2],PL[2]);*/

          Double_t alpha1 = TMath::ACos(TMath::Abs(dirHit[1])/TMath::Sqrt(dirHit[0]*dirHit[0]+dirHit[1]*dirHit[1]+dirHit[2]*dirHit[2])); //Polar Angle
          Float_t alpha2 = (Float_t) alpha1; //convert to float
          cSum.alpha = alpha2;

          Double_t beta1;
          beta1 = TMath::ATan2(dirHit[0],dirHit[2]); //Azimuthal angle, values from -Pi to Pi
          Float_t beta2 = (Float_t) beta1;
          cSum.beta = beta2;

	  if(ilr==0){
	    hL0A->Fill(alpha2);
	    hL0B->Fill(beta2);
	  }
	  
	  if(ilr==1){
	    hL1A->Fill(alpha2);
	    hL1B->Fill(beta2);
	  }

	  if(ilr==2){
	    hL2A->Fill(alpha2);
	    hL2B->Fill(beta2);
	  }

	  if(ilr==3){
	    hL3A->Fill(alpha2);
	    hL3B->Fill(beta2);
	  }

	  if(ilr==4){
	    hL4A->Fill(alpha2);
	    hL4B->Fill(beta2);
	  }

	  if(ilr==5){
	    hL5A->Fill(alpha2);
	    hL5B->Fill(beta2);
	  }

	  if(ilr==6){
	    hL6A->Fill(alpha2);
	    hL6B->Fill(beta2);
	  }
          
          GetHistoClSize(clsize,kDR,&histoArr)->Fill((rht-rcl)*1e4);
          if (cl->TestBit(kSplit)) {
            if (col%2) GetHistoClSize(clsize,kDTXoddSPL,&histoArr)->Fill((txyzH[0]-xyzClTr[0])*1e4);
            else       GetHistoClSize(clsize,kDTXevenSPL,&histoArr)->Fill((txyzH[0]-xyzClTr[0])*1e4);
            GetHistoClSize(clsize,kDTZSPL,&histoArr)->Fill((txyzH[2]-xyzClTr[2])*1e4);
            GetHistoClSize(0,kNPixSPL,&histoArr)->Fill(clsize);
          }
          if (col%2) GetHistoClSize(clsize,kDTXodd,&histoArr)->Fill((txyzH[0]-xyzClTr[0])*1e4);
          else       GetHistoClSize(clsize,kDTXeven,&histoArr)->Fill((txyzH[0]-xyzClTr[0])*1e4);
          GetHistoClSize(clsize,kDTZ,&histoArr)->Fill((txyzH[2]-xyzClTr[2])*1e4);
          GetHistoClSize(0,kNPixAll,&histoArr)->Fill(clsize);
          //
          cSum.evID = iEvent;
          cSum.volID = cl->GetVolumeId();
          cSum.lrID = ilr;
          cSum.clID = icl;
          cSum.nPix = cl->GetNPix();
          cSum.nX   = cl->GetNx();
          cSum.nZ   = cl->GetNz();
          cSum.q    = cl->GetQ();
          cSum.split = cl->TestBit(kSplit);
          cSum.dX = (txyzH[0]-xyzClTr[0])*1e4;
          cSum.dY = (txyzH[1]-xyzClTr[1])*1e4;
          cSum.dZ = (txyzH[2]-xyzClTr[2])*1e4;
          cSum.nRowPatt = cl-> GetPatternRowSpan();
          cSum.nColPatt = cl-> GetPatternColSpan();
	  DB.AccountTopology(*cl, cSum.dX, cSum.dZ, cSum.alpha, cSum.beta);
          
          GetHistoClSize(clsize,kDR,&histoArr)->Fill((rht-rcl)*1e4);
          if (cl->TestBit(kSplit)) {
            if (col%2) GetHistoClSize(clsize,kDTXoddSPL,&histoArr)->Fill((txyzH[0]-xyzClTr[0])*1e4);
            else       GetHistoClSize(clsize,kDTXevenSPL,&histoArr)->Fill((txyzH[0]-xyzClTr[0])*1e4);
            GetHistoClSize(clsize,kDTZSPL,&histoArr)->Fill((txyzH[2]-xyzClTr[2])*1e4);
            GetHistoClSize(0,kNPixSPL,&histoArr)->Fill(clsize);
          }
          if (col%2) GetHistoClSize(clsize,kDTXodd,&histoArr)->Fill((txyzH[0]-xyzClTr[0])*1e4);
          else       GetHistoClSize(clsize,kDTXeven,&histoArr)->Fill((txyzH[0]-xyzClTr[0])*1e4);
          GetHistoClSize(clsize,kDTZ,&histoArr)->Fill((txyzH[2]-xyzClTr[2])*1e4);
          GetHistoClSize(0,kNPixAll,&histoArr)->Fill(clsize);
          //
          cSum.evID = iEvent;
          cSum.volID = cl->GetVolumeId();
          cSum.lrID = ilr;
          cSum.clID = icl;
          cSum.nPix = cl->GetNPix();
          cSum.nX   = cl->GetNx();
          cSum.nZ   = cl->GetNz();
          cSum.q    = cl->GetQ();
          cSum.split = cl->TestBit(kSplit);
          cSum.dX = (txyzH[0]-xyzClTr[0])*1e4;
          cSum.dY = (txyzH[1]-xyzClTr[1])*1e4;
          cSum.dZ = (txyzH[2]-xyzClTr[2])*1e4;
          cSum.nRowPatt = cl-> GetPatternRowSpan();
          cSum.nColPatt = cl-> GetPatternColSpan();
 
                    
          int label = cl->GetLabel(0);
          TParticle* part = 0;
          if (label>=0 && (part=stack->Particle(label)) ) {
            cSum.pdg = part->GetPdgCode();
            cSum.eta = part->Eta();
            cSum.pt  = part->Pt();
            cSum.phi = part->Phi();
            cSum.prim = stack->IsPhysicalPrimary(label);
          } 
          cSum.ntr = 0;
          for (int ilb=0;ilb<3;ilb++) if (cl->GetLabel(ilb)>=0) cSum.ntr++;
          for (int i=0;i<3;i++) cSum.xyz[i] = xyzClGloF[i];
          //
          trOut->Fill();
          /*
          if (clsize==5) {
            printf("\nL%d(%c) Mod%d, Cl:%d | %+5.1f %+5.1f (%d/%d)|H:%e %e %e | C:%e %e %e\n",ilr,cl->TestBit(kSplit) ? 'S':'N',
             modID,icl,(txyzH[0]-xyzClTr[0])*1e4,(txyzH[2]-xyzClTr[2])*1e4, row,col,
             gxyzH[0],gxyzH[1],gxyzH[2],xyzClGlo[0],xyzClGlo[1],xyzClGlo[2]);
            cl->Print();
            pHit->Print();
            //
            double a0,b0,c0,a1,b1,c1,e0;
            pHit->GetPositionL0(a0,b0,c0,e0);
            pHit->GetPositionL(a1,b1,c1);
            float cloc[3];
            cl->GetLocalXYZ(cloc);
            printf("LocH: %e %e %e | %e %e %e\n",a0,b0,c0,a1,b1,c1);
            printf("LocC: %e %e %e | %e %e %e\n",cloc[0],cloc[1],cloc[2],xyzClTr[0],xyzClTr[1],xyzClTr[2]);
          }
          */
          //
        }
      }
    }
    
    //    layerClus.Clear();
    //
    arrMCTracks.Delete();
  }//event loop
  //
  DB.EndAndSort();
  DB.SetThresholdCumulative(0.95);
  cout << "Over threshold: : "<< DB.GetOverThr()<<endl;
  DB.Grouping(10,10);
  DB.PrintDB("Database1.txt"); 
  flOut->cd();
  trOut->Write();
  delete trOut;
  flOut->Close();
  flOut->Delete();
  DrawReport("clinfo.ps",&histoArr);
  TFile* flDB = TFile::Open("TopologyDatabase.root", "recreate");
  flDB->WriteObject(&DB,"DB","kSingleKey");
  flDB->Close();
  delete flDB;

  TCanvas* cnv123 = new TCanvas("cnv123","cnv123");
  cnv123->Divide(1,2);
  cnv123->Print("anglesdistr.pdf[");
  cnv123->cd(1);
  hL0A->Draw();
  cnv123->cd(2);
  hL0B->Draw();
  cnv123->Print("anglesdistr.pdf");
  cnv123->cd(1);
  hL1A->Draw();
  cnv123->cd(2);
  hL1B->Draw();
  cnv123->Print("anglesdistr.pdf");
  cnv123->cd(1);
  hL2A->Draw();
  cnv123->cd(2);
  hL2B->Draw();
  cnv123->Print("anglesdistr.pdf");
  cnv123->cd(1);
  hL3A->Draw();
  cnv123->cd(2);
  hL3B->Draw();
  cnv123->Print("anglesdistr.pdf");
  cnv123->cd(1);
  hL4A->Draw();
  cnv123->cd(2);
  hL4B->Draw();
  cnv123->Print("anglesdistr.pdf");
  cnv123->cd(1);
  hL5A->Draw();
  cnv123->cd(2);
  hL5B->Draw();
  cnv123->Print("anglesdistr.pdf");
  cnv123->cd(1);
  hL6A->Draw();
  cnv123->cd(2);
  hL6B->Draw();
  cnv123->Print("anglesdistr.pdf");
  cnv123->Print("anglesdistr.pdf]");
  //
}
Example #13
0
int main(int argc, char* argv[])
{
  TApplication theApp(srcName.Data(), &argc, argv);
//=============================================================================

  for (int i=0; i<argc; i++) cout << i << ", " << argv[i] << endl;
//=============================================================================

  if (argc<5) return -1;
  TString sPath = argv[1]; if (sPath.IsNull()) return -1;
  TString sFile = argv[2]; if (sFile.IsNull()) return -1;
  TString sJetR = argv[3]; if (sJetR.IsNull()) return -1;
  TString sSjeR = argv[4]; if (sSjeR.IsNull()) return -1;
//=============================================================================

  sPath.ReplaceAll("#", "/");
//=============================================================================

  double dJetR = -1.;
  if (sJetR=="JetR02") dJetR = 0.2;
  if (sJetR=="JetR03") dJetR = 0.3;
  if (sJetR=="JetR04") dJetR = 0.4;
  if (sJetR=="JetR05") dJetR = 0.5;

  if (dJetR<0.) return -1;
  cout << "Jet R = " << dJetR << endl;
//=============================================================================

  double dSjeR = -1.;
  if (sSjeR=="SjeR01") dSjeR = 0.1;
  if (sSjeR=="SjeR02") dSjeR = 0.2;
  if (sSjeR=="SjeR03") dSjeR = 0.3;
  if (sSjeR=="SjeR04") dSjeR = 0.4;

  if (dSjeR<0.) return -1;
  cout << "Sub-jet R = " << dSjeR << endl;
//=============================================================================

  const double dJetsPtMin  = 0.001;
  const double dCutEtaMax  = 1.6;
  const double dJetEtaMax  = 1.;
  const double dJetAreaRef = TMath::Pi() * dJetR * dJetR;

  fastjet::GhostedAreaSpec areaSpc(dCutEtaMax);
  fastjet::JetDefinition   jetsDef(fastjet::antikt_algorithm, dJetR, fastjet::BIpt_scheme, fastjet::Best);

//fastjet::AreaDefinition  areaDef(fastjet::active_area,areaSpc);
  fastjet::AreaDefinition  areaDef(fastjet::active_area_explicit_ghosts,areaSpc);

//fastjet::JetDefinition   bkgsDef(fastjet::kt_algorithm, 0.2, fastjet::BIpt_scheme, fastjet::Best);
//fastjet::AreaDefinition  aBkgDef(fastjet::active_area_explicit_ghosts, areaSpc);

  fastjet::Selector selectJet = fastjet::SelectorAbsEtaMax(dJetEtaMax);
//fastjet::Selector selectRho = fastjet::SelectorAbsEtaMax(dCutEtaMax-0.2);
//fastjet::Selector selecHard = fastjet::SelectorNHardest(2);
//fastjet::Selector selectBkg = selectRho * (!(selecHard));
//fastjet::JetMedianBackgroundEstimator bkgsEstimator(selectBkg, bkgsDef, aBkgDef);
//fastjet::Subtractor                   bkgSubtractor(&bkgsEstimator);

  fastjet::JetDefinition subjDef(fastjet::antikt_algorithm, dSjeR, fastjet::BIpt_scheme, fastjet::Best);
//=============================================================================

  std::vector<fastjet::PseudoJet> fjInput;
//=============================================================================

  TList *list = new TList();
  TH1D *hPtHat = new TH1D("hPtHat", "", 1000, 0., 1000.);

  TH1D *hJet = new TH1D("hJet", "", 1000, 0., 1000.); hJet->Sumw2(); list->Add(hJet);
  TH2D *hJetNsj = new TH2D("hJetNsj", "", 1000, 0., 1000., 101, -0.5, 100.5); hJetNsj->Sumw2(); list->Add(hJetNsj);

  TH2D *hJetIsj = new TH2D("hJetIsj", "", 1000, 0., 1000., 1000, 0., 1000.); hJetIsj->Sumw2(); list->Add(hJetIsj);
  TH2D *hJet1sj = new TH2D("hJet1sj", "", 1000, 0., 1000., 1000, 0., 1000.); hJet1sj->Sumw2(); list->Add(hJet1sj);
  TH2D *hJet2sj = new TH2D("hJet2sj", "", 1000, 0., 1000., 1000, 0., 1000.); hJet2sj->Sumw2(); list->Add(hJet2sj);
  TH2D *hJetDsj = new TH2D("hJetDsj", "", 1000, 0., 1000., 1000, 0., 1000.); hJetDsj->Sumw2(); list->Add(hJetDsj);

  TH2D *hJetIsz = new TH2D("hJetIsz", "", 1000, 0., 1000., 120, 0., 1.2); hJetIsz->Sumw2(); list->Add(hJetIsz);
  TH2D *hJet1sz = new TH2D("hJet1sz", "", 1000, 0., 1000., 120, 0., 1.2); hJet1sz->Sumw2(); list->Add(hJet1sz);
  TH2D *hJet2sz = new TH2D("hJet2sz", "", 1000, 0., 1000., 120, 0., 1.2); hJet2sz->Sumw2(); list->Add(hJet2sz);
  TH2D *hJetDsz = new TH2D("hJetDsz", "", 1000, 0., 1000., 120, 0., 1.2); hJetDsz->Sumw2(); list->Add(hJetDsz);
//=============================================================================

  AliRunLoader *rl = AliRunLoader::Open(Form("%s/galice.root",sPath.Data())); if (!rl) return -1;

  if (rl->LoadHeader()) return -1;
  if (rl->LoadKinematics("READ")) return -1;
//=============================================================================

  for (Int_t iEvent=0; iEvent<rl->GetNumberOfEvents(); iEvent++) {
    fjInput.resize(0);
    if (rl->GetEvent(iEvent)) continue;
//=============================================================================

    AliStack  *pStack  = rl->Stack();     if (!pStack)  continue;
    AliHeader *pHeader = rl->GetHeader(); if (!pHeader) continue;
//=============================================================================

    AliGenPythiaEventHeader *pHeadPy = (AliGenPythiaEventHeader*)pHeader->GenEventHeader();

    if (!pHeadPy) continue;
    hPtHat->Fill(pHeadPy->GetPtHard());
//=============================================================================

    for (Int_t i=0; i<pStack->GetNtrack(); i++) if (pStack->IsPhysicalPrimary(i)) {
      TParticle *pTrk = pStack->Particle(i); if (!pTrk) continue;
      if (TMath::Abs(pTrk->Eta())>dCutEtaMax) { pTrk = 0; continue; }
//    TParticlePDG *pPDG = pTrk->GetPDG(); if (!pPDG) { pTrk = 0; continue; }

      fjInput.push_back(fastjet::PseudoJet(pTrk->Px(), pTrk->Py(), pTrk->Pz(), pTrk->P()));

//    pPDG = 0;
      pTrk = 0;
    }
//=============================================================================

    fastjet::ClusterSequenceArea clustSeq(fjInput, jetsDef, areaDef);
    std::vector<fastjet::PseudoJet> includJets = clustSeq.inclusive_jets(dJetsPtMin);
//  std::vector<fastjet::PseudoJet> subtedJets = bkgSubtractor(includJets);
    std::vector<fastjet::PseudoJet> selectJets = selectJet(includJets);
//  std::vector<fastjet::PseudoJet> sortedJets = fastjet::sorted_by_pt(selectJets);

    for (int j=0; j<selectJets.size(); j++) {
      double dJet = selectJets[j].pt();

      hJet->Fill(dJet);
//=============================================================================

      fastjet::Filter trimmer(subjDef, fastjet::SelectorPtFractionMin(0.));
      fastjet::PseudoJet trimmdJet = trimmer(selectJets[j]);
      std::vector<fastjet::PseudoJet> trimmdSj = trimmdJet.pieces();

      double nIsj = 0.;
      double d1sj = -1.; int k1sj = -1;
      double d2sj = -1.; int k2sj = -1;
      for (int i=0; i<trimmdSj.size(); i++) {
        double dIsj = trimmdSj[i].pt(); if (dIsj<0.001) continue;

        hJetIsj->Fill(dJet, dIsj);
        hJetIsz->Fill(dJet, dIsj/dJet);

        if (dIsj>d1sj) {
          d2sj = d1sj; k2sj = k1sj;
          d1sj = dIsj; k1sj = i;
        } else if (dIsj>d2sj) {
          d2sj = dIsj; k2sj = i;
        } nIsj += 1.;
      }

      hJetNsj->Fill(dJet, nIsj);
      if (d1sj>0.) { hJet1sj->Fill(dJet, d1sj); hJet1sz->Fill(dJet, d1sj/dJet); }
      if (d2sj>0.) { hJet2sj->Fill(dJet, d2sj); hJet2sz->Fill(dJet, d2sj/dJet); }

      if ((d1sj>0.) && (d2sj>0.)) {
        double dsj = d1sj - d2sj;
        double dsz = dsj / dJet;

        hJetDsj->Fill(dJet, dsj);
        hJetDsz->Fill(dJet, dsz);
      }
    }
//=============================================================================

    pStack  = 0;
    pHeadPy = 0;
    pHeader = 0;
  }
//=============================================================================

  rl->UnloadgAlice();
  rl->UnloadHeader();
  rl->UnloadKinematics();
  rl->RemoveEventFolder();
//=============================================================================

  TFile *file = TFile::Open(Form("%s/pyxsec_hists.root",sPath.Data()), "READ");
  TList *lXsc = (TList*)file->Get("cFilterList");
  file->Close();

  TH1D     *hWeightSum = (TH1D*)lXsc->FindObject("h1Trials");   hWeightSum->SetName("hWeightSum");
  TProfile *hSigmaGen  = (TProfile*)lXsc->FindObject("h1Xsec"); hSigmaGen->SetName("hSigmaGen");
//=============================================================================

  file = TFile::Open(Form("%s.root",sFile.Data()), "NEW");
  hPtHat->Write();
  hWeightSum->Write();
  hSigmaGen->Write();
  list->Write();
  file->Close();
//=============================================================================

  cout << "DONE" << endl;
//=============================================================================

  return 0;
}
Example #14
0
void MUONTrigger(const char* filename)
{
    // Creating Run Loader and openning file containing Digits 
    AliRunLoader * RunLoader = AliRunLoader::Open(filename,"MUONLoader","UPDATE");
    if (RunLoader ==0x0) {
        printf(">>> Error : Error Opening %s file \n",filename);
        return;
    }
    // Loading AliRun master
    if (RunLoader->GetAliRun() == 0x0) RunLoader->LoadgAlice();
    gAlice = RunLoader->GetAliRun();
    
    // Loading MUON subsystem
    AliLoader* MUONLoader = RunLoader->GetDetectorLoader("MUON");
    MUONLoader->LoadDigits("READ");
    MUONLoader->LoadRecPoints("UPDATE"); // absolutely essential !!!    
    
    // Creating MUONTriggerDecision
    AliCDBManager* cdbManager = AliCDBManager::Instance();
    cdbManager->SetDefaultStorage("local://$ALICE_ROOT/OCDB");
    
    Int_t runnumber = 0;
    cdbManager->SetRun(runnumber);
    AliMpCDB::LoadDDLStore();
    
    AliMUONCalibrationData *CalibrationData = new AliMUONCalibrationData(runnumber);
    AliMUONTriggerElectronics *TriggerProcessor	= new AliMUONTriggerElectronics(CalibrationData);
    
    Int_t nevents = RunLoader->GetNumberOfEvents();
    AliMUONVDigitStore* digitStore=0x0;
    AliMUONVTriggerStore* triggerStore=0x0;
    
    for(Int_t ievent = 0; ievent < nevents; ievent++) {
	printf(">>> Event %i out of %i \n",ievent,nevents);
	RunLoader->GetEvent(ievent);
	
	MUONLoader->LoadRecPoints("update");
	MUONLoader->CleanRecPoints();
	MUONLoader->MakeRecPointsContainer();
	TTree* clustersTree = MUONLoader->TreeR();
	TFile* cfile = clustersTree->GetCurrentFile();
	if ( !cfile ) 
	{
	    cout << " could not find Cluster file " << endl;
	    return;
	}
	
	MUONLoader->LoadDigits("read");
	TTree* digitsTree = MUONLoader->TreeD();
	TFile* dfile = digitsTree->GetCurrentFile();
	if ( !dfile ) 
	{
	    cout << " could not find Digit file " << endl;
	    return;
	}
	
// here start reconstruction	
	if (!digitStore) digitStore = AliMUONVDigitStore::Create(*digitsTree);	
	if (!triggerStore) triggerStore = AliMUONVTriggerStore::Create(*digitsTree);
	// insure we start with empty stores
	if ( digitStore ) 
	{
	    digitStore->Clear(); 
	    Bool_t alone = ( triggerStore ? kFALSE : kTRUE );
	    Bool_t ok = digitStore->Connect(*digitsTree,alone);
	    if (!ok)
	    {
		cerr << "Could not connect digitStore to digitsTree \n";
		return;
	    }
	} else {
	    cerr << "digitStore does not exist " << "\n";
	    return;
	}
	
	digitsTree->GetEvent(0);
	
// process trigger response
	TriggerProcessor->Digits2Trigger(*digitStore,*triggerStore);
	
	//triggerStore->Print();
	
	Bool_t ok(kFALSE);
	if ( triggerStore ) {
	    ok = triggerStore->Connect(*clustersTree,kTRUE);
	    if (!ok)
	    {
		cerr << "Could not create triggerStore branches in TreeR " << "\n";
		return;
	    }
	} else {
	    cerr << "triggerStore does not exist " << "\n";
	    return;
	}

// fill TreeR
	clustersTree->Fill();
	MUONLoader->UnloadDigits();
	MUONLoader->WriteRecPoints("OVERWRITE");
	MUONLoader->UnloadRecPoints();

    }  // loop on events

}
Example #15
0
Int_t RunHLTITS(Int_t nev=1,Int_t run=0) {

  //  gSystem->Load("libAliHLTITS");

  TStopwatch timer;
  timer.Start();

   if (gAlice) {
      delete gAlice->GetRunLoader();
      delete gAlice; 
      gAlice=0;
   }

   AliRunLoader *rl = AliRunLoader::Open("galice.root");
   if (rl == 0x0) {
      cerr<<"Can not open session"<<endl;
      return 1;
   }
   Int_t retval = rl->LoadgAlice();
   if (retval) {
      cerr<<"AliESDtest.C : LoadgAlice returned error"<<endl;
      delete rl;
      return 1;
   }
   retval = rl->LoadHeader();
   if (retval) {
      cerr<<"AliESDtest.C : LoadHeader returned error"<<endl;
      delete rl;
      return 2;
   }
   gAlice=rl->GetAliRun();
       
   AliTracker::SetFieldMap(gAlice->Field());

   AliITSLoader* itsl = (AliITSLoader*)rl->GetLoader("ITSLoader");
   if (itsl == 0x0) {
      cerr<<"AliESDtest.C : Can not get the ITS loader"<<endl;
      return 3;
   }
   itsl->LoadRecPoints("read");

   AliITS *dITS = (AliITS*)gAlice->GetDetector("ITS");
   if (!dITS) {
      cerr<<"AliESDtest.C : Can not find the ITS detector !"<<endl;
      return 4;
   }
   //   AliITSgeom *geom = dITS->GetITSgeom();
   AliITSgeom *geom = new AliITSgeom();
   geom->ReadNewFile("$ALICE_ROOT/ITS/ITSgeometry_vPPRasymmFMD.det");

   //An instance of the HLT ITS tracker
   AliHLTITStracker itsTracker(geom);

   TFile *ef=TFile::Open("AliESDs.root");
   if (!ef || !ef->IsOpen()) {cerr<<"Can't AliESDs.root !\n"; return 1;}
   AliESD* event = new AliESD;
   TTree* tree = (TTree*) ef->Get("esdTree");
   if (!tree) {cerr<<"no ESD tree found\n"; return 1;};
   tree->SetBranchAddress("ESD", &event);

   TFile *itsf=TFile::Open("AliESDits.root","RECREATE");
   if ((!itsf)||(!itsf->IsOpen())) {
      cerr<<"Can't AliESDits.root !\n"; return 1;
   }

   Int_t rc=0;
   if (nev>rl->GetNumberOfEvents()) nev=rl->GetNumberOfEvents();
   //The loop over events
   for (Int_t i=0; i<nev; i++) {

     cerr<<"\n\nProcessing event number : "<<i<<endl;
     tree->GetEvent(i);
     rl->GetEvent(i);

     TArrayF v(3);     
     rl->GetHeader()->GenEventHeader()->PrimaryVertex(v);
     Double_t vtx[3]={v[0],v[1],v[2]};
     Double_t cvtx[3]={0.005,0.005,0.010};
     cout<<"MC vertex position: "<<v[2]<<endl;

     AliHLTITSVertexerZ vertexer("null");
     AliESDVertex* vertex = NULL;
     TStopwatch timer2;
     timer2.Start();
     TTree* treeClusters = itsl->TreeR();
     //     vertex = vertexer.FindVertexForCurrentEvent(i);
     //     AliESDVertex *vertex = vertexer.FindVertexForCurrentEvent(geom,treeClusters);
     vertex = new AliESDVertex(vtx,cvtx);
     timer2.Stop();
     timer2.Print();
     if(!vertex){
       cerr<<"Vertex not found"<<endl;
       vertex = new AliESDVertex(vtx,cvtx);
     }
     else {
       vertex->SetTruePos(vtx);  // store also the vertex from MC
     }

     event->SetVertex(vertex);

     Double_t vtxPos[3];
     Double_t vtxErr[3];
     vertex->GetXYZ(vtxPos);
     vertex->GetSigmaXYZ(vtxErr);
     itsTracker.SetVertex(vtxPos,vtxErr);

     TTree *itsTree=itsl->TreeR();
     if (!itsTree) {
       cerr<<"Can't get the ITS cluster tree !\n";
       return 4;
     }     
     itsTracker.LoadClusters(itsTree);
     rc+=itsTracker.Clusters2Tracks(event);
     //     rc+=itsTracker.PropagateBack(event);
     itsTracker.UnloadClusters();

     if (rc==0) {
       TTree* tree = new TTree("esdTree", "Tree with ESD objects");
       tree->Branch("ESD", "AliESD", &event);
       tree->Fill();
       itsf->cd();
       tree->Write();
     } 
     if (rc) {
       cerr<<"Something bad happened...\n";
     }

   }
   delete event;

   itsf->Close();
   ef->Close();

   //   delete rl;

   timer.Stop();
   timer.Print();

   return rc;
}
Example #16
0
//----------------------------------------------------------------------
void AliITSDigitPlot(Int_t istart=0,Int_t iend=-1,
                     const char *filename="galice.root"){
    // Macro to plot digits from many events
    // Inputs:
    //   Int_t istart   Starting event number
    //   Int_t iend     Last event number, =-1 all
    // Outputs:
    //   none.
    // Return:
    //   none.
    if (gClassTable->GetID("AliRun") < 0) {
        gROOT->ProcessLine(".x $(ALICE_ROOT)/macros/loadlibs.C");
    }
    if(gAlice){
        delete AliRunLoader::Instance();
        delete gAlice;
        gAlice=0;
    } // end if gAlice

    Int_t nevents=0,nmodules=0,retval=0;
    Int_t i,j,module,dig,ndig,row,column,signal,det;
    AliITS       *its    = 0;
    AliITSgeom   *gm     = 0;
    AliRunLoader *rl     = 0;
    AliITSLoader *ld     = 0;
    TTree        *treeD  = 0;
    TBranch      *br     = 0;
    TClonesArray *digits = 0;
    AliITSdigit  *d      = 0;
    TObjArray    *digDet = 0;
    Char_t *branchname[3] = {"ITSDigitsSPD","ITSDigitsSDD","ITSDigitsSSD"};
    //
    rl = AliRunLoader::Open(filename);
    if(!rl){
        cerr<<"Error, can not open file "<<filename<<endl;
        return;
    } // end if !rl
    retval = rl->LoadgAlice();
    if (retval){
        cerr<<"Error, LoadgAlice returned error"<<endl;
        return;
    }
    gAlice = rl->GetAliRun();
    retval = rl->LoadHeader();
    if (retval){
        cerr<<"Error, LoadHeader returned error"<<endl;
        return;
    } // end if
    ld = (AliITSLoader*) rl->GetLoader("ITSLoader");
    if(!ld){
        cerr<<"Error, ITS loader not found"<<endl;
        return;
    } // end if
    its = (AliITS*) gAlice->GetModule("ITS");
    if(!its){
        cerr <<"Error, No AliDetector ITS found on file"<<endl;
        return;
    } // end if
    gm  = its->GetITSgeom();
    if(!gm){
        cerr <<"Error, AliITSgeom not initilized in module ITS"<<endl;
        return;
    } // end if
    nevents = rl->GetNumberOfEvents();
    if(iend>nevents) iend = nevents;
    if(iend<0)       iend = nevents;
    if(iend<=istart){delete rl; return;}
    nmodules = gm->GetIndexMax();
    ld->GetDigitsDataLoader()->Load("read");
    treeD = ld->TreeD();
    if(!treeD){
        cerr <<"Error, could not get TreeD="<<treeD << endl;
        return;
    } // end if !treeD
    digDet = new TObjArray(3);
    its->SetDefaults();
    for(det=0;det<3;det++){
        digDet->AddAt(new TClonesArray(its->GetDetTypeSim()->
                                        GetDigitClassName(det),1000),det);
        br = treeD->GetBranch(branchname[det]);
        br->SetAddress(&((*digDet)[det]));
    } // end for det

    //
    SetUPHistograms();
    //
    for(i=istart;i<iend;i++){
        rl->GetEvent(i);
        treeD = ld->TreeD();
        for(det=0;det<3;det++){
            ((TClonesArray*)(digDet->At(det)))->Clear();
            br = treeD->GetBranch(branchname[det]);
            br->SetAddress(&((*digDet)[det]));
        } // end for det
        for(module=0;module<nmodules;module++){
            for(j=0;j<3;j++) ((TClonesArray*)(digDet->At(j)))->Clear();
            treeD->GetEvent(module);
            digits = (TClonesArray*) (digDet->At(0)); // SPD only.
            ndig = digits->GetEntriesFast();
            for(dig=0;dig<ndig;dig++){
                d = (AliITSdigit*) digits->At(dig);
                row    = d->GetCoord1();
                column = d->GetCoord1();
                signal = d->GetSignal();
                     //cout <<"event="<<i<< " ndig="<< ndig<< " mod="
                     //<<module<<" row="<<row<<" col="<<column<< " sig="
                     //<<signal<<endl;
                FillHistograms(module,row,column,signal);
            } // end for mod
        } // end for module
    } // end for i
    DisplayHistograms();
    delete digits;
    return;
}