// Fills the complement of the radius of the trail with minus infties. // The return value true means success. Failure means that during the fill, // we intersected the outside of the quasidiagonal area. // In this case, the operation is not finished. bool borderDetailedAlignMatrix( AlignMatrix& alignMatrix, const Trail& trail, int radius ) { int huBookSize = alignMatrix.size(); int enBookSize = alignMatrix.otherSize(); int huPos, enPos; for ( huPos=0; huPos<huBookSize; ++huPos ) { int rowStart = alignMatrix.rowStart(huPos); int rowEnd = alignMatrix.rowEnd(huPos); for ( enPos=rowStart; enPos<rowEnd; ++enPos ) { alignMatrix.cell(huPos,enPos) = outsideOfRadiusValue; } } // We seriously use the fact that many-to-zero segments are subdivided into one-to-zero segments. // Inside setBox, an exception is thrown if we try to write outside the quasidiagonal. // If we catch such an exception, it means that the quasidiagonal is not thick enough. // In this case, we abandon the whole align, just to be sure. try { for ( int i=0; i<trail.size(); ++i ) { setBox( alignMatrix, trail[i].first, trail[i].second, radius, insideOfRadiusValue ); } } catch ( const char* errorType ) { massert( std::string(errorType) == "out of quasidiagonal" ) return false; } bool verify = true; if (verify) { int numberOfEvaluatedItems(0); for ( huPos=0; huPos<huBookSize; ++huPos ) { int rowStart = alignMatrix.rowStart(huPos); int rowEnd = alignMatrix.rowEnd(huPos); for ( enPos=rowStart; enPos<rowEnd; ++enPos ) { if (alignMatrix[huPos][enPos]==insideOfRadiusValue) { ++numberOfEvaluatedItems; } } } std::cerr << numberOfEvaluatedItems << " items inside the border." << std::endl; } return true; }
void setBox( AlignMatrix& m, int huPos, int enPos, int radius, int insideOfRadiusValue ) { for ( int x=huPos-radius; x<=huPos+radius; ++x ) { for ( int y=enPos-radius; y<=enPos+radius; ++y ) { if ( (x>=0) && (x<m.size()) && (y>=0) && (y<m.otherSize()) ) { m.cell(x,y) = insideOfRadiusValue ; } } } }