Example #1
0
void Cal3dModel::renderMesh(bool useTextures, bool useLighting, bool select_mode) {
  // get the renderer of the model
  CalRenderer *pCalRenderer = m_calModel->getRenderer();
  assert(pCalRenderer !=  NULL);

  // We let open gl do this, so no need to do it twice
  pCalRenderer->setNormalization(false);

  // begin the rendering loop
  if (!pCalRenderer->beginRendering()) {
    // Some kind of error here!
    return;
  }

  // get the number of meshes
  int meshCount = pCalRenderer->getMeshCount();
  int numSubMeshes = 0;
  for (int i = 0; i < meshCount; ++i) {
    numSubMeshes += pCalRenderer->getSubmeshCount(i);
  }
  m_dos.resize(numSubMeshes);

  int counter = -1;
  // render all meshes of the model
  for(int meshId = 0; meshId < meshCount; ++meshId)  {
    // get the number of submeshes
    int submeshCount = pCalRenderer->getSubmeshCount(meshId);

    // render all submeshes of the mesh
    for(int submeshId = 0; submeshId < submeshCount; ++submeshId) {
      // select mesh and submesh for further data access
      if(pCalRenderer->selectMeshSubmesh(meshId, submeshId)) {

        DynamicObject* dyno = m_dos[++counter];
        if (!dyno) {
          dyno = new DynamicObject();
          dyno->init();
          dyno->contextCreated();
          m_dos[counter] = dyno;

          // Lets assume this doesn't change
          static unsigned char meshColor[4];
          static float ambient[4];
          static float diffuse[4];
          static float specular[4];
          static float shininess;

          pCalRenderer->getAmbientColor(&meshColor[0]);
          ambient[0] = meshColor[0] / 255.0f;
          ambient[1] = meshColor[1] / 255.0f;
          ambient[2] = meshColor[2] / 255.0f;
          ambient[3] = meshColor[3] / 255.0f;
          dyno->setAmbient(ambient);

          // set the material diffuse color
          pCalRenderer->getDiffuseColor(&meshColor[0]);
          diffuse[0] = meshColor[0] / 255.0f;
          diffuse[1] = meshColor[1] / 255.0f;
          diffuse[2] = meshColor[2] / 255.0f;
          diffuse[3] = 1.0f;//meshColor[3] / 255.0f;
          dyno->setDiffuse(diffuse);

          // set the material specular color
          pCalRenderer->getSpecularColor(&meshColor[0]);
          specular[0] = meshColor[0] / 255.0f;
          specular[1] = meshColor[1] / 255.0f;
          specular[2] = meshColor[2] / 255.0f;
          specular[3] = meshColor[3] / 255.0f;
          dyno->setSpecular(specular);

          dyno->setEmission(0.0f, 0.0f, 0.0f,0.0f);

          shininess = pCalRenderer->getShininess();
          dyno->setShininess(shininess);

          dyno->getMatrix().rotateZ(-m_rotate / 180.0 * WFMath::Pi);

          dyno->setState(m_state);
          dyno->setSelectState(m_select_state);
          dyno->setUseStencil(m_use_stencil);

        }

        // get the transformed vertices of the submesh
        int vertexCount = pCalRenderer->getVertexCount();
        bool realloc = false;
        float *vertex_ptr, *normal_ptr, *texture_ptr;
        int textureCoordinateCount = 0;

        if (vertexCount > dyno->getNumPoints()) {
          realloc = true;
          vertex_ptr = dyno->createVertexData(vertexCount * 3);  
          pCalRenderer->getVertices(vertex_ptr);
          dyno->releaseVertexDataPtr();

          normal_ptr = dyno->createNormalData(vertexCount * 3);  
          pCalRenderer->getNormals(normal_ptr);
          dyno->releaseNormalDataPtr();
        } else {
          vertex_ptr = dyno->getVertexDataPtr();
          pCalRenderer->getVertices(vertex_ptr);
          dyno->releaseVertexDataPtr();

          normal_ptr = dyno->getNormalDataPtr();
          pCalRenderer->getNormals(normal_ptr);
          dyno->releaseNormalDataPtr();
        }

        int faceCount = pCalRenderer->getFaceCount();

        if (faceCount > 0) {
          int *face_ptr;
          if (faceCount > dyno->getNumFaces()) {
            face_ptr = dyno->createIndices(faceCount * 3);
          } else {
            face_ptr = dyno->getIndicesPtr();
          }
          pCalRenderer->getFaces(face_ptr);
          dyno->releaseIndicesPtr();

          dyno->setNumFaces(faceCount);
        }

        dyno->setNumPoints(vertexCount);

        // There are several situations that can happen here. 
        // Model with/without texture coordinates
        // Model with/without texture maps
        // Model with/without texture mas name defined
        // Each model can be a mixture of the above. We want objects with
        // textures and texture coords.
        bool mapDataFound = false;


        std::vector<std::vector<CalCoreSubmesh::TextureCoordinate> > & vectorvectorTextureCoordinate =
            m_calModel->getVectorMesh()[meshId]->getSubmesh(submeshId)->getCoreSubmesh()->getVectorVectorTextureCoordinate();

        // check if the map id is valid
        if ( vectorvectorTextureCoordinate.size() > 0) {
          textureCoordinateCount = vectorvectorTextureCoordinate[0].size();
        }


        if((pCalRenderer->getMapCount() > 0) && (textureCoordinateCount > 0)) {
          for (int i = 0; i < pCalRenderer->getMapCount(); ++i) {
            MapData *md = reinterpret_cast<MapData*>
                                          (pCalRenderer->getMapUserData(i));
            if (md) {
              dyno->setTexture(i, md->textureID, md->textureMaskID);
              mapDataFound = true;
            } else {
              // Can't have a missing texture map between units.
              break; 
            }
          }
        }

        if (mapDataFound){
          if (realloc) {
            texture_ptr = dyno->createTextureData(vertexCount * 2);
            textureCoordinateCount = pCalRenderer->getTextureCoordinates(0, texture_ptr);
            dyno->releaseTextureDataPtr();
          } else {
            texture_ptr = dyno->getTextureDataPtr();
            textureCoordinateCount = pCalRenderer->getTextureCoordinates(0, texture_ptr);
            dyno->releaseTextureDataPtr();
          }
          if (textureCoordinateCount == -1) {
            // Need to ignore the texture buffer
          }
//          assert(textureCoordinateCount == vertexCount);
        }
      }
    }
  }
  pCalRenderer->endRendering();
}
void CCal3DSceneNode::render()
{
    if ( bInitialized )
    {
      irr::video::IVideoDriver* driver = SceneManager->getVideoDriver(); 


      driver->setTransform( irr::video::ETS_WORLD, AbsoluteTransformation ); 


      irr::video::S3DVertex tmp; 
      irr::scene::SMeshBuffer mb; 

      unsigned char meshColor[4]; // r g b a 


      // get the renderer of the model 
      CalRenderer* pCalRenderer; 
      pCalRenderer = m_calModel->getRenderer(); 
      pCalRenderer->setNormalization( true ); 

      if ( this->DebugDataVisible )
      {
        irr::video::SMaterial mat; 
        mat.Wireframe = false; 
        mat.Lighting = false; 
        driver->setMaterial( mat ); 
        driver->draw3DBox( Box ); 

        CalSkeleton* pCalSkeleton = m_calModel->getSkeleton(); 
        pCalSkeleton->calculateBoundingBoxes(); 
        std::vector<CalBone*>& vectorCoreBone = pCalSkeleton->getVectorBone(); 
        irr::core::aabbox3df b; 
        CalVector p[8]; 
        Vector3 v[8]; 


        for ( size_t boneId = 0; boneId < vectorCoreBone.size(); ++boneId )
        {
          CalBone* bone = vectorCoreBone[boneId]; 
          CalBoundingBox& calBoundingBox = bone->getBoundingBox(); 
          calBoundingBox.computePoints( p ); 

          for ( int i = 0; i < 8; ++i )
          {
            v[i].set( p[i].x, p[i].y, p[i].z );
          } 

          driver->setMaterial( mat ); 
          // draw the box 
          driver->draw3DLine( v[0], v[1], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[0], v[2], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[1], v[3], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[2], v[3], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[4], v[5], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[4], v[6], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[5], v[7], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[6], v[7], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[0], v[4], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[1], v[5], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[2], v[6], irr::video::SColor( 255, 0, 0, 255 ) ); 
          driver->draw3DLine( v[3], v[7], irr::video::SColor( 255, 0, 0, 255 ) ); 
          //printf("F: %f\n", v[0].X);
        }
      } 


      // begin the rendering loop 
      if ( pCalRenderer->beginRendering() )
      {
        // get the number of meshes 
        int meshCount; 
        meshCount = pCalRenderer->getMeshCount(); 

        // render all meshes of the model 
        int meshId; 
        for ( meshId = 0; meshId < meshCount; meshId++ )
        {
          // get the number of submeshes 
          int submeshCount; 
          submeshCount = pCalRenderer->getSubmeshCount( meshId ); 

          // render all submeshes of the mesh 
          int submeshId; 
          for ( submeshId = 0; submeshId < submeshCount; submeshId++ )
          {
            // select mesh and submesh for further data access 
            if ( pCalRenderer->selectMeshSubmesh( meshId, submeshId ) )
            {
              // set the material ambient color 
              pCalRenderer->getAmbientColor( &meshColor[0] ); 
              material.AmbientColor.set( meshColor[3], meshColor[0], meshColor[1], meshColor[2] ); 

              // set the material diffuse color 
              pCalRenderer->getDiffuseColor( &meshColor[0] ); 
              material.DiffuseColor.set( meshColor[3], meshColor[0], meshColor[1], meshColor[2] ); 

              // set the material specular color 
              pCalRenderer->getSpecularColor( &meshColor[0] ); 
              material.SpecularColor.set( meshColor[3], meshColor[0], meshColor[1], meshColor[2] ); 

              // set the material shininess factor 
              material.Shininess = pCalRenderer->getShininess(); 

              // get the transformed vertices of the submesh 
              static float meshVertices[3000][3]; 
              int vertexCount = 0; 
              // TODO:
              //if (KERNEL.GetTicks() % 3 == 0) //- make lod dependent?
              vertexCount = pCalRenderer->getVertices( &meshVertices[0][0] ); 

              // get the transformed normals of the submesh 
              static float meshNormals[3000][3]; 
              int normalsCount = 0;
              //    if (KERNEL.GetTicks() % 3 == 0)
              normalsCount = pCalRenderer->getNormals( &meshNormals[0][0] ); 

              // get the texture coordinates of the submesh 
              static float meshTextureCoordinates[3000][2]; 
              int textureCoordinateCount = 0; 
              textureCoordinateCount = pCalRenderer->getTextureCoordinates( 0, &meshTextureCoordinates[0][0] ); 

              // get the faces of the submesh 
              static CalIndex meshFaces[5000][3]; 
              int faceCount = 0;
              //if (KERNEL.GetTicks() % 12 == 0)
              faceCount = pCalRenderer->getFaces( &meshFaces[0][0] ); 

              if ( ( pCalRenderer->getMapCount() > 0 ) && ( textureCoordinateCount > 0 ) )
              {
                irr::video::ITexture* t = static_cast<irr::video::ITexture*>( pCalRenderer->getMapUserData( 0 ) ); 
                material.Texture1 = t;
              } 

              static S3DVertex vs[5000];
              for ( int i = 0; i < vertexCount; i++ )
              {
                vs[i].Pos.set( meshVertices[i][0], meshVertices[i][1], meshVertices[i][2] ); 
                vs[i].Normal.set( meshNormals[i][0], meshNormals[i][1], meshNormals[i][2] ); 
                vs[i].TCoords.set( meshTextureCoordinates[i][0], meshTextureCoordinates[i][1] ); 
                vs[i].Color = irr::video::SColor( 255, 255, 255, 255 );
              } 

              static u16 is[5000];
              for ( int i = 0; i < faceCount; i += 1 )
              {
                is[i * 3 + 0] = meshFaces[i][0]; 
                is[i * 3 + 1] = meshFaces[i][1]; 
                is[i * 3 + 2] = meshFaces[i][2];
              } 

              //mb.Vertices.clear(); 
              //mb.Vertices.reallocate(vertexCount);
              //for(int i=0;i<vertexCount;i++) 
              //{ 
              //    tmp.Pos.set(meshVertices[i][0],meshVertices[i][1],meshVertices[i][2]); 
              //    tmp.Normal.set(meshNormals[i][0],meshNormals[i][1],meshNormals[i][2]); 
              //    tmp.TCoords.set(meshTextureCoordinates[i][0],meshTextureCoordinates[i][1]); 
              //    tmp.Color=irr::video::SColor(255,255,255,255); 
              //    mb.Vertices.push_back(tmp); 
              //} 

              //mb.Indices.clear(); 
              //mb.Indices.reallocate(faceCount);
              //for(int i=0; i<faceCount; ++i)
              //{ 
              //    mb.Indices.push_back(meshFaces[i][0]); 
              //    mb.Indices.push_back(meshFaces[i][1]); 
              //    mb.Indices.push_back(meshFaces[i][2]); 
              //} 

              // draw 

              driver->setMaterial( material ); 
              //driver->drawIndexedTriangleList(mb.Vertices.const_pointer(),mb.Vertices.size(),mb.Indices.const_pointer(),faceCount); 
              driver->drawIndexedTriangleList( vs, vertexCount, is, faceCount ); 
              //driver->drawMeshBuffer(&mb); 

              //CONSOLE.addx("#Verts %d #Norm %d #Tex %d #Faces %d #Map %d", 
              //       vertexCount,normalsCount,textureCoordinateCount,faceCount, pCalRenderer->getMapCount()); 
            }
          }
        } 

        // end the rendering 
        pCalRenderer->endRendering();
      }
    }
}