void operator()( const blocked_range2d<size_t>& r ) const { for( size_t x=r.rows().begin(); x!=r.rows().end(); ++x ) { for( size_t y=r.cols().begin(); y!=r.cols().end(); ++y ) { if(my_cam->isYellow_small(x, y)) returnPixel1C(my_seg_yellow, x, y) = 255; else returnPixel1C(my_seg_yellow, x, y) = 0; // if(my_cam->isGreen_small(x, y)) // returnPixel1C(my_seg_green, x, y) = 255; // else // returnPixel1C(my_seg_green, x, y) = 0; // if(my_cam->isBlue_small(x, y)) // returnPixel1C(my_seg_blue, x, y) = 255; // else // returnPixel1C(my_seg_blue, x, y) = 0; if(my_cam->isRed_small(x, y)) returnPixel1C(my_seg_red, x, y) = 255; else returnPixel1C(my_seg_red, x, y) = 0; } } }
void getBoundary(CamCapture &camera) { // IplImage* show_image3 = cvCreateImage(cvSize(IMAGE_WIDTH, IMAGE_HEIGHT), 8, 3); //show full size rgb image // IplImage* show_image = cvCreateImage(cvSize(IMAGE_WIDTH, IMAGE_HEIGHT), 8, 1); //show full size rgb image // cvZero(show_image); IplImage* probImage = cvCreateImage(cvSize(IMAGE_WIDTH/4,IMAGE_HEIGHT/4), 8, 1); //probab of being inside field cvZero(probImage); int rowsum[IMAGE_HEIGHT/4] = {}; for(int x=0; x<IMAGE_WIDTH/4; x++) { for(int y=0; y<IMAGE_HEIGHT/4; y++) { int r_count=0, g_count=0, w_count=0, b_count=0; if((x-IMAGE_WIDTH/8)*(x-IMAGE_WIDTH/8) + (-y+IMAGE_HEIGHT/8)*(-y+IMAGE_HEIGHT/8) < R*R/16) { for(int xx=0; xx<4; xx++) { for(int yy=0; yy<4; yy++) { int tx = x*4 + xx; int ty = y*4 + yy; if(camera.isRed_small(tx, ty)) r_count++; if(camera.isGreen_small(tx, ty)) g_count++; if(camera.isWhite_small(tx, ty)) w_count++; if(camera.isBlack_small(tx, ty)) b_count++; } } } returnPixel1C(probImage, x, y) = (r_count*16 + g_count*8 + w_count + b_count); //white if(w_count == 16) returnPixel1C(seg_white_count1, x, y) = 255; else returnPixel1C(seg_white_count1, x, y) = (w_count*16)%256; if(w_count>4) { returnPixel1C(seg_white1, x, y) = 255; #ifdef SHOW_SUBSAMPLE returnPixel3C(subSampled, x, y, 0) = 255; returnPixel3C(subSampled, x, y, 1) = 255; returnPixel3C(subSampled, x, y, 2) = 255; #endif } //black if(b_count>4) { returnPixel1C(seg_black1, x, y) = 255; #ifdef SHOW_SUBSAMPLE returnPixel3C(subSampled, x, y, 0) = 0; returnPixel3C(subSampled, x, y, 1) = 0; returnPixel3C(subSampled, x, y, 2) = 0; #endif } //green if(g_count>4) { returnPixel1C(seg_green1, x, y) = 255; #ifdef SHOW_SUBSAMPLE returnPixel3C(subSampled, x, y, 1) = 255; #endif } rowsum[y] += pixelColor1C(probImage, x, y); } }//probability image created //binarization of image - white(255) inside field, black(0) outside IplImage* binaryImage = cvCreateImage(cvSize(IMAGE_WIDTH/4,IMAGE_HEIGHT/4), 8, 1); //binary img inside field cvZero(binaryImage); int tpix, trow, twin; //thresholds tpix = 30; //minimum required probab image trow = IMAGE_WIDTH*4.5; twin = 36*18; for(int x=0; x<IMAGE_WIDTH/4; x++) { for(int y=0; y<IMAGE_HEIGHT/4; y++) { //check if point inside fisheye image if((x-IMAGE_WIDTH/8)*(x-IMAGE_WIDTH/8) + (-y+IMAGE_HEIGHT/8)*(-y+IMAGE_HEIGHT/8) > R*R/16) continue; //check if pixel passes minimum threshold if(pixelColor1C(probImage, x, y) < tpix) { returnPixel1C(binaryImage, x, y) = 0; continue; } //check if rowsum passes minimum threshold if(rowsum[y] >= trow) { returnPixel1C(binaryImage, x, y) = 255; continue; } //else do the expensive test int sum = 0; for(int i = -4; i< 5; i++) { for(int j=-4; j<5; j++) { if( (x+i)<IMAGE_WIDTH/4 && (x+i)>=0 && (y+j)<IMAGE_HEIGHT/4 && (y+j)>=0 ) sum += pixelColor1C(probImage, x+i, y+j); } } if (sum >= twin) returnPixel1C(binaryImage, x, y) = 255; else returnPixel1C(binaryImage, x, y) = 0; } }//binary image created // cvZero(show_image); // cvResize(binaryImage, show_image); // cvShowImage("binary", show_image); // cvWaitKey(); //retrieving field boundary IplImage* histogram = cvCreateImage(cvSize(IMAGE_WIDTH/4, 1), 8, 1); //image saves y boundary value for each x cvZero(histogram); returnPixel1C(histogram, 0, 0) = IMAGE_HEIGHT/4 - 1; for(int x = 1; x < IMAGE_WIDTH/4; x++) { int y=0, count=0; for(y = 0; y < IMAGE_HEIGHT/4; y++) { if(pixelColor1C(binaryImage, x, y)) { count++; if(count==4) break; } else count=0; } if(count == 4) returnPixel1C(histogram, x, 0) = y; else returnPixel1C(histogram, x, 0) = IMAGE_HEIGHT/4 - 1; } //smoothning and gap filling cvSmooth(histogram, histogram, CV_GAUSSIAN, 3); cvSmooth(histogram, histogram, CV_MEDIAN, 3); //local convex hull IplImage* boundary_img = cvCreateImage(cvSize(IMAGE_WIDTH/4, IMAGE_HEIGHT/4), 8, 1); cvZero(boundary_img); for(int x=0; x<IMAGE_WIDTH/4; x++) { bound[x] = pixelColor1C(histogram, x, 0); } int convexity; CvPoint lastOnHull = cvPoint(0, bound[0]); for(int x=1; x<IMAGE_WIDTH/4 - 1; x++) { convexity = 2*(bound[x] - bound[x-1]) - (bound[x+1] - bound[x-1]); if(convexity > 0) continue; else { cvLine(boundary_img, lastOnHull, cvPoint(x, bound[x]), cvScalar(255,255,0), 1); //connect lastOnHull = cvPoint(x, bound[x]); } } // cvZero(show_image); // cvResize(boundary_img, show_image); // cvShowImage("boundary", show_image); //cvWaitKey(); //releaase memory //cvReleaseImage(&show_image); cvReleaseImage(&boundary_img); cvReleaseImage(&binaryImage); cvReleaseImage(&probImage); cvReleaseImage(&histogram); }
void FeatureDetection::getInGreen(CamCapture &cam) { // Make reduced image int rowsum[IMAGE_HEIGHT/4]; IplImage* binary_image = cvCreateImage(cvSize(IMAGE_WIDTH/4, IMAGE_HEIGHT/4), 8, 1); IplImage* prob_image = cvCreateImage(cvSize(IMAGE_WIDTH/4, IMAGE_HEIGHT/4), 8, 1); cvZero(binary_image); cvZero(prob_image); cvZero(seg_white); cvZero(seg_black); cvZero(seg_green); cvZero(seg_white_count); //New Begin const int tmin = 30; const int trow = IMAGE_WIDTH*4.5; const int tsum = 36*18;//30*18;//36*18; for(int y = 0; y < IMAGE_HEIGHT/4; y++) { rowsum[y] = 0; for(int x = 0; x < IMAGE_WIDTH/4; x++) { int wcount = 0; int gcount = 0; int bcount = 0; int rcount = 0; for(int xx = 0; xx < 4; xx++) for(int yy=0; yy < 4; yy++) { int tx = x*4 + xx; int ty = y*4 + yy; if(cam.isGreen_small(tx, ty)) gcount++; if(cam.isWhite_small(tx, ty)) wcount++; if(cam.isBlack_small(tx, ty)) bcount++; if(cam.isRed_small(tx, ty)) rcount++; } returnPixel1C(prob_image, x, y) = wcount + bcount + rcount*16 + gcount*8; if(gcount > 4) returnPixel1C(prob_image, x, y) += gcount*2; if(wcount) { if(wcount==16) returnPixel1C(seg_white_count, x, y) = 255; else returnPixel1C(seg_white_count, x, y) = (wcount*16)%256; if(wcount>4) returnPixel1C(seg_white, x, y) = 255; } if(gcount>4) { returnPixel1C(seg_green, x, y) = 255; } if(bcount > 4) { returnPixel1C(seg_black, x, y) = 255; } if(rcount) { returnPixel1C(seg_red, x, y) = 255; } else { // returnPixel1C(seg_black, x, y) = 255; } rowsum[y] += pixelColor1C(prob_image, x, y); } } //New End for(int y = 0; y < IMAGE_HEIGHT/4; y++) { for(int x = 0; x < IMAGE_WIDTH/4; x++) { //check if point inside fisheye image if((x-IMAGE_WIDTH/8)*(x-IMAGE_WIDTH/8) + (-y+IMAGE_HEIGHT/8)*(-y+IMAGE_HEIGHT/8) > 120*120/16) //radius of image is 120 pixels continue; //for each pixel, first check tmin if(pixelColor1C(prob_image, x, y) < tmin) { returnPixel1C(binary_image, x, y) = 0; continue; } //Now, check row sum is above certain threshold if(rowsum[y] > trow) { returnPixel1C(binary_image, x, y) = 255; continue; } //Now do the expensive test int sum = 0; for(int i = -4; i <5; i++) { for(int j = -4; j < 5; j++) { if((x + i > 0)&&(y + j > 0)&&(x + i < IMAGE_WIDTH/4)&&(y + j < IMAGE_HEIGHT/4)) { sum = sum + pixelColor1C(prob_image, x +i, y+j); } } } if(sum >= tsum) { returnPixel1C(binary_image, x, y) = 255; continue; } else { returnPixel1C(binary_image, x, y) = 0; continue; } } } IplImage* histogram = cvCreateImage(cvSize(IMAGE_WIDTH/4, 1), 8, 1); for(int x = 0; x < IMAGE_WIDTH/4; x++) { int y=0, count = 0; for(y = 0; y < IMAGE_HEIGHT/4; y++) { if(pixelColor1C(binary_image, x, y)) { count++; if(count == 4) break; } else count = 0; } if(count == 4) returnPixel1C(histogram, x, 0) = y; else returnPixel1C(histogram, x, 0) = IMAGE_HEIGHT/4 - 1; } cvSmooth(histogram, histogram, CV_GAUSSIAN, 3); cvSmooth(histogram, histogram, CV_MEDIAN, 15); // for(int x = 0; x < IMAGE_WIDTH/4; x++) // { // // for(int y = 0; y < returnPixel1C(histogram, x, 0); y++) // // { // // returnPixel1C(seg_white, x, y) = 0; // // returnPixel1C(seg_black, x, y) = 0; // // returnPixel1C(seg_white_count, x, y) = 0; // // } // // Uncomment this to see histogram boundary in seg_black // // Caution: uncommenting this will cause segmentation faults in some cases! Uncomment only when testing // int temp = returnPixel1C(histogram, x, 0); // if(temp > 1) // returnPixel1C(seg_black, x,(int) (temp-1)) = 127; // } // cvShowImage("boundary", seg_black); // for(int x = 0; x < IMAGE_WIDTH; x++) // { // for(int y = 0; y < returnPixel1C(histogram, x/4, 0)*4; y++) // { // returnPixel1C(seg_red, x, y) = 0; // } // } #ifndef INTEL_BOARD_DISPLAY cvNamedWindow("RED"); cvMoveWindow("RED",50,600); cvShowImage("RED", seg_red); #endif cvReleaseImage(&histogram); // convex corner algo? // IplImage* show_image = cvCreateImage(cvSize(IMAGE_WIDTH*2, IMAGE_HEIGHT*2), 8, 1); // cvResize(seg_black, show_image); // cvShowImage("Black", show_image); // cvResize(seg_white, show_image); // cvShowImage("White", show_image); // cvResize(seg_green, show_image); // cvShowImage("Green", show_image); // cvResize(binary_image, show_image); // cvShowImage("Binary", show_image); // cvResize(prob_image, show_image); // cvShowImage("Prob", show_image); // cvReleaseImage(&show_image); //Segmentation done cvReleaseImage(&binary_image); cvReleaseImage(&prob_image); }