Example #1
0
float
SimpleDriver::getAccel(CarState &cs)
{
    // checks if car is out of track
    if (cs.getTrackPos() < 1 && cs.getTrackPos() > -1)
    {
        // reading of sensor at +5 degree w.r.t. car axis
        float rxSensor=cs.getTrack(10);
        // reading of sensor parallel to car axis
        float cSensor=cs.getTrack(9);
        // reading of sensor at -5 degree w.r.t. car axis
        float sxSensor=cs.getTrack(8);

        float targetSpeed;

        // track is straight and enough far from a turn so goes to max speed
        if (cSensor>maxSpeedDist || (cSensor>=rxSensor && cSensor >= sxSensor))
            targetSpeed = maxSpeed;
        else
        {
            // approaching a turn on right
            if(rxSensor>sxSensor)
            {
                // computing approximately the "angle" of turn
                float h = cSensor*sin5;
                float b = rxSensor - cSensor*cos5;
                float sinAngle = b*b/(h*h+b*b);
                // estimate the target speed depending on turn and on how close it is
                targetSpeed = maxSpeed*(cSensor*sinAngle/maxSpeedDist);
            }
            // approaching a turn on left
            else
            {
                // computing approximately the "angle" of turn
                float h = cSensor*sin5;
                float b = sxSensor - cSensor*cos5;
                float sinAngle = b*b/(h*h+b*b);
                // estimate the target speed depending on turn and on how close it is
                targetSpeed = maxSpeed*(cSensor*sinAngle/maxSpeedDist);
            }

        }

        // accel/brake command is expontially scaled w.r.t. the difference between target speed and current one
        return 2/(1+exp(cs.getSpeedX() - targetSpeed)) - 1;
    }
    else
        return 0.3; // when out of track returns a moderate acceleration command

}
Example #2
0
bool Stuck::seemsStuck(CarState &cs) {
    cs.getSpeedX()<STUCK_SPEED?slowSpeedTicks++:slowSpeedTicks = 0;
    if(notStuckAnymore(cs.getTrackPos(), cs.getAngle())){
        slowSpeedTicks=0;
    }
    return (slowSpeedTicks>MAX_SLOW_SPEED_TICKS?1:0);
}
Example #3
0
float
ApproachingCurve::getSteering(CarState &cs) {
    if(r_sensor == l_sensor) return 0;

    float angle = cs.getAngle();
    // If the controller is not in a pre-defined region amongst the inside limits of the track (between 0.7 and 0.9 with the current
    // set of values, normalized), than it will be adjusted to do so
    bool adjustedToCurve = ((fabs(cs.getTrackPos()) - target_pos >= 0) && (fabs(cs.getTrackPos()) - target_pos < 0.2));

    if(!adjustedToCurve) {
        if(approachingRightTurn())
            angle = max_steering - angle;
        else
            angle -= max_steering;
    }

    return angle;
}
Example #4
0
float ApproachingCurve::getSteering(CarState &cs) {
    if(rSensor == lSensor) return 0;
    
    float angle = cs.getAngle();
    //If the controller is not in a pre-defined region amongst the inside limits of the track (between 0.7 and 0.9 with the current
    //set of values, normalized), than it will be adjusted to do so
    bool adjustedToCurve = ((fabs(cs.getTrackPos()) - TARGET_POS >= 0) && (fabs(cs.getTrackPos()) - TARGET_POS < 0.2));
    //Previous conditions:																// 0.2 is an arbitrary margin
    //bool adjustedToCurve = (cs.getTrackPos() <= TARGET_POS);

    if(!adjustedToCurve) {   
        if(approachingRightTurn())
            angle = MAX_STEERING - angle;
        else
            angle -= MAX_STEERING;
    }
    
    return angle;
}
Example #5
0
float
SimpleDriver::getSteer(CarState &cs)
{
	// steering angle is compute by correcting the actual car angle w.r.t. to track 
	// axis [cs.getAngle()] and to adjust car position w.r.t to middle of track [cs.getTrackPos()*0.5]
    float targetAngle=(cs.getAngle()-cs.getTrackPos()*0.5);
    // at high speed reduce the steering command to avoid loosing the control
    if (cs.getSpeedX() > steerSensitivityOffset)
        return targetAngle/(steerLock*(cs.getSpeedX()-steerSensitivityOffset)*wheelSensitivityCoeff);
    else
        return (targetAngle)/steerLock;

}
Example #6
0
CarControl Stuck::drive(FSMDriver5 *fsmdriver5, CarState &cs) {
    ++elapsedTicks;
    trackInitialPos = getInitialPos(cs);
    if(notStuckAnymore(cs.getTrackPos(), cs.getAngle()) || hasBeenStuckLongEnough()){
        elapsedTicks = 0;
        slowSpeedTicks = 0;
        trackInitialPos = 0;
    }
    const float accel = 1, brake = 0, clutch = 0;
    const int gear = -1, focus = 0, meta = 0;
    float steer = getSteer(trackInitialPos, cs);

    return CarControl(accel, brake, gear, steer, clutch, focus, meta);
}
Example #7
0
float
getSteering(CarState & cs) {
	// based on Loiacono's SimpleDriver

	const float
	  steerLock = 0.366519;
	float
	  targetAngle = (cs.getAngle() - cs.getTrackPos() * 0.5) / steerLock;

	// normalize steering
	if(targetAngle < -1)
		targetAngle = -1;
	else if(targetAngle > 1)
		targetAngle = 1;

	return targetAngle;
}
Example #8
0
float
Stuck::getInitialPos(CarState &cs) {
	return (track_initial_pos == 0 ? cs.getTrackPos() : track_initial_pos);
}
Example #9
0
bool
Stuck::notStuckAnymore(CarState &cs) {
    return onRightWay(cs.getTrackPos(), cs.getAngle());
}
Example #10
0
CarControl MyDriver::wDrive(CarState cs){
	// Update clock variables for graphing over time
	_timePrevious = _timeCurrent;
	_timeCurrent = Clock::now();

	_dt = _timeCurrent - _timePrevious;
	_runtime += _dt;

	if (_logging)
		Renderer::get().setWindowTitle(std::to_string(_dt.count()));


	// Temporarily copy old sensors to delta and reset sensors with max distance
	memcpy(&_driving.delta[0], &_driving.sensors[0], sizeof(_driving.sensors));
	std::fill_n(_driving.sensors, ALL_SENSORS, 200.f);
	

	// Directly mapping track sensors to front 19 sensors
	int zero = 0;

	for (int i = 0; i < HALF_SENSORS; i++){
		float distance = cs.getTrack(i);

		if (distance <= 0.f)
			zero++;

		if (distance < _driving.sensors[i + QUART_SENSORS])
			_driving.sensors[i + QUART_SENSORS] = distance;
	}

	if (zero == 19)
		_driving.crashed = true;
	else if (_driving.crashed)
		_driving.crashed = false;
	

	// Iterate through opponent sensors
	for (int i = 0; i < ALL_SENSORS; i++){
		//std::cout << "i - " << i << "\n";

		float distance = cs.getOpponents(i);

		// If no opponent, skip sensor
		if (distance >= _awarnessOpponent * 200.f)
			continue;

		// Calculate amount of track sensors to block, and round to nearest even integer
		float raw = distance / (_awarnessOpponent * 200.f);

		float block = ((1.f - raw) * (float)((_maxBlock - 2) + 2));
		
		block = glm::roundEven(block);

		// Apply smaller distances to sensor array
		for (int x = block / 2; x >= -(block / 2 - 1); x--){
			int sensor = (i + x) % ALL_SENSORS;
		
			float dropOff = glm::abs(changeRange(block / 2, -(block / 2 - 1), -1.f, 1.f, x));

			if (_driving.sensors[sensor] > distance + dropOff * _blockDropOff)
				_driving.sensors[sensor] = distance + dropOff * _blockDropOff;
		}
	}
	

	// Calculate difference using old sensors stored in delta
	for (int i = 0; i < ALL_SENSORS; i++){
		_driving.delta[i] = _driving.delta[i] - _driving.sensors[i];

		if (_driving.delta[i] < 0.f)
			_driving.delta[i] = glm::abs(_driving.delta[i]);
		else
			_driving.delta[i] = 0.f;

		if (_driving.delta[i] > 0.25f)
			_driving.delta[i] = 0.f;
	}


	// Decreasing sensors around furthest ray 
	//		if furthest ray is on left, decrease right sensors 
	//		if furthest ray is on right, decrease left sensors
	//		if furthest ray is in the middle, decrease both sides sensors
	if (_driving.furthestRay <= QUART_SENSORS){
		for (int i = _driving.furthestRay; i < HALF_SENSORS; i++){
			_driving.sensors[QUART_SENSORS + i] *= changeRange(_driving.furthestRay, 18, 1, 0, i);
		}
	}
	
	if (_driving.furthestRay >= QUART_SENSORS){
		for (int i = _driving.furthestRay; i >= 0; i--){
			_driving.sensors[QUART_SENSORS + i] *= changeRange(_driving.furthestRay, 0, 1, 0, i);
		}
	}

	
	// Choosing which ray to steer towards, and how fast
	float maxDistance = _driving.sensors[_driving.furthestRay + QUART_SENSORS];

	for (int i = 0; i < HALF_SENSORS; i++){
		float distance = _driving.sensors[i + QUART_SENSORS];

		if (maxDistance < distance){
			maxDistance = distance;
			_driving.furthestRay = i;
		}
	}


	// P - PID
	float proportional = (changeRange(0.f, 18.f, 1.5f, -1.5f, _driving.furthestRay) - (cs.getTrackPos() / 500.f)) - cs.getTrackPos() * _middleDrift;

	proportional *= _p;


	// I - PID
	while (_driving.steerHistory.size() > _historySteerLength)
		_driving.steerHistory.erase(_driving.steerHistory.begin());

	float integral = 0.f;

	for (float i : _driving.steerHistory)
		integral += i;

	integral *= _i;


	// D - PID
	float derivative = 0.f;

	if (_driving.steerHistory.size() >= 2)
		derivative = _driving.steerHistory[_driving.steerHistory.size() - 1] - _driving.steerHistory[_driving.steerHistory.size() - 2];

	derivative *= _d;


	// P + I + D
	float oldSteer = _driving.steer;

	_driving.steer = proportional + integral + derivative;

	_driving.steerHistory.push_back(_driving.steer);

	_driving.steer = glm::mix(oldSteer, _driving.steer, _easeSteer);


	// Speed control
	if (!_driving.crashed){
		float speed = _driving.sensors[_driving.furthestRay + QUART_SENSORS] / (200.f * _awarnessTrack) + _driving.delta[_driving.furthestRay + QUART_SENSORS] * 8.f;

		speed *= (1.f - _speedRestrict);

		_driving.speed = glm::mix(_driving.speed, speed, _easeAccel); //*(1.f - cs.getTrack(QUART_SENSORS)) * brake;

		float brake = (cs.getSpeedX() / 200.f) - _driving.speed;

		if (brake > 0.f)
			_driving.brake = glm::mix(_driving.brake, brake, _easeBrake);
		else
			_driving.brake = 0.f;
	}


	// Changing gears
	int gear = cs.getGear();
	int rpm = cs.getRpm();

	if (gear < 1)
		_driving.gear = 1;

	if (gear < 6 && rpm >= _gearUp[gear - 1])
		_driving.gear = gear + 1;
	else
		if (gear > 1 && rpm <= _gearDown[gear - 1])
			_driving.gear = gear - 1;
	

	// If logging, render sensors
	if (_logging){
		Renderer::get().drawGraph({ _runtime.count() / 100.f, _driving.steer }, 0);
		Renderer::get().drawGraph({ _runtime.count() / 100.f, _driving.speed }, 1);
		Renderer::get().drawGraph({ _runtime.count() / 100.f, _driving.brake }, 2);

		for (int i = 0; i < ALL_SENSORS; i++){
			float distance = _driving.sensors[i];

			if (distance < 0.1f)
				continue;
		
			float radians = glm::radians(i * 10.f);
		
			glm::vec2 point = { -glm::sin(radians), -glm::cos(radians) };
		
			glm::vec3 colour = { 1.f, 1.f, 1.f };
		
			if (_driving.furthestRay + QUART_SENSORS == i)
				colour = { 0.f, 1.f, 0.f };

			float zoom = 10.f;

			Renderer::get().drawLine({ 0, 0 }, point * distance * zoom, colour);
		}

		if (_driving.crashed)
			std::cout << "Crashed!\n";

		// Un-comment for pointless cool effects
		Renderer::get().setRotation(cs.getAngle() * 90.f);
		Renderer::get().setZoom(1.f + cs.getSpeedX() / 200.f);
	}


	// Applying to controller
	CarControl cc;

	cc.setGear(_driving.gear);
	cc.setAccel(_driving.speed);
	cc.setSteer(_driving.steer);
	cc.setBrake(_driving.brake);

	return cc;
}
Example #11
0
CarControl
SimpleDriver::wDrive(CarState cs)
{
	// check if car is currently stuck
	if ( fabs(cs.getAngle()) > stuckAngle )
    {
		// update stuck counter
        stuck++;
    }
    else
    {
    	// if not stuck reset stuck counter
        stuck = 0;
    }

	// after car is stuck for a while apply recovering policy
    if (stuck > stuckTime)
    {
    	/* set gear and sterring command assuming car is 
    	 * pointing in a direction out of track */
    	
    	// to bring car parallel to track axis
        float steer = - cs.getAngle() / steerLock; 
        int gear=-1; // gear R
        
        // if car is pointing in the correct direction revert gear and steer  
        if (cs.getAngle()*cs.getTrackPos()>0)
        {
            gear = 1;
            steer = -steer;
        }

        // Calculate clutching
        clutching(cs,clutch);

        // build a CarControl variable and return it
        CarControl cc (1.0,0.0,gear,steer,clutch);
        return cc;
    }

    else // car is not stuck
    {
    	// compute accel/brake command
        float accel_and_brake = getAccel(cs);
        // compute gear 
        int gear = getGear(cs);
        // compute steering
        float steer = getSteer(cs);
        

        // normalize steering
        if (steer < -1)
            steer = -1;
        if (steer > 1)
            steer = 1;
        
        // set accel and brake from the joint accel/brake command 
        float accel,brake;
        if (accel_and_brake>0)
        {
            accel = accel_and_brake;
            brake = 0;
        }
        else
        {
            accel = 0;
            // apply ABS to brake
            brake = filterABS(cs,-accel_and_brake);
        }

        // Calculate clutching
        clutching(cs,clutch);

		
		cout << "Steer: "<< steer << endl;
		cout << "Accel: :"<< accel << endl;

        // build a CarControl variable and return it
        CarControl cc(accel,brake,gear,steer,clutch);
        return cc;
    }
}
CarControl
ANNdataGather::wDrive(CarState cs)
{
    // check if car is currently stuck
    if ( fabs(cs.getAngle()) > stuckAngle )
    {
        // update stuck counter
        stuck++;
    }
    else
    {
        // if not stuck reset stuck counter
        stuck = 0;
    }

    // after car is stuck for a while apply recovering policy
    if (stuck > stuckTime)
    {
        /* set gear and sterring command assuming car is
         * pointing in a direction out of track */

        // to bring car parallel to track axis
        float steer = - cs.getAngle() / steerLock;
        int gear=-1; // gear R

        // if car is pointing in the correct direction revert gear and steer
        if (cs.getAngle()*cs.getTrackPos()>0)
        {
            gear = 1;
            steer = -steer;
        }

        // Calculate clutching
        clutching(cs,clutch);

        // build a CarControl variable and return it
        CarControl cc (1.0,0.0,gear,steer,clutch);
        return cc;
    }

    else // car is not stuck
    {
        // compute accel/brake command
        float accel_and_brake = getAccel(cs);
        // compute gear
        int gear = getGear(cs);
        // compute steering
        float steer = getSteer(cs);


        // normalize steering
        if (steer < -1)
            steer = -1;
        if (steer > 1)
            steer = 1;

        // set accel and brake from the joint accel/brake command
        float accel,brake;
        if (accel_and_brake>0)
        {
            accel = accel_and_brake;
            brake = 0;
        }
        else
        {
            accel = 0;
            // apply ABS to brake
            brake = filterABS(cs,-accel_and_brake);
        }

        // Calculate clutching
        clutching(cs,clutch);

        // build a CarControl variable and return it
        CarControl cc(accel,brake,gear,steer,clutch);

        // Record input - output
        ofstream myfile("ANNtraining.txt", std::ios_base::app);


        // Needs to consider standardising input values for better networks
        // Inputs from CarState
        // Check TORCS competition manual for description of all possible inputs
        // Performance is much better if you normalise as much as possible inputs (between -1 and 1, or 0 to 1)
        myfile << cs.getAngle() << " " << cs.getTrackPos() << "\n";

        // Network outputs should be between -1 and 1!
        // Outputs from CarControl
        // Check TORCS competition manual for description of all possible outputs
        myfile << accel << " " << brake << " " << steer << "\n";

        myfile.close();

        samples++; // counting the number of samples gathered in current training

        return cc;
    }
}