/********************************************* * Sample particles for a given document * * doc: *********************************************/ LatentSeq DecodeGraph(const Doc doc){ // ---------------------------------------- // init int nsent = doc.size(); LatentSeq latseq; // ---------------------------------------- // for each sentence in doc, each latval, compute // the posterior prob p(R|cvec, sent) vector<float> U; for (unsigned sidx = 0; sidx < nsent; sidx ++){ final_hlist.clear(); for (int val = 0; val < nlatvar; val ++){ ComputationGraph cg; BuildSentGraph(doc[sidx], sidx, cg, val); float prob = as_scalar(cg.forward()); U.push_back(prob); cg.clear(); } // normalize and get the argmax log_normalize(U); // greedy decoding int max_idx = argmax(U); // get the corresponding context vector final_h = final_hlist[max_idx]; // U.clear(); // cerr << "max_latval = " << max_idx << endl; latseq.push_back(max_idx); } // cerr << "====" << endl; return latseq; }
int main(int argc, char** argv) { cnn::Initialize(argc, argv); /* if (argc == 2) { ifstream in(""); boost::archive::text_iarchive ia(in); ia >> m; }*/ // parameters ifstream fin("C:\\Data\\msr_train.txt"); ifstream fin_mt("C:\\Data\\mtscore\\All_train_score.txt"); unsigned INPUT_SIZE_MT = 7; unsigned INPUT_SIZE = 22 * 22; unsigned DATA_SIZE = 4076; unsigned OUTPUT_SIZE = 2; const unsigned HIDDEN1_SIZE = 128; const unsigned HIDDEN2_SIZE = 64; const unsigned ITERATIONS = 50000; fin >> INPUT_SIZE >> DATA_SIZE; Model m; //SimpleSGDTrainer sgd(&m); MomentumSGDTrainer sgd(&m); Parameters* P_W1 = m.add_parameters({ HIDDEN1_SIZE, INPUT_SIZE + INPUT_SIZE_MT }); Parameters* P_b1 = m.add_parameters({ HIDDEN1_SIZE }); Parameters* P_W2 = m.add_parameters({ HIDDEN2_SIZE, HIDDEN1_SIZE }); Parameters* P_b2 = m.add_parameters({ HIDDEN2_SIZE }); Parameters* P_V = m.add_parameters({ OUTPUT_SIZE, HIDDEN2_SIZE }); Parameters* P_a = m.add_parameters({ OUTPUT_SIZE }); vector<cnn::real> x_values;// (INPUT_SIZE * DATA_SIZE); x_values.clear(); vector<cnn::real> y_values;// (OUTPUT_SIZE * DATA_SIZE); y_values.clear(); for (int i = 0; i < DATA_SIZE; ++i) { int label; fin >> label; if (label == 0) { y_values.push_back(cnn::real(0)); y_values.push_back(cnn::real(1)); } else { y_values.push_back(cnn::real(1)); y_values.push_back(cnn::real(0)); } for (int j = 0; j < INPUT_SIZE_MT; ++j) { double x; fin_mt >> x; x_values.push_back(cnn::real(x)); } for (int j = 0; j < INPUT_SIZE; ++j) { double x; fin >> x; x_values.push_back(cnn::real(x)); } } fin.close(); fin_mt.close(); cerr << x_values.size() << '\n' << y_values.size() << '\n'; Dim x_dim({ INPUT_SIZE + INPUT_SIZE_MT }, DATA_SIZE), y_dim({ OUTPUT_SIZE }, DATA_SIZE); cerr << "x_dim=" << x_dim << ", y_dim=" << y_dim << endl; //Load dev data //ifstream f_test("C:\\Data\\msr_train.txt"); ifstream f_test("C:\\Data\\msr_test.txt"); ifstream f_test_mt("C:\\Data\\mtscore\\All_test_score.txt"); vector<cnn::real> x_test_values;// (INPUT_SIZE * DATA_SIZE); x_test_values.clear(); vector<cnn::real> y_test_values;// (OUTPUT_SIZE * DATA_SIZE); y_test_values.clear(); unsigned TEST_SIZE; f_test >> INPUT_SIZE >> TEST_SIZE; for (int i = 0; i < TEST_SIZE; ++i) { int label; f_test >> label; if (label == 0) { y_test_values.push_back(cnn::real(0)); y_test_values.push_back(cnn::real(1)); } else { y_test_values.push_back(cnn::real(1)); y_test_values.push_back(cnn::real(0)); } for (int j = 0; j < INPUT_SIZE_MT; ++j) { double x; f_test_mt >> x; x_test_values.push_back(cnn::real(x)); } for (int j = 0; j < INPUT_SIZE; ++j) { double x; f_test >> x; x_test_values.push_back(cnn::real(x)); } } f_test_mt.close(); f_test.close(); double max = 0; int ki = 0; for (unsigned iter = 0; iter < ITERATIONS; ++iter) { //for (unsigned iter = 0; true; ++iter) { // train the parameters { ComputationGraph cg; Expression W1 = parameter(cg, P_W1); Expression b1 = parameter(cg, P_b1); Expression W2 = parameter(cg, P_W2); Expression b2 = parameter(cg, P_b2); Expression V = parameter(cg, P_V); Expression a = parameter(cg, P_a); // set x_values to change the inputs to the network Expression x = input(cg, x_dim, &x_values); // set y_values expressing the output Expression y = input(cg, y_dim, &y_values); Expression h1 = rectify(W1*x + b1); Expression h2 = rectify(W2*h1 + b2); Expression y_pred = softmax(V*h2 + a); Expression loss = binary_log_loss(y_pred, y); Expression sum_loss = sum_batches(loss); //cg.PrintGraphviz(); float my_loss = as_scalar(cg.forward()); cg.backward(); sgd.update(1e-2); sgd.update_epoch(); cerr << "ITERATIONS = " << iter << '\t'; cerr << "E = " << my_loss << '\t'; //P = 1, iter = 6000, l_rate = 1 } //DEV SCORE double l = 0; for (int i = 0; i < TEST_SIZE; ++i) { ComputationGraph cgr; Expression Wr1 = parameter(cgr, P_W1); Expression br1 = parameter(cgr, P_b1); Expression Wr2 = parameter(cgr, P_W2); Expression br2 = parameter(cgr, P_b2); Expression Vr = parameter(cgr, P_V); Expression ar = parameter(cgr, P_a); vector<cnn::real> x(INPUT_SIZE + INPUT_SIZE_MT); for (int j = 0; j < INPUT_SIZE + INPUT_SIZE_MT; ++j) { x[j] = x_test_values[j + i * (INPUT_SIZE + INPUT_SIZE_MT)]; } Expression xr = input(cgr, { INPUT_SIZE + INPUT_SIZE_MT }, &x); vector<cnn::real> y(2); y[0] = 0; y[1] = 1; Expression yr = input(cgr, { OUTPUT_SIZE }, &y); Expression hr1 = rectify(Wr1*xr + br1); Expression hr2 = rectify(Wr2*hr1 + br2); Expression y_predr = softmax(Vr*hr2 + ar); Expression lossr = dot_product(y_predr, yr); double t = as_scalar(cgr.forward()) > 0.5? 0 : 1; l += (t == y_test_values[i * 2]) ? 1 : 0; //cerr << ((t == y_test_values[i * 2]) ? 1 : 0) << ' '; } l /= TEST_SIZE; cerr << "P = " << l << '\t'; if (l > max) { max = l; ki = iter; } cerr << "max acc = " << max << "\tat\t" << ki << '\n'; } //boost::archive::text_oarchive oa(cout); //oa << m; system("pause"); return 0; }