Example #1
0
  //TODO include run information for each peptide
  //includes all MSMS derived peptides into the graph --consensusXML
  Size ProteinResolver::includeMSMSPeptides_(ConsensusMap & consensus, vector<PeptideEntry> & peptide_nodes)
  {
    Size found_peptide = 0;
    for (Size pep = 0; pep != consensus.size(); ++pep)
    {
      ConsensusFeature & feature = consensus.at(pep);

      // get all peptide identifications
      const vector<PeptideIdentification> & pep_id  = feature.getPeptideIdentifications();


      for (Size cons_pep = 0; cons_pep < pep_id.size(); ++cons_pep)
      {
        String seq = pep_id.at(cons_pep).getHits().front().getSequence().toUnmodifiedString();
        Size peptide_entry = findPeptideEntry_(seq, peptide_nodes);

        if (peptide_entry != peptide_nodes.size())
        {
          if (!peptide_nodes.at(peptide_entry).experimental)
          {
            ++found_peptide;
          }
          //should be changed -- for consensus peptide_identification is the consensus and peptide_hit is the PeptideIdentification. PeptideHit is only top hit at the moment
          peptide_nodes.at(peptide_entry).peptide_identification = pep;
          peptide_nodes.at(peptide_entry).peptide_hit = cons_pep; //only top hit is used at the moment
          peptide_nodes.at(peptide_entry).experimental = true;
          // get intensity of the feature
          peptide_nodes.at(peptide_entry).intensity = feature.getIntensity();
          peptide_nodes.at(peptide_entry).origin = feature.getMetaValue("file_origin");
        }
      }
    }
    return found_peptide;
  }
 ExitCodes main_(int, const char **)
 {
   String in = getStringOption_("in"), out = getStringOption_("out");
   FileTypes::Type in_type = FileHandler::getType(in);
   if (in_type == FileTypes::FEATUREXML)
   {
     FeatureMap<> features;
     FeatureXMLFile().load(in, features);
     for (FeatureMap<>::Iterator feat_it = features.begin();
          feat_it != features.end(); ++feat_it)
     {
       resolveConflict_(feat_it->getPeptideIdentifications());
     }
     addDataProcessing_(features,
                        getProcessingInfo_(DataProcessing::FILTERING));
     FeatureXMLFile().store(out, features);
   }
   else     // consensusXML
   {
     ConsensusMap consensus;
     ConsensusXMLFile().load(in, consensus);
     for (ConsensusMap::Iterator cons_it = consensus.begin();
          cons_it != consensus.end(); ++cons_it)
     {
       resolveConflict_(cons_it->getPeptideIdentifications());
     }
     addDataProcessing_(consensus,
                        getProcessingInfo_(DataProcessing::FILTERING));
     ConsensusXMLFile().store(out, consensus);
   }
   return EXECUTION_OK;
 }
 void SeedListGenerator::generateSeedLists(const ConsensusMap& consensus,
                                           Map<UInt64, SeedList>& seed_lists)
 {
   seed_lists.clear();
   // iterate over all consensus features...
   for (ConsensusMap::ConstIterator cons_it = consensus.begin();
        cons_it != consensus.end(); ++cons_it)
   {
     DPosition<2> point(cons_it->getRT(), cons_it->getMZ());
     // for each sub-map in the consensus map, add a seed at the position of
     // this consensus feature:
     for (ConsensusMap::FileDescriptions::const_iterator file_it =
            consensus.getFileDescriptions().begin(); file_it !=
          consensus.getFileDescriptions().end(); ++file_it)
       seed_lists[file_it->first].push_back(point);
     // for each feature contained in the consensus feature, remove the seed of
     // the corresponding map:
     for (ConsensusFeature::HandleSetType::const_iterator feat_it =
            cons_it->getFeatures().begin(); feat_it !=
          cons_it->getFeatures().end(); ++feat_it)
     {
       seed_lists[feat_it->getMapIndex()].pop_back();
     }
     // this leaves seeds for maps where no feature was found near the
     // consensus position
   }
 }
Example #4
0
  boost::shared_ptr<IsobaricQuantitationMethod> IBSpectraFile::guessExperimentType_(const ConsensusMap& cm)
  {
    if (cm.getExperimentType() != "labeled_MS2" && cm.getExperimentType() != "itraq")
    {
      throw Exception::InvalidParameter(__FILE__,
                                        __LINE__,
                                        __PRETTY_FUNCTION__,
                                        "Given ConsensusMap does not hold any isobaric quantification data.");
    }

    // we take the mapcount as approximation
    if (cm.getFileDescriptions().size() == 4)
    {
      return boost::shared_ptr<IsobaricQuantitationMethod>(new ItraqFourPlexQuantitationMethod);
    }
    else if (cm.getFileDescriptions().size() == 6)
    {
      return boost::shared_ptr<IsobaricQuantitationMethod>(new TMTSixPlexQuantitationMethod);
    }
    else if (cm.getFileDescriptions().size() == 8)
    {
      return boost::shared_ptr<IsobaricQuantitationMethod>(new ItraqEightPlexQuantitationMethod);
    }
    else
    {
      throw Exception::InvalidParameter(__FILE__,
                                        __LINE__,
                                        __PRETTY_FUNCTION__,
                                        "Could not guess isobaric quantification data from ConsensusMap due to non-matching number of input maps.");
    }
  }
  void MapAlignmentAlgorithmPoseClustering::align(const ConsensusMap & map, TransformationDescription & trafo)
  {
    // TODO: move this to updateMembers_? (if consensusMap prevails)
    // TODO: why does superimposer work on consensus map???
    const ConsensusMap & map_model = reference_;
    ConsensusMap map_scene = map;

    // run superimposer to find the global transformation
    TransformationDescription si_trafo;
    superimposer_.run(map_model, map_scene, si_trafo);

    // apply transformation to consensus features and contained feature
    // handles
    for (Size j = 0; j < map_scene.size(); ++j)
    {
      //Calculate new RT
      double rt = map_scene[j].getRT();
      rt = si_trafo.apply(rt);
      //Set RT of consensus feature centroid
      map_scene[j].setRT(rt);
      //Set RT of consensus feature handles
      map_scene[j].begin()->asMutable().setRT(rt);
    }

    //run pairfinder to find pairs
    ConsensusMap result;
    //TODO: add another 2map interface to pairfinder?
    std::vector<ConsensusMap> input(2);
    input[0] = map_model;
    input[1] = map_scene;
    pairfinder_.run(input, result);

    // calculate the local transformation
    si_trafo.invert();         // to undo the transformation applied above
    TransformationDescription::DataPoints data;
    for (ConsensusMap::Iterator it = result.begin(); it != result.end();
         ++it)
    {
      if (it->size() == 2)           // two matching features
      {
        ConsensusFeature::iterator feat_it = it->begin();
        double y = feat_it->getRT();
        double x = si_trafo.apply((++feat_it)->getRT());
        // one feature should be from the reference map:
        if (feat_it->getMapIndex() != 0)
        {
          data.push_back(make_pair(x, y));
        }
        else
        {
          data.push_back(make_pair(y, x));
        }
      }
    }
    trafo = TransformationDescription(data);
    trafo.fitModel("linear");
  }
  void FeatureGroupingAlgorithm::transferSubelements(const vector<ConsensusMap>& maps, ConsensusMap& out) const
  {
    // accumulate file descriptions from the input maps:
    // cout << "Updating file descriptions..." << endl;
    out.getFileDescriptions().clear();
    // mapping: (map index, original id) -> new id
    map<pair<Size, UInt64>, Size> mapid_table;
    for (Size i = 0; i < maps.size(); ++i)
    {
      const ConsensusMap& consensus = maps[i];
      for (ConsensusMap::FileDescriptions::const_iterator desc_it = consensus.getFileDescriptions().begin(); desc_it != consensus.getFileDescriptions().end(); ++desc_it)
      {
        Size counter = mapid_table.size();
        mapid_table[make_pair(i, desc_it->first)] = counter;
        out.getFileDescriptions()[counter] = desc_it->second;
      }
    }

    // look-up table: input map -> unique ID -> consensus feature
    // cout << "Creating look-up table..." << endl;
    vector<map<UInt64, ConsensusMap::ConstIterator> > feat_lookup(maps.size());
    for (Size i = 0; i < maps.size(); ++i)
    {
      const ConsensusMap& consensus = maps[i];
      for (ConsensusMap::ConstIterator feat_it = consensus.begin();
           feat_it != consensus.end(); ++feat_it)
      {
        // do NOT use "id_lookup[i][feat_it->getUniqueId()] = feat_it;" here as
        // you will get "attempt to copy-construct an iterator from a singular
        // iterator" in STL debug mode:
        feat_lookup[i].insert(make_pair(feat_it->getUniqueId(), feat_it));
      }
    }
    // adjust the consensus features:
    // cout << "Adjusting consensus features..." << endl;
    for (ConsensusMap::iterator cons_it = out.begin(); cons_it != out.end(); ++cons_it)
    {
      ConsensusFeature adjusted = ConsensusFeature(
        static_cast<BaseFeature>(*cons_it)); // remove sub-features
      for (ConsensusFeature::HandleSetType::const_iterator sub_it = cons_it->getFeatures().begin(); sub_it != cons_it->getFeatures().end(); ++sub_it)
      {
        UInt64 id = sub_it->getUniqueId();
        Size map_index = sub_it->getMapIndex();
        ConsensusMap::ConstIterator origin = feat_lookup[map_index][id];
        for (ConsensusFeature::HandleSetType::const_iterator handle_it = origin->getFeatures().begin(); handle_it != origin->getFeatures().end(); ++handle_it)
        {
          FeatureHandle handle = *handle_it;
          Size new_id = mapid_table[make_pair(map_index, handle.getMapIndex())];
          handle.setMapIndex(new_id);
          adjusted.insert(handle);
        }
      }
      *cons_it = adjusted;
    }
  }
Example #7
0
  ExitCodes main_(int, const char **) override
  {
    String in = getStringOption_("in");
    String out = getStringOption_("out");
    String algo_type = getStringOption_("algorithm_type");
    String acc_filter = getStringOption_("accession_filter");
    String desc_filter = getStringOption_("description_filter");
    double ratio_threshold = getDoubleOption_("ratio_threshold");

    ConsensusXMLFile infile;
    infile.setLogType(log_type_);
    ConsensusMap map;
    infile.load(in, map);

    //map normalization
    if (algo_type == "robust_regression")
    {
      map.sortBySize();
      vector<double> results = ConsensusMapNormalizerAlgorithmThreshold::computeCorrelation(map, ratio_threshold, acc_filter, desc_filter);
      ConsensusMapNormalizerAlgorithmThreshold::normalizeMaps(map, results);
    }
    else if (algo_type == "median")
    {
      ConsensusMapNormalizerAlgorithmMedian::normalizeMaps(map, ConsensusMapNormalizerAlgorithmMedian::NM_SCALE, acc_filter, desc_filter);
    }
    else if (algo_type == "median_shift")
    {
      ConsensusMapNormalizerAlgorithmMedian::normalizeMaps(map, ConsensusMapNormalizerAlgorithmMedian::NM_SHIFT, acc_filter, desc_filter);
    }
    else if (algo_type == "quantile")
    {
      if (acc_filter != "" || desc_filter != "")
      {
        LOG_WARN << endl << "NOTE: Accession / description filtering is not supported in quantile normalization mode. Ignoring filters." << endl << endl;
      }
      ConsensusMapNormalizerAlgorithmQuantile::normalizeMaps(map);
    }
    else
    {
      cerr << "Unknown algorithm type  '" << algo_type.c_str() << "'." << endl;
      return ILLEGAL_PARAMETERS;
    }

    //annotate output with data processing info and save output file
    addDataProcessing_(map, getProcessingInfo_(DataProcessing::NORMALIZATION));
    infile.store(out, map);

    return EXECUTION_OK;
  }
Example #8
0
  void MapAlignmentTransformer::transformSingleConsensusMap(ConsensusMap & cmap,
                                                            const TransformationDescription & trafo)
  {
    for (ConsensusMap::Iterator cmit = cmap.begin(); cmit != cmap.end();
         ++cmit)
    {
      applyToConsensusFeature_(*cmit, trafo);
    }

    // adapt RT values of unassigned peptides:
    if (!cmap.getUnassignedPeptideIdentifications().empty())
    {
      transformSinglePeptideIdentification(
        cmap.getUnassignedPeptideIdentifications(), trafo);
    }
  }
 void ConsensusMapNormalizerAlgorithmThreshold::normalizeMaps(ConsensusMap& map, const vector<double>& ratios)
 {
   ConsensusMap::Iterator cf_it;
   ProgressLogger progresslogger;
   progresslogger.setLogType(ProgressLogger::CMD);
   progresslogger.startProgress(0, map.size(), "normalizing maps");
   for (cf_it = map.begin(); cf_it != map.end(); ++cf_it)
   {
     progresslogger.setProgress(cf_it - map.begin());
     ConsensusFeature::HandleSetType::const_iterator f_it;
     for (f_it = cf_it->getFeatures().begin(); f_it != cf_it->getFeatures().end(); ++f_it)
     {
       f_it->asMutable().setIntensity(f_it->getIntensity() * ratios[f_it->getMapIndex()]);
     }
   }
   progresslogger.endProgress();
 }
void QuantitativeExperimentalDesign::mergeConsensusMaps_(ConsensusMap & out, const String & experiment, StringList & file_paths)
{
    ConsensusMap map;

    LOG_INFO << "Merge consensus maps: " << endl;
    UInt counter = 1;
    for (StringList::Iterator file_it = file_paths.begin(); file_it != file_paths.end(); ++file_it, ++counter)
    {
        //load should clear the map
        ConsensusXMLFile().load(*file_it, map);
        for (ConsensusMap::iterator it = map.begin(); it != map.end(); ++it)
        {
            it->setMetaValue("experiment", DataValue(experiment));
        }
        out += map;
    }
    LOG_INFO << endl;
}
 void ConsensusMapNormalizerAlgorithmQuantile::setNormalizedIntensityValues(const vector<vector<double> >& feature_ints, ConsensusMap& map)
 {
   //assumes the input map and feature_ints are in the same order as in the beginning,
   //although feature_ints has normalized values now (but the same ranks as before)
   Size number_of_maps = map.getColumnHeaders().size();
   ConsensusMap::ConstIterator cf_it;
   vector<Size> progress_indices(number_of_maps);
   for (cf_it = map.begin(); cf_it != map.end(); ++cf_it)
   {
     ConsensusFeature::HandleSetType::const_iterator f_it;
     for (f_it = cf_it->getFeatures().begin(); f_it != cf_it->getFeatures().end(); ++f_it)
     {
       Size map_idx = f_it->getMapIndex();
       double intensity = feature_ints[map_idx][progress_indices[map_idx]++];
       f_it->asMutable().setIntensity(intensity);
     }
   }
 }
void QuantitativeExperimentalDesign::applyDesign2Quantifier(PeptideAndProteinQuant & quantifier, TextFile & file, StringList & file_paths)
{
    //        vector< pair<PeptideAndProteinQuant::PeptideData,PeptideAndProteinQuant::ProteinQuant> >& result)
    //create mapping from experimental setting to all respective file names
    map<String, StringList> design2FileBaseName;
    mapFiles2Design_(design2FileBaseName, file);
    //filter out all non-existing files
    map<String, StringList> design2FilePath;
    findRelevantFilePaths_(design2FileBaseName, design2FilePath, file_paths);

    //determine wether we deal with idXML or featureXML
    FileTypes::Type in_type = FileHandler::getType(file_paths.front());

    if (in_type == FileTypes::FEATUREXML)
    {
        FeatureMap<> features;

        for (map<String, StringList>::iterator iter =  design2FilePath.begin(); iter != design2FilePath.end(); ++iter)
        {
            mergeFeatureMaps_(features, iter->first, iter->second);
        }
        LOG_INFO << "Number of proteinIdentifications: " << features.getProteinIdentifications().size() << endl;
        ProteinIdentification & proteins = features.getProteinIdentifications()[0];

        quantifier.quantifyPeptides(features);
        quantifier.quantifyProteins(proteins);
    }
    else
    {
        ConsensusMap consensus;

        for (map<String, StringList>::iterator iter =  design2FilePath.begin(); iter != design2FilePath.end(); ++iter)
        {
            mergeConsensusMaps_(consensus, iter->first, iter->second);
        }

        LOG_INFO << "Number of proteinIdentifications: " << consensus.getProteinIdentifications().size() << endl;
        ProteinIdentification & proteins = consensus.getProteinIdentifications()[0];

        quantifier.quantifyPeptides(consensus);
        quantifier.quantifyProteins(proteins);
    }
}
Example #13
0
  void EDTAFile::store(const String& filename, const ConsensusMap& map) const
  {
    TextFile tf;

    // search for maximum number of sub-features (since this determines the number of columns)
    Size max_sub(0);
    for (Size i = 0; i < map.size(); ++i)
    {
      max_sub = std::max(max_sub, map[i].getFeatures().size());
    }

    // write header
    String header("RT\tm/z\tintensity\tcharge");
    for (Size i = 1; i <= max_sub; ++i)
    {
      header += "\tRT" + String(i) + "\tm/z" + String(i) + "\tintensity" + String(i) + "\tcharge" + String(i);
    }
    tf.addLine(header);

    for (Size i = 0; i < map.size(); ++i)
    {
      ConsensusFeature f = map[i];
      // consensus
      String entry = String(f.getRT()) + "\t" + f.getMZ() + "\t" + f.getIntensity() + "\t" + f.getCharge();
      // sub-features
      ConsensusFeature::HandleSetType handle = f.getFeatures();
      for (ConsensusFeature::HandleSetType::const_iterator it = handle.begin(); it != handle.end(); ++it)
      {
        entry += String("\t") + it->getRT() + "\t" + it->getMZ() + "\t" + it->getIntensity() + "\t" + it->getCharge();
      }
      // missing sub-features
      for (Size j = handle.size(); j < max_sub; ++j)
      {
        entry += "\tNA\tNA\tNA\tNA";
      }
      tf.addLine(entry);
    }


    tf.store(filename);
  }
Example #14
0
 void ProteinInference::infer(ConsensusMap & consensus_map, const UInt reference_map)
 {
   // we infer Proteins for every IdentificationRun separately. If you want this combined, then
   // do that before calling this function
   // Each ProteinIdentification will be augmented with the quantification (where possible)
   for (size_t i = 0;
        i < consensus_map.getProteinIdentifications().size();
        ++i)
   {
     infer_(consensus_map, i, reference_map);
   }
 }
Example #15
0
  void MetaDataBrowser::add(ConsensusMap & map)
  {
    //identifier
    add(static_cast<DocumentIdentifier &>(map));

    // protein identifications
    for (Size i = 0; i < map.getProteinIdentifications().size(); ++i)
    {
      add(map.getProteinIdentifications()[i]);
    }

    //unassigned peptide ids
    for (Size i = 0; i < map.getUnassignedPeptideIdentifications().size(); ++i)
    {
      add(map.getUnassignedPeptideIdentifications()[i]);
    }

    add(static_cast<MetaInfoInterface &>(map));

    treeview_->expandItem(treeview_->findItems(QString::number(0), Qt::MatchExactly, 1).first());
  }
  ExitCodes main_(int, const char **)
  {
    String in = getStringOption_("in");
    String out = getStringOption_("out");
    String algo_type = getStringOption_("algorithm_type");
    double ratio_threshold = getDoubleOption_("ratio_threshold");

    ConsensusXMLFile infile;
    infile.setLogType(log_type_);
    ConsensusMap map;
    infile.load(in, map);

    //map normalization
    if (algo_type == "robust_regression")
    {
      map.sortBySize();
      vector<double> results = ConsensusMapNormalizerAlgorithmThreshold::computeCorrelation(map, ratio_threshold);
      ConsensusMapNormalizerAlgorithmThreshold::normalizeMaps(map, results);
    }
    else if (algo_type == "median")
    {
      ConsensusMapNormalizerAlgorithmMedian::normalizeMaps(map);
    }
    else if (algo_type == "quantile")
    {
      ConsensusMapNormalizerAlgorithmQuantile::normalizeMaps(map);
    }
    else
    {
      cerr << "Unknown algorithm type  '" << algo_type.c_str() << "'." << endl;
      return ILLEGAL_PARAMETERS;
    }

    //annotate output with data processing info and save output file
    addDataProcessing_(map, getProcessingInfo_(DataProcessing::NORMALIZATION));
    infile.store(out, map);

    return EXECUTION_OK;
  }
  void IsobaricChannelExtractor::registerChannelsInOutputMap_(ConsensusMap& consensus_map)
  {
    // register the individual channels in the output consensus map
    Int index = 0;
    for (IsobaricQuantitationMethod::IsobaricChannelList::const_iterator cl_it = quant_method_->getChannelInformation().begin();
         cl_it != quant_method_->getChannelInformation().end();
         ++cl_it)
    {
      ConsensusMap::FileDescription channel_as_map;
      // label is the channel + description provided in the Params
      channel_as_map.label = quant_method_->getName() + "_" + cl_it->name;

      // TODO(aiche): number of features need to be set later
      channel_as_map.size = consensus_map.size();

      // add some more MetaInfo
      channel_as_map.setMetaValue("channel_name", cl_it->name);
      channel_as_map.setMetaValue("channel_id", cl_it->id);
      channel_as_map.setMetaValue("channel_description", cl_it->description);
      channel_as_map.setMetaValue("channel_center", cl_it->center);
      consensus_map.getFileDescriptions()[index++] = channel_as_map;
    }
  }
 void ConsensusMapNormalizerAlgorithmQuantile::extractIntensityVectors(const ConsensusMap& map, vector<vector<double> >& out_intensities)
 {
   //reserve space for out_intensities (unequal vector lengths, 0-features omitted)
   Size number_of_maps = map.getColumnHeaders().size();
   out_intensities.clear();
   out_intensities.resize(number_of_maps);
   for (UInt i = 0; i < number_of_maps; i++)
   {
     ConsensusMap::ColumnHeaders::const_iterator it = map.getColumnHeaders().find(i);
     if (it == map.getColumnHeaders().end()) throw Exception::ElementNotFound(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String(i));
     out_intensities[i].reserve(it->second.size);
   }
   //fill out_intensities
   ConsensusMap::ConstIterator cf_it;
   for (cf_it = map.begin(); cf_it != map.end(); ++cf_it)
   {
     ConsensusFeature::HandleSetType::const_iterator f_it;
     for (f_it = cf_it->getFeatures().begin(); f_it != cf_it->getFeatures().end(); ++f_it)
     {
       out_intensities[f_it->getMapIndex()].push_back(f_it->getIntensity());
     }
   }
 }
  void FeatureGroupingAlgorithmLabeled::group(const std::vector<FeatureMap<> > & maps, ConsensusMap & out)
  {
    //check that the number of maps is ok
    if (maps.size() != 1)
      throw Exception::IllegalArgument(__FILE__, __LINE__, __PRETTY_FUNCTION__, "Exactly one map must be given!");
    if (out.getFileDescriptions().size() != 2)
      throw Exception::IllegalArgument(__FILE__, __LINE__, __PRETTY_FUNCTION__, "Two file descriptions must be set in 'out'!");

    //initialize LabeledPairFinder
    LabeledPairFinder pm;
    pm.setParameters(param_.copy("", true));

    //convert to consensus map
    std::vector<ConsensusMap> input(1);
    ConsensusMap::convert(0, maps[0], input[0]);

    //run
    pm.run(input, out);
  }
  void IsobaricQuantifier::computeLabelingStatistics_(ConsensusMap& consensus_map_out)
  {
    // number of total quantified spectra
    stats_.number_ms2_total = consensus_map_out.size();

    // Labeling efficiency statistics
    for (size_t i = 0; i < consensus_map_out.size(); ++i)
    {
      // is whole scan empty?!
      if (consensus_map_out[i].getIntensity() == 0) ++stats_.number_ms2_empty;

      // look at single reporters
      for (ConsensusFeature::HandleSetType::const_iterator it_elements = consensus_map_out[i].begin();
           it_elements != consensus_map_out[i].end();
           ++it_elements)
      {
        if (it_elements->getIntensity() == 0)
        {
          String ch_index = consensus_map_out.getFileDescriptions()[it_elements->getMapIndex()].getMetaValue("channel_name");
          ++stats_.empty_channels[ch_index];
        }
      }
    }
    LOG_INFO << "IsobaricQuantifier: skipped " << stats_.number_ms2_empty << " of " << consensus_map_out.size() << " selected scans due to lack of reporter information:\n";
    consensus_map_out.setMetaValue("isoquant:scans_noquant", stats_.number_ms2_empty);
    consensus_map_out.setMetaValue("isoquant:scans_total", consensus_map_out.size());

    LOG_INFO << "IsobaricQuantifier: channels with signal\n";
    for (std::map<String, Size>::const_iterator it_m = stats_.empty_channels.begin();
         it_m != stats_.empty_channels.end();
         ++it_m)
    {
      LOG_INFO << "      channel " << it_m->first << ": " << (consensus_map_out.size() - it_m->second) << " / " <<  consensus_map_out.size() << " (" << ((consensus_map_out.size() - it_m->second) * 100 / consensus_map_out.size()) << "%)\n";
      consensus_map_out.setMetaValue(String("isoquant:quantifyable_ch") + it_m->first, (consensus_map_out.size() - it_m->second));
    }

  }
  void FeatureGroupingAlgorithmQT::group_(const vector<MapType>& maps,
                                          ConsensusMap& out)
  {
    // check that the number of maps is ok:
    if (maps.size() < 2)
    {
      throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION,
                                       "At least two maps must be given!");
    }

    QTClusterFinder cluster_finder;
    cluster_finder.setParameters(param_.copy("", true));

    cluster_finder.run(maps, out);

    StringList ms_run_locations;

    // add protein IDs and unassigned peptide IDs to the result map here,
    // to keep the same order as the input maps (useful for output later):
    for (typename vector<MapType>::const_iterator map_it = maps.begin();
         map_it != maps.end(); ++map_it)
    {      
      // add protein identifications to result map:
      out.getProteinIdentifications().insert(
        out.getProteinIdentifications().end(),
        map_it->getProteinIdentifications().begin(),
        map_it->getProteinIdentifications().end());

      // add unassigned peptide identifications to result map:
      out.getUnassignedPeptideIdentifications().insert(
        out.getUnassignedPeptideIdentifications().end(),
        map_it->getUnassignedPeptideIdentifications().begin(),
        map_it->getUnassignedPeptideIdentifications().end());
    }

    // canonical ordering for checking the results:
    out.sortByQuality();
    out.sortByMaps();
    out.sortBySize();
    return;
  }
  void IsobaricQuantifier::quantify(const ConsensusMap& consensus_map_in, ConsensusMap& consensus_map_out)
  {
    // precheck incoming map
    if (consensus_map_in.empty())
    {
      LOG_WARN << "Warning: Empty iTRAQ container. No quantitative information available!" << std::endl;
      return;
    }

    // create output map based on input, we will cleanup the channels while iterating over it
    consensus_map_out = consensus_map_in;

    // init stats
    stats_.reset();
    stats_.channel_count = quant_method_->getNumberOfChannels();

    // apply isotope correction if requested by user
    if (isotope_correction_enabled_)
    {
      stats_ = IsobaricIsotopeCorrector::correctIsotopicImpurities(consensus_map_in, consensus_map_out, quant_method_);
    }
    else
    {
      LOG_WARN << "Warning: Due to deactivated isotope-correction labeling statistics will be based on raw intensities, which might give too optimistic results." << std::endl;
    }

    // compute statistics and embed into output map
    computeLabelingStatistics_(consensus_map_out);

    // apply normalization if requested
    if (normalization_enabled_)
    {
      IsobaricNormalizer normalizer(quant_method_);
      normalizer.normalize(consensus_map_out);
    }
  }
FGA* ptr = 0;
FGA* nullPointer = 0;
START_SECTION((FeatureGroupingAlgorithm()))
	ptr = new FGA();
	TEST_NOT_EQUAL(ptr, nullPointer)
END_SECTION

START_SECTION((virtual ~FeatureGroupingAlgorithm()))
	delete ptr;
END_SECTION

START_SECTION((virtual void group(const vector< FeatureMap > &maps, ConsensusMap &out)=0))
	FGA fga;
	vector< FeatureMap > in;
	ConsensusMap map;
	fga.group(in,map);
	TEST_EQUAL(map.getFileDescriptions()[0].filename, "bla")
END_SECTION

START_SECTION((static void registerChildren()))
{
	TEST_STRING_EQUAL(Factory<FeatureGroupingAlgorithm>::registeredProducts()[0],FeatureGroupingAlgorithmLabeled::getProductName());
	TEST_STRING_EQUAL(Factory<FeatureGroupingAlgorithm>::registeredProducts()[1],FeatureGroupingAlgorithmUnlabeled::getProductName());
	TEST_EQUAL(Factory<FeatureGroupingAlgorithm>::registeredProducts().size(), 3)
}
END_SECTION

START_SECTION((void transferSubelements(const vector<ConsensusMap>& maps, ConsensusMap& out) const))
{
	vector<ConsensusMap> maps(2);
void MapAlignmentEvaluationAlgorithmPrecision::evaluate(const ConsensusMap & consensus_map_in, const ConsensusMap & consensus_map_gt, const double & rt_dev, const double & mz_dev, const Peak2D::IntensityType & int_dev, const bool use_charge, double & out)
{
    //Precision = 1/N * sum ( gt_subtend_tilde_tool_i / tilde_tool_i )

    ConsensusMap cons_map_gt;     /* = consensus_map_gt; */

    for (Size i = 0; i < consensus_map_gt.size(); ++i)
    {
        if (consensus_map_gt[i].size() >= 2)
        {
            cons_map_gt.push_back(consensus_map_gt[i]);
        }
    }

    ConsensusMap cons_map_tool = consensus_map_in;

    std::vector<Size> gt_subtend_tilde_tool;        //holds the numerators of the sum
    std::vector<Size> tilde_tool;               //holds the denominators of the sum

    Size gt_subtend_tilde_tool_i = 0;       //filling material for the vectors
    Size tilde_tool_i = 0;

    Size cons_tool_size = 0;            //size  of the actual consensus feature of the tool
    Size gt_i_subtend_tool_j = 0;       //size of the intersection of the actual cons. feat. of the tool with the c.f. of GT

    double precision = 0;       //holds the output
    double sum = 0;         //intermediate step: the sum

    //loop over all consensus features of the ground truth
    for (Size i = 0; i < cons_map_gt.size(); ++i)      //N = cons_map_gt.size()
    {

        ConsensusFeature & gt_elem = cons_map_gt[i];

        //for every i = 1, ..., N:
        gt_subtend_tilde_tool_i = 0;
        tilde_tool_i = 0;

        //loop over all consensus features of the tool's consensus map
        for (Size j = 0; j < cons_map_tool.size(); ++j)
        {
            ConsensusFeature & tool_elem = cons_map_tool[j];
            cons_tool_size = cons_map_tool[j].size();

            gt_i_subtend_tool_j = 0;

            //loop over all features in the ith consensus feature of the gt
            for (HandleIterator gt_it = gt_elem.begin(); gt_it != gt_elem.end(); ++gt_it)
            {
                //loop over all features in the jth consensus feature of the tool's map
                for (HandleIterator tool_it = tool_elem.begin(); tool_it != tool_elem.end(); ++tool_it)
                {
                    //++cons_tool_size;

                    if (isSameHandle(*tool_it, *gt_it, rt_dev, mz_dev, int_dev, use_charge))
                    {
                        ++gt_i_subtend_tool_j;
                        break;
                    }
                }

            }
            if ((cons_tool_size >= 2) && (gt_i_subtend_tool_j > 0))
            {
                gt_subtend_tilde_tool_i += gt_i_subtend_tool_j;
                tilde_tool_i += cons_tool_size;
            }
        }

        gt_subtend_tilde_tool.push_back(gt_subtend_tilde_tool_i);
        tilde_tool.push_back(tilde_tool_i);
    }
    for (Size k = 0; k < gt_subtend_tilde_tool.size(); ++k)
    {
        double fraction = 0;        //intermediate step: the fraction

        if (gt_subtend_tilde_tool[k] != 0)
        {
            fraction = double(gt_subtend_tilde_tool[k]) / double(tilde_tool[k]);
        }
        sum += fraction;
    }
    precision = (1.0 / double(cons_map_gt.size())) * sum;
    out = precision;
}
  ExitCodes main_(int, const char**)
  {
    //-------------------------------------------------------------
    // parameter handling
    //-------------------------------------------------------------
    StringList in = getStringList_("in");
    String edta = getStringOption_("pos");
    String out = getStringOption_("out");
    String out_sep = getStringOption_("out_separator");
    String out_TIC_debug = getStringOption_("auto_rt:out_debug_TIC");

    StringList in_header = getStringList_("in_header");


    // number of out_debug_TIC files and input files must be identical
    /*if (out_TIC_debug.size() > 0 && in.size() != out_TIC_debug.size())
    {
        LOG_FATAL_ERROR << "Error: number of input file 'in' and auto_rt:out_debug_TIC files must be identical!" << std::endl;
        return ILLEGAL_PARAMETERS;
    }*/

    // number of header files and input files must be identical
    if (in_header.size() > 0 && in.size() != in_header.size())
    {
      LOG_FATAL_ERROR << "Error: number of input file 'in' and 'in_header' files must be identical!" << std::endl;
      return ILLEGAL_PARAMETERS;
    }

    if (!getFlag_("auto_rt:enabled") && !out_TIC_debug.empty())
    {
      LOG_FATAL_ERROR << "Error: TIC output file requested, but auto_rt is not enabled! Either do not request the file or switch on 'auto_rt:enabled'." << std::endl;
      return ILLEGAL_PARAMETERS;
    }

    double rttol = getDoubleOption_("rt_tol");
    double mztol = getDoubleOption_("mz_tol");
    Size rt_collect = getIntOption_("rt_collect");

    //-------------------------------------------------------------
    // loading input
    //-------------------------------------------------------------
    MzMLFile mzml_file;
    mzml_file.setLogType(log_type_);
    MSExperiment<Peak1D> exp, exp_pp;

    EDTAFile ed;
    ConsensusMap cm;
    ed.load(edta, cm);

    StringList tf_single_header0, tf_single_header1, tf_single_header2; // header content, for each column

    std::vector<String> vec_single; // one line for each compound, multiple columns per experiment
    vec_single.resize(cm.size());
    for (Size fi = 0; fi < in.size(); ++fi)
    {
      // load raw data
      mzml_file.load(in[fi], exp);
      exp.sortSpectra(true);

      if (exp.empty())
      {
        LOG_WARN << "The given file does not contain any conventional peak data, but might"
                    " contain chromatograms. This tool currently cannot handle them, sorry." << std::endl;
        return INCOMPATIBLE_INPUT_DATA;
      }

      // try to detect RT peaks (only for the first input file -- all others should align!)
      // cm.size() might change in here...
      if (getFlag_("auto_rt:enabled") && fi == 0)
      {
        ConsensusMap cm_local = cm; // we might have different RT peaks for each map if 'auto_rt' is enabled
        cm.clear(false); // reset global list (about to be filled)

        // compute TIC
        MSChromatogram<> tic = exp.getTIC();
        MSSpectrum<> tics, tic_gf, tics_pp, tics_sn;
        for (Size ic = 0; ic < tic.size(); ++ic)
        { // rewrite Chromatogram to MSSpectrum (GaussFilter requires it)
          Peak1D peak;
          peak.setMZ(tic[ic].getRT());
          peak.setIntensity(tic[ic].getIntensity());
          tics.push_back(peak);
        }
        // smooth (no PP_CWT here due to efficiency reasons -- large FWHM take longer!)
        double fwhm = getDoubleOption_("auto_rt:FHWM");
        GaussFilter gf;
        Param p = gf.getParameters();
        p.setValue("gaussian_width", fwhm * 2); // wider than FWHM, just to be sure we have a fully smoothed peak. Merging two peaks is unlikely
        p.setValue("use_ppm_tolerance", "false");
        gf.setParameters(p);
        tic_gf = tics;
        gf.filter(tic_gf);
        // pick peaks
        PeakPickerHiRes pp;
        p = pp.getParameters();
        p.setValue("signal_to_noise", getDoubleOption_("auto_rt:SNThreshold"));
        pp.setParameters(p);
        pp.pick(tic_gf, tics_pp);

        if (tics_pp.size())
        {
          LOG_INFO << "Found " << tics_pp.size() << " auto-rt peaks at: ";
          for (Size ipp = 0; ipp != tics_pp.size(); ++ipp) LOG_INFO << " " << tics_pp[ipp].getMZ();
        }
        else
        {
          LOG_INFO << "Found no auto-rt peaks. Change threshold parameters!";
        }
        LOG_INFO << std::endl;

        if (!out_TIC_debug.empty()) // if debug file was given
        { // store intermediate steps for debug
          MSExperiment<> out_debug;
          out_debug.addChromatogram(toChromatogram(tics));
          out_debug.addChromatogram(toChromatogram(tic_gf));

          SignalToNoiseEstimatorMedian<MSSpectrum<> > snt;
          snt.init(tics);
          for (Size is = 0; is < tics.size(); ++is)
          {
            Peak1D peak;
            peak.setMZ(tic[is].getMZ());
            peak.setIntensity(snt.getSignalToNoise(tics[is]));
            tics_sn.push_back(peak);
          }
          out_debug.addChromatogram(toChromatogram(tics_sn));

          out_debug.addChromatogram(toChromatogram(tics_pp));
          // get rid of "native-id" missing warning
          for (Size id = 0; id < out_debug.size(); ++id) out_debug[id].setNativeID(String("spectrum=") + id);

          mzml_file.store(out_TIC_debug, out_debug);
          LOG_DEBUG << "Storing debug AUTO-RT: " << out_TIC_debug << std::endl;
        }

        // add target EICs: for each m/z with no/negative RT, add all combinations of that m/z with auto-RTs
        // duplicate m/z entries will be ignored!
        // all other lines with positive RT values are copied unaffected
        //do not allow doubles
        std::set<double> mz_doubles;
        for (ConsensusMap::Iterator cit = cm_local.begin(); cit != cm_local.end(); ++cit)
        {
          if (cit->getRT() < 0)
          {
            if (mz_doubles.find(cit->getMZ()) == mz_doubles.end())
            {
              mz_doubles.insert(cit->getMZ());
            }
            else
            {
              LOG_INFO << "Found duplicate m/z entry (" << cit->getMZ() << ") for auto-rt. Skipping ..." << std::endl;
              continue;
            }

            ConsensusMap cm_RT_multiplex;
            for (MSSpectrum<>::ConstIterator itp = tics_pp.begin(); itp != tics_pp.end(); ++itp)
            {
              ConsensusFeature f = *cit;
              f.setRT(itp->getMZ());
              cm.push_back(f);
            }

          }
          else
          { // default feature with no auto-rt
            LOG_INFO << "copying feature with RT " << cit->getRT() << std::endl;
            cm.push_back(*cit);
          }
        }

        // resize, since we have more positions now
        vec_single.resize(cm.size());
      }


      // search for each EIC and add up
      Int not_found(0);
      Map<Size, double> quant;

      String description;
      if (fi < in_header.size())
      {
        HeaderInfo info(in_header[fi]);
        description = info.header_description;
      }

      if (fi == 0)
      { // two additional columns for first file (theoretical RT and m/z)
        tf_single_header0 << "" << "";
        tf_single_header1 << "" << "";
        tf_single_header2 << "RT" << "mz";
      }

      // 5 entries for each input file
      tf_single_header0 << File::basename(in[fi]) << "" << "" << "" << "";
      tf_single_header1 << description << "" << "" << "" << "";
      tf_single_header2 << "RTobs" << "dRT" << "mzobs" << "dppm" << "intensity";

      for (Size i = 0; i < cm.size(); ++i)
      {
        //std::cerr << "Rt" << cm[i].getRT() << "  mz: " << cm[i].getMZ() << " R " <<  cm[i].getMetaValue("rank") << "\n";

        double mz_da = mztol * cm[i].getMZ() / 1e6; // mz tolerance in Dalton
        MSExperiment<>::ConstAreaIterator it = exp.areaBeginConst(cm[i].getRT() - rttol / 2,
                                                                  cm[i].getRT() + rttol / 2,
                                                                  cm[i].getMZ() - mz_da,
                                                                  cm[i].getMZ() + mz_da);
        Peak2D max_peak;
        max_peak.setIntensity(0);
        max_peak.setRT(cm[i].getRT());
        max_peak.setMZ(cm[i].getMZ());
        for (; it != exp.areaEndConst(); ++it)
        {
          if (max_peak.getIntensity() < it->getIntensity())
          {
            max_peak.setIntensity(it->getIntensity());
            max_peak.setRT(it.getRT());
            max_peak.setMZ(it->getMZ());
          }
        }
        double ppm = 0; // observed m/z offset

        if (max_peak.getIntensity() == 0)
        {
          ++not_found;
        }
        else
        {
          // take median for m/z found
          std::vector<double> mz;
          MSExperiment<>::Iterator itm = exp.RTBegin(max_peak.getRT());
          SignedSize low = std::min<SignedSize>(std::distance(exp.begin(), itm), rt_collect);
          SignedSize high = std::min<SignedSize>(std::distance(itm, exp.end()) - 1, rt_collect);
          MSExperiment<>::AreaIterator itt = exp.areaBegin((itm - low)->getRT() - 0.01, (itm + high)->getRT() + 0.01, cm[i].getMZ() - mz_da, cm[i].getMZ() + mz_da);
          for (; itt != exp.areaEnd(); ++itt)
          {
            mz.push_back(itt->getMZ());
            //std::cerr << "ppm: " << itt.getRT() << " " <<  itt->getMZ() << " " << itt->getIntensity() << std::endl;
          }

          if ((SignedSize)mz.size() > (low + high + 1)) LOG_WARN << "Compound " << i << " has overlapping peaks [" << mz.size() << "/" << low + high + 1 << "]" << std::endl;

          if (!mz.empty())
          {
            double avg_mz = std::accumulate(mz.begin(), mz.end(), 0.0) / double(mz.size());
            //std::cerr << "avg: " << avg_mz << "\n";
            ppm = (avg_mz - cm[i].getMZ()) / cm[i].getMZ() * 1e6;
          }

        }

        // appending the second column set requires separator
        String append_sep = (fi == 0 ? "" : out_sep);

        vec_single[i] += append_sep; // new line
        if (fi == 0)
        {
          vec_single[i] += String(cm[i].getRT()) + out_sep +
                           String(cm[i].getMZ()) + out_sep;
        }
        vec_single[i] += String(max_peak.getRT()) + out_sep +
                         String(max_peak.getRT() - cm[i].getRT()) + out_sep +
                         String(max_peak.getMZ()) + out_sep +
                         String(ppm)  + out_sep +
                         String(max_peak.getIntensity());
      }

      if (not_found) LOG_INFO << "Missing peaks for " << not_found << " compounds in file '" << in[fi] << "'.\n";
    }

    //-------------------------------------------------------------
    // create header
    //-------------------------------------------------------------
    vec_single.insert(vec_single.begin(), ListUtils::concatenate(tf_single_header2, out_sep));
    vec_single.insert(vec_single.begin(), ListUtils::concatenate(tf_single_header1, out_sep));
    vec_single.insert(vec_single.begin(), ListUtils::concatenate(tf_single_header0, out_sep));

    //-------------------------------------------------------------
    // writing output
    //-------------------------------------------------------------
    TextFile tf;
    for (std::vector<String>::iterator v_it = vec_single.begin(); v_it != vec_single.end(); ++v_it)
    {
      tf.addLine(*v_it);
    }
    tf.store(out);

    return EXECUTION_OK;
  }
Example #26
0
  ExitCodes main_(int, const char**)
  {

    //-------------------------------------------------------------
    // parameter handling
    //-------------------------------------------------------------
    //file list
    StringList file_list = getStringList_("in");

    //file type
    FileHandler fh;
    FileTypes::Type force_type;
    if (getStringOption_("in_type").size() > 0)
    {
      force_type = FileTypes::nameToType(getStringOption_("in_type"));
    }
    else
    {
      force_type = fh.getType(file_list[0]);
    }

    //output file names and types
    String out_file = getStringOption_("out");

    //-------------------------------------------------------------
    // calculations
    //-------------------------------------------------------------

    bool annotate_file_origin =  getFlag_("annotate_file_origin");

    if (force_type == FileTypes::FEATUREXML)
    {
      FeatureMap<> out;
      for (Size i = 0; i < file_list.size(); ++i)
      {
        FeatureMap<> map;
        FeatureXMLFile fh;
        fh.load(file_list[i], map);

        if (annotate_file_origin)
        {
          for (FeatureMap<>::iterator it = map.begin(); it != map.end(); ++it)
          {
            it->setMetaValue("file_origin", DataValue(file_list[i]));
          }
        }
        out += map;
      }

      //-------------------------------------------------------------
      // writing output
      //-------------------------------------------------------------

      //annotate output with data processing info
      addDataProcessing_(out, getProcessingInfo_(DataProcessing::FORMAT_CONVERSION));

      FeatureXMLFile f;
      f.store(out_file, out);

    }
    else if (force_type == FileTypes::CONSENSUSXML)
    {
      ConsensusMap out;
      ConsensusXMLFile fh;
      fh.load(file_list[0], out);
      //skip first file
      for (Size i = 1; i < file_list.size(); ++i)
      {
        ConsensusMap map;
        ConsensusXMLFile fh;
        fh.load(file_list[i], map);

        if (annotate_file_origin)
        {
          for (ConsensusMap::iterator it = map.begin(); it != map.end(); ++it)
          {
            it->setMetaValue("file_origin", DataValue(file_list[i]));
          }
        }
        out += map;
      }

      //-------------------------------------------------------------
      // writing output
      //-------------------------------------------------------------

      //annotate output with data processing info
      addDataProcessing_(out, getProcessingInfo_(DataProcessing::FORMAT_CONVERSION));

      ConsensusXMLFile f;
      f.store(out_file, out);
    }
    else if (force_type == FileTypes::TRAML)
    {
      TargetedExperiment out;
      for (Size i = 0; i < file_list.size(); ++i)
      {
        TargetedExperiment map;
        TraMLFile fh;
        fh.load(file_list[i], map);
        out += map;
      }

      //-------------------------------------------------------------
      // writing output
      //-------------------------------------------------------------

      //annotate output with data processing info
      Software software;
      software.setName("FileMerger");
      software.setVersion(VersionInfo::getVersion());
      out.addSoftware(software);

      TraMLFile f;
      f.store(out_file, out);
    }
    else
    {
      // we might want to combine different types, thus we only
      // query in_type (which applies to all files)
      // and not the suffix or content of a single file
      force_type = FileTypes::nameToType(getStringOption_("in_type"));

      //rt
      bool rt_auto_number = getFlag_("raw:rt_auto");
      bool rt_filename = getFlag_("raw:rt_filename");
      bool rt_custom = false;
      DoubleList custom_rts = getDoubleList_("raw:rt_custom");
      if (custom_rts.size() != 0)
      {
        rt_custom = true;
        if (custom_rts.size() != file_list.size())
        {
          writeLog_("Custom retention time list must have as many elements as there are input files!");
          printUsage_();
          return ILLEGAL_PARAMETERS;
        }
      }

      //ms level
      bool user_ms_level = getFlag_("raw:user_ms_level");

      MSExperiment<> out;
      out.reserve(file_list.size());
      UInt rt_auto = 0;
      UInt native_id = 0;
      std::vector<MSChromatogram<ChromatogramPeak> > all_chromatograms;
      for (Size i = 0; i < file_list.size(); ++i)
      {
        String filename = file_list[i];

        //load file
        MSExperiment<> in;
        fh.loadExperiment(filename, in, force_type, log_type_);
        if (in.empty() && in.getChromatograms().empty())
        {
          writeLog_(String("Warning: Empty file '") + filename + "'!");
          continue;
        }
        out.reserve(out.size() + in.size());

        //warn if custom RT and more than one scan in input file
        if (rt_custom && in.size() > 1)
        {
          writeLog_(String("Warning: More than one scan in file '") + filename + "'! All scans will have the same retention time!");
        }

        for (MSExperiment<>::const_iterator it2 = in.begin(); it2 != in.end(); ++it2)
        {
          //handle rt
          Real rt_final = it2->getRT();
          if (rt_auto_number)
          {
            rt_final = ++rt_auto;
          }
          else if (rt_custom)
          {
            rt_final = custom_rts[i];
          }
          else if (rt_filename)
          {
            if (!filename.hasSubstring("rt"))
            {
              writeLog_(String("Warning: cannot guess retention time from filename as it does not contain 'rt'"));
            }
            for (Size i = 0; i < filename.size(); ++i)
            {
              if (filename[i] == 'r' && ++i != filename.size() && filename[i] == 't' && ++i != filename.size() && isdigit(filename[i]))
              {
                String rt;
                while (i != filename.size() && (filename[i] == '.' || isdigit(filename[i])))
                {
                  rt += filename[i++];
                }
                if (rt.size() > 0)
                {
                  // remove dot from rt3892.98.dta
                  //                          ^
                  if (rt[rt.size() - 1] == '.')
                  {
                    // remove last character
                    rt.erase(rt.end() - 1);
                  }
                }
                try
                {
                  float tmp = rt.toFloat();
                  rt_final = tmp;
                }
                catch (Exception::ConversionError)
                {
                  writeLog_(String("Warning: cannot convert the found retention time in a value '" + rt + "'."));
                }
              }
            }
          }

          // none of the rt methods were successful
          if (rt_final == -1)
          {
            writeLog_(String("Warning: No valid retention time for output scan '") + rt_auto + "' from file '" + filename + "'");
          }

          out.addSpectrum(*it2);
          out.getSpectra().back().setRT(rt_final);
          out.getSpectra().back().setNativeID(native_id);

          if (user_ms_level)
          {
            out.getSpectra().back().setMSLevel((int)getIntOption_("raw:ms_level"));
          }
          ++native_id;
        }

        // if we had only one spectrum, we can annotate it directly, for more spectra, we just name the source file leaving the spectra unannotated (to avoid a long and redundant list of sourceFiles)
        if (in.size() == 1)
        {
          out.getSpectra().back().setSourceFile(in.getSourceFiles()[0]);
          in.getSourceFiles().clear();   // delete source file annotated from source file (its in the spectrum anyways)
        }
        // copy experimental settings from first file
        if (i == 0)
        {
          out.ExperimentalSettings::operator=(in);
        }
        else // otherwise append
        {
          out.getSourceFiles().insert(out.getSourceFiles().end(), in.getSourceFiles().begin(), in.getSourceFiles().end()); // could be emtpty if spectrum was annotated above, but that's ok then
        }

        // also add the chromatograms
        for (std::vector<MSChromatogram<ChromatogramPeak> >::const_iterator it2 = in.getChromatograms().begin(); it2 != in.getChromatograms().end(); ++it2)
        {
          all_chromatograms.push_back(*it2);
        }

      }
      // set the chromatograms
      out.setChromatograms(all_chromatograms);

      //-------------------------------------------------------------
      // writing output
      //-------------------------------------------------------------

      //annotate output with data processing info
      addDataProcessing_(out, getProcessingInfo_(DataProcessing::FORMAT_CONVERSION));

      MzMLFile f;
      f.setLogType(log_type_);
      f.store(out_file, out);

    }

    return EXECUTION_OK;
  }
			void group(const vector< FeatureMap >&, ConsensusMap& map)
			{
			  map.getFileDescriptions()[0].filename = "bla";
				map.getFileDescriptions()[0].size = 5;
			}
Example #28
0
  ExitCodes main_(int, const char **)
  {
    //load input features
    FeatureMap input;
    FeatureXMLFile().load(getStringOption_("in"), input);

    //load truth consensusXML
    ConsensusMap truth;
    ConsensusXMLFile().load(getStringOption_("truth"), truth);

    //parameters
    double mz_tol = getDoubleOption_("mz_tol");
    double rt_tol = getDoubleOption_("rt_tol");

    //seek manual feature in automatic feature map
    UInt matched_pairs = 0;
    UInt half_matched_pairs = 0;
    vector<double> t_ratio, i_ratio, rt_diffs, mz_diffs;
    for (Size t = 0; t < truth.size(); ++t)
    {
      if (truth[t].size() != 2)
      {
        cerr << "Error: consensus feature must contain exactly two elements!" << endl;
        continue;
      }
      vector<Feature> best_matches(2);
      vector<UInt> match_counts(2, 0);
      vector<Peak2D> elements(2);
      elements[0] = *(truth[t].getFeatures().begin());
      elements[1] = *(++(truth[t].getFeatures().begin()));
      double mz_tol_charged = mz_tol / truth[t].getCharge();
      for (Size e = 0; e < 2; ++e)
      {
        double best_score = 0.0;
        for (Size i = 0; i < input.size(); ++i)
        {
          const Feature & f_i = input[i];
          if (fabs(f_i.getRT() - elements[e].getRT()) < rt_tol
             && fabs(f_i.getMZ() - elements[e].getMZ()) < mz_tol_charged)
          {
            ++match_counts[e];
            double score = (1.0 - fabs(f_i.getMZ() - elements[e].getMZ()) / mz_tol_charged) * (1.0 - fabs(f_i.getRT() - elements[e].getRT()) / rt_tol);
            if (score > best_score)
            {
              best_score = score;
              best_matches[e] = f_i;
            }
          }
        }
      }

      //not matched
      if (match_counts[0] == 0 && match_counts[1] == 0)
      {
      }
      //half matched
      else if ((match_counts[0] > 0 && match_counts[1] == 0) || (match_counts[0] == 0 && match_counts[1] > 0))
      {
        ++half_matched_pairs;
      }
      //matched
      else
      {
        ++matched_pairs;
        double a_r = best_matches[0].getIntensity() / best_matches[1].getIntensity();
        t_ratio.push_back(a_r);
        double m_r = elements[0].getIntensity() / elements[1].getIntensity();
        i_ratio.push_back(m_r);
        rt_diffs.push_back(best_matches[1].getRT() - best_matches[0].getRT());
        mz_diffs.push_back((best_matches[1].getMZ() - best_matches[0].getMZ()) * truth[t].getCharge());
      }
    }

    cout << endl;
    cout << "pair detection statistics:" << endl;
    cout << "==========================" << endl;
    cout << "truth pairs: " << truth.size() << endl;
    cout << "input features: " << input.size() << endl;
    cout << endl;
    cout << "found: " << matched_pairs << " (" << String::number(100.0 * matched_pairs / truth.size(), 2) << "%)" << endl;
    cout << "half found : " << half_matched_pairs << " (" << String::number(100.0 * half_matched_pairs / truth.size(), 2) << "%)" << endl;
    cout << "not found : " << truth.size() - (matched_pairs + half_matched_pairs) << " (" << String::number(100.0 - 100.0 * (matched_pairs + half_matched_pairs) / truth.size(), 2) << "%)" << endl;
    cout << endl;
    cout << "relative pair ratios: " << fiveNumberQuotients(i_ratio, t_ratio, 3) << endl;
    cout << "pair distance RT : " << fiveNumbers(rt_diffs, 2) << endl;
    cout << "pair distance m/z: " << fiveNumbers(mz_diffs, 2) << endl;

    return EXECUTION_OK;
  }
Example #29
0
features[9].setMZ(6.0f);
features[9].setCharge(1);
features[9].setOverallQuality(1);

START_SECTION((virtual void run(const std::vector<ConsensusMap>& input_maps, ConsensusMap& result_map)))
	LabeledPairFinder pm;
	Param p;
	p.setValue("rt_estimate","false");
	p.setValue("rt_pair_dist",0.4);
	p.setValue("rt_dev_low",1.0);
	p.setValue("rt_dev_high",2.0);
	p.setValue("mz_pair_dists",ListUtils::create<double>(4.0));
	p.setValue("mz_dev",0.6);
	pm.setParameters(p);

	ConsensusMap output;
	TEST_EXCEPTION(Exception::IllegalArgument,pm.run(vector<ConsensusMap>(),output));
	vector<ConsensusMap> input(1);
	MapConversion::convert(5,features,input[0]);
	output.getColumnHeaders()[5].label = "light";
	output.getColumnHeaders()[5].filename = "filename";
	output.getColumnHeaders()[8] = output.getColumnHeaders()[5];
	output.getColumnHeaders()[8].label = "heavy";

	pm.run(input,output);

	TEST_EQUAL(output.size(),1);
	ABORT_IF(output.size()!=1)
	TEST_REAL_SIMILAR(output[0].begin()->getMZ(),1.0f);
	TEST_REAL_SIMILAR(output[0].begin()->getRT(),1.0f);
	TEST_REAL_SIMILAR(output[0].rbegin()->getMZ(),5.0f);
  ExitCodes main_(int, const char**)
  {
    vector<ProteinIdentification> prot_ids;
    vector<PeptideIdentification> pep_ids;
    ProteinHit temp_protein_hit;

    //-------------------------------------------------------------
    // parsing parameters
    //-------------------------------------------------------------
    String inputfile_id               = getStringOption_("id");
    String inputfile_feature       = getStringOption_("feature");
    String inputfile_consensus  = getStringOption_("consensus");
    String inputfile_raw            = getStringOption_("in");
    String outputfile_name       = getStringOption_("out");

    //~ bool Ms1(getFlag_("MS1"));
    //~ bool Ms2(getFlag_("MS2"));
    bool remove_duplicate_features(getFlag_("remove_duplicate_features"));
    
    //-------------------------------------------------------------
    // fetch vocabularies
    //------------------------------------------------------------
    ControlledVocabulary cv;
    cv.loadFromOBO("PSI-MS", File::find("/CV/psi-ms.obo"));
    cv.loadFromOBO("QC", File::find("/CV/qc-cv.obo"));
 
     QcMLFile qcmlfile;

    //-------------------------------------------------------------
    // MS  aqiusition
    //------------------------------------------------------------
    String base_name = QFileInfo(QString::fromStdString(inputfile_raw)).baseName();

    cout << "Reading mzML file..." << endl;
    MzMLFile mz_data_file;
    MSExperiment<Peak1D> exp;
    MzMLFile().load(inputfile_raw, exp);
    
    //---prep input
    exp.sortSpectra();
    UInt min_mz = std::numeric_limits<UInt>::max();
    UInt max_mz = 0;
    std::map<Size, UInt> mslevelcounts;
    
    qcmlfile.registerRun(base_name,base_name); //TODO use UIDs
    
    //---base MS aquisition qp
    String msaq_ref = base_name + "_msaq";
    QcMLFile::QualityParameter qp;
    qp.id = msaq_ref; ///< Identifier
    qp.cvRef = "QC"; ///< cv reference
    qp.cvAcc = "QC:0000004";
    try
    {
      //~ const ControlledVocabulary::CVTerm& test = cv.getTermByName("MS aquisition result details");
      //~ cout << test.name << test.id << endl;
      const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
      //~ const ControlledVocabulary::CVTerm& term = cv.getTerm("0000004");
      qp.name = term.name; ///< Name
    }
    catch (...)
    {
      qp.name = "mzML file"; ///< Name
    }
    qcmlfile.addRunQualityParameter(base_name, qp);
    
    //---file origin qp
    qp = QcMLFile::QualityParameter();
    qp.name = "mzML file"; ///< Name
    qp.id = base_name + "_run_name"; ///< Identifier
    qp.cvRef = "MS"; ///< cv reference
    qp.cvAcc = "MS:1000577";
    qp.value = base_name;
    qcmlfile.addRunQualityParameter(base_name, qp);
    
    qp = QcMLFile::QualityParameter();
    qp.name = "instrument model"; ///< Name
    qp.id = base_name + "_instrument_name"; ///< Identifier
    qp.cvRef = "MS"; ///< cv reference
    qp.cvAcc = "MS:1000031";
    qp.value = exp.getInstrument().getName();
    qcmlfile.addRunQualityParameter(base_name, qp);    

    qp = QcMLFile::QualityParameter();
    qp.name = "completion time"; ///< Name
    qp.id = base_name + "_date"; ///< Identifier
    qp.cvRef = "MS"; ///< cv reference
    qp.cvAcc = "MS:1000747";
    qp.value = exp.getDateTime().getDate();
    qcmlfile.addRunQualityParameter(base_name, qp);

    //---precursors at
    QcMLFile::Attachment at;
    at.cvRef = "QC"; ///< cv reference
    at.cvAcc = "QC:0000044";
    at.qualityRef = msaq_ref;
    at.id = base_name + "_precursors"; ///< Identifier
    try
    {
      const ControlledVocabulary::CVTerm& term = cv.getTerm(at.cvAcc);
      at.name = term.name; ///< Name
    }
    catch (...)
    {
      at.name = "precursors"; ///< Name
    }

    at.colTypes.push_back("MS:1000894_[sec]"); //RT
    at.colTypes.push_back("MS:1000040"); //MZ
    for (Size i = 0; i < exp.size(); ++i)
    {
      mslevelcounts[exp[i].getMSLevel()]++;
      if (exp[i].getMSLevel() == 2)
      {
        if (exp[i].getPrecursors().front().getMZ() < min_mz)
        {
          min_mz = exp[i].getPrecursors().front().getMZ();
        }
        if (exp[i].getPrecursors().front().getMZ() > max_mz)
        {
          max_mz = exp[i].getPrecursors().front().getMZ();
        }
        std::vector<String> row;
        row.push_back(exp[i].getRT());
        row.push_back(exp[i].getPrecursors().front().getMZ());
        at.tableRows.push_back(row);
      }
    }
    qcmlfile.addRunAttachment(base_name, at);

    //---aquisition results qp
    qp = QcMLFile::QualityParameter();
    qp.cvRef = "QC"; ///< cv reference
    qp.cvAcc = "QC:0000006"; ///< cv accession for "aquisition results"
    qp.id = base_name + "_ms1aquisition"; ///< Identifier
    qp.value = String(mslevelcounts[1]);
    try
    {
      const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
      qp.name = term.name; ///< Name
    }
    catch (...)
    {
      qp.name = "number of ms1 spectra"; ///< Name
    }
    qcmlfile.addRunQualityParameter(base_name, qp);
    

    qp = QcMLFile::QualityParameter();
    qp.cvRef = "QC"; ///< cv reference
    qp.cvAcc = "QC:0000007"; ///< cv accession for "aquisition results"
    qp.id = base_name + "_ms2aquisition"; ///< Identifier
    qp.value = String(mslevelcounts[2]);
    try
    {
      const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
      qp.name = term.name; ///< Name
    }
    catch (...)
    {
      qp.name = "number of ms2 spectra"; ///< Name
    }
    qcmlfile.addRunQualityParameter(base_name, qp);

    qp = QcMLFile::QualityParameter();
    qp.cvRef = "QC"; ///< cv reference
    qp.cvAcc = "QC:0000008"; ///< cv accession for "aquisition results"
    qp.id = base_name + "_Chromaquisition"; ///< Identifier
    qp.value = String(exp.getChromatograms().size());
    try
    {
      const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
      qp.name = term.name; ///< Name
    }
    catch (...)
    {
      qp.name = "number of chromatograms"; ///< Name
    }
    qcmlfile.addRunQualityParameter(base_name, qp);
    
    at = QcMLFile::Attachment();
    at.cvRef = "QC"; ///< cv reference
    at.cvAcc = "QC:0000009";
    at.qualityRef = msaq_ref;
    at.id = base_name + "_mzrange"; ///< Identifier
    try
    {
      const ControlledVocabulary::CVTerm& term = cv.getTerm(at.cvAcc);
      at.name = term.name; ///< Name
    }
    catch (...)
    {
      at.name = "MS MZ aquisition ranges"; ///< Name
    }

    at.colTypes.push_back("QC:0000010"); //MZ
    at.colTypes.push_back("QC:0000011"); //MZ
    std::vector<String> rowmz;
    rowmz.push_back(String(min_mz));
    rowmz.push_back(String(max_mz));
    at.tableRows.push_back(rowmz);
    qcmlfile.addRunAttachment(base_name, at);

    at = QcMLFile::Attachment();
    at.cvRef = "QC"; ///< cv reference
    at.cvAcc = "QC:0000012";
    at.qualityRef = msaq_ref;
    at.id = base_name + "_rtrange"; ///< Identifier
    try
    {
      const ControlledVocabulary::CVTerm& term = cv.getTerm(at.cvAcc);
      at.name = term.name; ///< Name
    }
    catch (...)
    {
      at.name = "MS RT aquisition ranges"; ///< Name
    }

    at.colTypes.push_back("QC:0000013"); //MZ
    at.colTypes.push_back("QC:0000014"); //MZ
    std::vector<String> rowrt;
    rowrt.push_back(String(exp.begin()->getRT()));
    rowrt.push_back(String(exp.getSpectra().back().getRT()));
    at.tableRows.push_back(rowrt);
    qcmlfile.addRunAttachment(base_name, at);
    

    //---ion current stability ( & tic ) qp
    at = QcMLFile::Attachment();
    at.cvRef = "QC"; ///< cv reference
    at.cvAcc = "QC:0000022";
    at.qualityRef = msaq_ref;
    at.id = base_name + "_tics"; ///< Identifier
    try
    {
      const ControlledVocabulary::CVTerm& term = cv.getTerm(at.cvAcc);
      at.name = term.name; ///< Name
    }
    catch (...)
    {
      at.name = "MS TICs"; ///< Name
    }
    
    at.colTypes.push_back("MS:1000894_[sec]");
    at.colTypes.push_back("MS:1000285");
    UInt max = 0;
    Size below_10k = 0;
    for (Size i = 0; i < exp.size(); ++i)
    {
      if (exp[i].getMSLevel() == 1)
      {
        UInt sum = 0;
        for (Size j = 0; j < exp[i].size(); ++j)
        {
          sum += exp[i][j].getIntensity();
        }
        if (sum > max)
        {
          max = sum;
        }
        if (sum < 10000)
        {
          ++below_10k;
        }
        std::vector<String> row;
        row.push_back(exp[i].getRT());
        row.push_back(sum);
        at.tableRows.push_back(row);
      }
    }
    qcmlfile.addRunAttachment(base_name, at);
    

    qp = QcMLFile::QualityParameter();
    qp.id = base_name + "_ticslump"; ///< Identifier
    qp.cvRef = "QC"; ///< cv reference
    qp.cvAcc = "QC:0000023";
    qp.value = String((100 / exp.size()) * below_10k);
    try
    {
      const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
      qp.name = term.name; ///< Name
    }
    catch (...)
    {
      qp.name = "percentage of tic slumps"; ///< Name
    }
    qcmlfile.addRunQualityParameter(base_name, qp);

    
    //-------------------------------------------------------------
    // MS  id
    //------------------------------------------------------------
    if (inputfile_id != "")
    {
      IdXMLFile().load(inputfile_id, prot_ids, pep_ids);
      cerr << "idXML read ended. Found " << pep_ids.size() << " peptide identifications." << endl;

      ProteinIdentification::SearchParameters params = prot_ids[0].getSearchParameters();
      vector<String> var_mods = params.variable_modifications;
      //~ boost::regex re("(?<=[KR])(?=[^P])");
     
      String msid_ref = base_name + "_msid";
      QcMLFile::QualityParameter qp;
      qp.id = msid_ref; ///< Identifier
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000025";
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
        qp.name = "MS identification result details"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);


      at = QcMLFile::Attachment();
      at.cvRef = "QC"; ///< cv reference
      at.cvAcc = "QC:0000026";
      at.qualityRef = msid_ref;
      at.id = base_name + "_idsetting"; ///< Identifier
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(at.cvAcc);
        at.name = term.name; ///< Name
      }
      catch (...)
      {
        at.name = "MS id settings"; ///< Name
      }
      
      at.colTypes.push_back("MS:1001013"); //MS:1001013 db name  MS:1001016 version  MS:1001020 taxonomy
      at.colTypes.push_back("MS:1001016");
      at.colTypes.push_back("MS:1001020");
      std::vector<String> row;
      row.push_back(String(prot_ids.front().getSearchParameters().db));
      row.push_back(String(prot_ids.front().getSearchParameters().db_version));
      row.push_back(String(prot_ids.front().getSearchParameters().taxonomy));
      at.tableRows.push_back(row);
      qcmlfile.addRunAttachment(base_name, at);


      UInt spectrum_count = 0;
      Size peptide_hit_count = 0;
      UInt runs_count = 0;
      Size protein_hit_count = 0;
      set<String> peptides;
      set<String> proteins;
      Size missedcleavages = 0;
      for (Size i = 0; i < pep_ids.size(); ++i)
      {
        if (!pep_ids[i].empty())
        {
          ++spectrum_count;
          peptide_hit_count += pep_ids[i].getHits().size();
          const vector<PeptideHit>& temp_hits = pep_ids[i].getHits();
          for (Size j = 0; j < temp_hits.size(); ++j)
          {
            peptides.insert(temp_hits[j].getSequence().toString());
          }
        }
      }
      for (set<String>::iterator it = peptides.begin(); it != peptides.end(); ++it)
      {
        for (String::const_iterator st = it->begin(); st != it->end() - 1; ++st)
        {
          if (*st == 'K' || *st == 'R')
          {
            ++missedcleavages;
          }
        }
      }

      for (Size i = 0; i < prot_ids.size(); ++i)
      {
        ++runs_count;
        protein_hit_count += prot_ids[i].getHits().size();
        const vector<ProteinHit>& temp_hits = prot_ids[i].getHits();
        for (Size j = 0; j < temp_hits.size(); ++j)
        {
          proteins.insert(temp_hits[j].getAccession());
        }
      }
      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000037"; ///< cv accession
      qp.id = base_name + "_misscleave"; ///< Identifier
      qp.value = missedcleavages;
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
        qp.name = "total number of missed cleavages"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);

      
      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000032"; ///< cv accession
      qp.id = base_name + "_totprot"; ///< Identifier
      qp.value = protein_hit_count;
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
        qp.name = "total number of identified proteins"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);


      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000033"; ///< cv accession
      qp.id = base_name + "_totuniqprot"; ///< Identifier
      qp.value = String(proteins.size());
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "total number of uniquely identified proteins"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);


      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000029"; ///< cv accession
      qp.id = base_name + "_psms"; ///< Identifier
      qp.value = String(spectrum_count);
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "total number of PSM"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);


      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000030"; ///< cv accession
      qp.id = base_name + "_totpeps"; ///< Identifier
      qp.value = String(peptide_hit_count);
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "total number of identified peptides"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);


      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000031"; ///< cv accession
      qp.id = base_name + "_totuniqpeps"; ///< Identifier
      qp.value = String(peptides.size());
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "total number of uniquely identified peptides"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);


      at = QcMLFile::Attachment();
      at.cvRef = "QC"; ///< cv reference
      at.cvAcc = "QC:0000038";
      at.qualityRef = msid_ref;
      at.id = base_name + "_massacc"; ///< Identifier
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(at.cvAcc);
        at.name = term.name; ///< Name
      }
      catch (...)
      {
        at.name = "delta ppm tables";
      }
      
      //~ delta ppm QC:0000039 RT MZ uniqueness ProteinID MS:1000885 target/decoy Score PeptideSequence MS:1000889 Annots string Similarity Charge UO:0000219 TheoreticalWeight UO:0000221 Oxidation_(M)
      at.colTypes.push_back("RT");
      at.colTypes.push_back("MZ");
      at.colTypes.push_back("Score");
      at.colTypes.push_back("PeptideSequence");
      at.colTypes.push_back("Charge");
      at.colTypes.push_back("TheoreticalWeight");
      at.colTypes.push_back("delta_ppm");
      for (UInt w = 0; w < var_mods.size(); ++w)
      {
        at.colTypes.push_back(String(var_mods[w]).substitute(' ', '_'));
      }

      std::vector<double> deltas;
      //~ prot_ids[0].getSearchParameters();
      for (vector<PeptideIdentification>::iterator it = pep_ids.begin(); it != pep_ids.end(); ++it)
      {
        if (it->getHits().size() > 0)
        {
          std::vector<String> row;
          row.push_back(it->getRT());
          row.push_back(it->getMZ());
          PeptideHit tmp = it->getHits().front(); //TODO depends on score & sort
          vector<UInt> pep_mods;
          for (UInt w = 0; w < var_mods.size(); ++w)
          {
            pep_mods.push_back(0);
          }
          for (AASequence::ConstIterator z =  tmp.getSequence().begin(); z != tmp.getSequence().end(); ++z)
          {
            Residue res = *z;
            String temp;
            if (res.getModification().size() > 0 && res.getModification() != "Carbamidomethyl")
            {
              temp = res.getModification() + " (" + res.getOneLetterCode()  + ")";
              //cout<<res.getModification()<<endl;
              for (UInt w = 0; w < var_mods.size(); ++w)
              {
                if (temp == var_mods[w])
                {
                  //cout<<temp;
                  pep_mods[w] += 1;
                }
              }
            }
          }
          row.push_back(tmp.getScore());
          row.push_back(tmp.getSequence().toString().removeWhitespaces());
          row.push_back(tmp.getCharge());
          row.push_back(String((tmp.getSequence().getMonoWeight() + tmp.getCharge() * Constants::PROTON_MASS_U) / tmp.getCharge()));
          double dppm = /* std::abs */ (getMassDifference(((tmp.getSequence().getMonoWeight() + tmp.getCharge() * Constants::PROTON_MASS_U) / tmp.getCharge()), it->getMZ(), true));
          row.push_back(String(dppm));
          deltas.push_back(dppm);
          for (UInt w = 0; w < var_mods.size(); ++w)
          {
            row.push_back(pep_mods[w]);
          }
          at.tableRows.push_back(row);
        }
      }
      qcmlfile.addRunAttachment(base_name, at);
      

      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000040"; ///< cv accession
      qp.id = base_name + "_mean_delta"; ///< Identifier
      qp.value = String(OpenMS::Math::mean(deltas.begin(), deltas.end()));
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "mean delta ppm"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);


      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000041"; ///< cv accession
      qp.id = base_name + "_median_delta"; ///< Identifier
      qp.value = String(OpenMS::Math::median(deltas.begin(), deltas.end(), false));
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "median delta ppm"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);


      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000035"; ///< cv accession
      qp.id = base_name + "_ratio_id"; ///< Identifier
      qp.value = String(double(pep_ids.size()) / double(mslevelcounts[2]));
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "id ratio"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);
    }

    //-------------------------------------------------------------
    // MS quantitation
    //------------------------------------------------------------
    FeatureMap map;
    String msqu_ref = base_name + "_msqu";
    if (inputfile_feature != "")
    {
      FeatureXMLFile f;
      f.load(inputfile_feature, map);

      cout << "Read featureXML file..." << endl;

      //~ UInt fiter = 0;
      map.sortByRT();
      map.updateRanges();

      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000045"; ///< cv accession
      qp.id = msqu_ref; ///< Identifier
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "MS quantification result details"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);
      
      qp = QcMLFile::QualityParameter();
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:0000046"; ///< cv accession
      qp.id = base_name + "_feature_count"; ///< Identifier
      qp.value = String(map.size());
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(qp.cvAcc);
        qp.name = term.name; ///< Name
      }
      catch (...)
      {
         qp.name = "number of features"; ///< Name
      }
      qcmlfile.addRunQualityParameter(base_name, qp);      
    }

    if (inputfile_feature != "" && !remove_duplicate_features)
    {
      
      QcMLFile::Attachment at;
      at = QcMLFile::Attachment();
      at.cvRef = "QC"; ///< cv reference
      at.cvAcc = "QC:0000047";
      at.qualityRef = msqu_ref;
      at.id = base_name + "_features"; ///< Identifier
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(at.cvAcc);
        at.name = term.name; ///< Name
      }
      catch (...)
      {
        at.name = "features"; ///< Name
      }
      
      at.colTypes.push_back("MZ");
      at.colTypes.push_back("RT");
      at.colTypes.push_back("Intensity");
      at.colTypes.push_back("Charge");
      at.colTypes.push_back("Quality");
      at.colTypes.push_back("FWHM");
      at.colTypes.push_back("IDs");
      UInt fiter = 0;
      map.sortByRT();
      //ofstream out(outputfile_name.c_str());
      while (fiter < map.size())
      {
        std::vector<String> row;
        row.push_back(map[fiter].getMZ());
        row.push_back(map[fiter].getRT());
        row.push_back(map[fiter].getIntensity());
        row.push_back(map[fiter].getCharge());
        row.push_back(map[fiter].getOverallQuality());
        row.push_back(map[fiter].getWidth());
        row.push_back(map[fiter].getPeptideIdentifications().size());
        fiter++;
        at.tableRows.push_back(row);
      }     
      qcmlfile.addRunAttachment(base_name, at);
    }
    else if (inputfile_feature != "" && remove_duplicate_features)
    {
      QcMLFile::Attachment at;
      at = QcMLFile::Attachment();
      at.cvRef = "QC"; ///< cv reference
      at.cvAcc = "QC:0000047";
      at.qualityRef = msqu_ref;
      at.id = base_name + "_features"; ///< Identifier
      try
      {
        const ControlledVocabulary::CVTerm& term = cv.getTerm(at.cvAcc);
        at.name = term.name; ///< Name
      }
      catch (...)
      {
        at.name = "features"; ///< Name
      }
      
      at.colTypes.push_back("MZ");
      at.colTypes.push_back("RT");
      at.colTypes.push_back("Intensity");
      at.colTypes.push_back("Charge");
      FeatureMap map, map_out;
      FeatureXMLFile f;
      f.load(inputfile_feature, map);
      UInt fiter = 0;
      map.sortByRT();
      while (fiter < map.size())
      {
        FeatureMap map_tmp;
        for (UInt k = fiter; k <= map.size(); ++k)
        {
          if (abs(map[fiter].getRT() - map[k].getRT()) < 0.1)
          {
            //~ cout << fiter << endl;
            map_tmp.push_back(map[k]);
          }
          else
          {
            fiter = k;
            break;
          }
        }
        map_tmp.sortByMZ();
        UInt retif = 1;
        map_out.push_back(map_tmp[0]);
        while (retif < map_tmp.size())
        {
          if (abs(map_tmp[retif].getMZ() - map_tmp[retif - 1].getMZ()) > 0.01)
          {
            cout << "equal RT, but mass different" << endl;
            map_out.push_back(map_tmp[retif]);
          }
          retif++;
        }
      }
      qcmlfile.addRunAttachment(base_name, at);
    }
    if (inputfile_consensus != "")
    {
      cout << "Reading consensusXML file..." << endl;
      ConsensusXMLFile f;
      ConsensusMap map;
      f.load(inputfile_consensus, map);
      //~ String CONSENSUS_NAME = "_consensus.tsv";
      //~ String combined_out = outputfile_name + CONSENSUS_NAME;
      //~ ofstream out(combined_out.c_str());

      at = QcMLFile::Attachment();
      qp.name = "consensuspoints"; ///< Name
      //~ qp.id = base_name + "_consensuses"; ///< Identifier
      qp.cvRef = "QC"; ///< cv reference
      qp.cvAcc = "QC:xxxxxxxx"; ///< cv accession "featuremapper results"

      at.colTypes.push_back("Native_spectrum_ID");
      at.colTypes.push_back("DECON_RT_(sec)");
      at.colTypes.push_back("DECON_MZ_(Th)");
      at.colTypes.push_back("DECON_Intensity");
      at.colTypes.push_back("Feature_RT_(sec)");
      at.colTypes.push_back("Feature_MZ_(Th)");
      at.colTypes.push_back("Feature_Intensity");
      at.colTypes.push_back("Feature_Charge");
      for (ConsensusMap::const_iterator cmit = map.begin(); cmit != map.end(); ++cmit)
      {
        const ConsensusFeature& CF = *cmit;
        for (ConsensusFeature::const_iterator cfit = CF.begin(); cfit != CF.end(); ++cfit)
        {
          std::vector<String> row;
          FeatureHandle FH = *cfit;
          row.push_back(CF.getMetaValue("spectrum_native_id"));
          row.push_back(CF.getRT()); row.push_back(CF.getMZ());
          row.push_back(CF.getIntensity());
          row.push_back(FH.getRT());
          row.push_back(FH.getMZ());
          row.push_back(FH.getCharge());
          at.tableRows.push_back(row);
        }
      }
      qcmlfile.addRunAttachment(base_name, at);
    }
    
    
    //-------------------------------------------------------------
    // finalize
    //------------------------------------------------------------
    qcmlfile.store(outputfile_name);
    return EXECUTION_OK;
  }