bool
AArch64DAGToDAGISel::SelectFPZeroOperand(SDValue N, SDValue &Dummy) {
  ConstantFPSDNode *Imm = dyn_cast<ConstantFPSDNode>(N);
  if (!Imm || !Imm->getValueAPF().isPosZero())
    return false;

  // Doesn't actually carry any information, but keeps TableGen quiet.
  Dummy = CurDAG->getTargetConstant(0, MVT::i32);
  return true;
}
// There is no native floating point division, but we can convert this to a 
// reciprocal/multiply operation.  If the first parameter is constant 1.0, then 
// just a reciprocal will suffice.
SDValue 
VectorProcTargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const
{
	DebugLoc dl = Op.getDebugLoc();
	
	EVT type = Op.getOperand(1).getValueType();

	SDValue two = DAG.getConstantFP(2.0, type);
	SDValue denom = Op.getOperand(1);
	SDValue estimate = DAG.getNode(VectorProcISD::RECIPROCAL_EST, dl, type, denom);
	
	// Perform a series of newton/raphson refinements.  Each iteration doubles
	// the precision. The initial estimate has 6 bits of precision, so two iteration
	// results in 24 bits, which is larger than the significand.
	for (int i = 0; i < 2; i++)
	{
		// trial = x * estimate (ideally, x * 1/x should be 1.0)
		// error = 2.0 - trial
		// estimate = estimate * error
		SDValue trial = DAG.getNode(ISD::FMUL, dl, type, estimate, denom);
		SDValue error = DAG.getNode(ISD::FSUB, dl, type, two, trial);
		estimate = DAG.getNode(ISD::FMUL, dl, type, estimate, error);
	}

	// Check if the first parameter is constant 1.0.  If so, we don't need
	// to multiply.
	bool isOne = false;
	if (type.isVector())
	{
		if (isSplatVector(Op.getOperand(0).getNode()))
		{
			ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op.getOperand(0).getOperand(0));
			isOne = C && C->isExactlyValue(1.0);
		}
	}
	else
	{
		ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op.getOperand(0));
		isOne = C && C->isExactlyValue(1.0);
	}

	if (!isOne)
		estimate = DAG.getNode(ISD::FMUL, dl, type, Op.getOperand(0), estimate);

	return estimate;
}
std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
  unsigned Opcode = Node->getOpcode();
  SDLoc DL(Node);

  ///
  // Instruction Selection not handled by the auto-generated
  // tablegen selection should be handled here.
  ///
  SDNode *Result;

  switch(Opcode) {
  default: break;

  case ISD::SUBE: {
    SDValue InFlag = Node->getOperand(2);
    Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node);
    return std::make_pair(true, Result);
  }

  case ISD::ADDE: {
    if (Subtarget.hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
      break;
    SDValue InFlag = Node->getOperand(2);
    Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node);
    return std::make_pair(true, Result);
  }

  case ISD::ConstantFP: {
    ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
    if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
      if (Subtarget.hasMips64()) {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO_64, MVT::i64);
        Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
      } else {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO, MVT::i32);
        Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
                                        Zero);
      }

      return std::make_pair(true, Result);
    }
    break;
  }

  case ISD::Constant: {
    const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
    unsigned Size = CN->getValueSizeInBits(0);

    if (Size == 32)
      break;

    MipsAnalyzeImmediate AnalyzeImm;
    int64_t Imm = CN->getSExtValue();

    const MipsAnalyzeImmediate::InstSeq &Seq =
      AnalyzeImm.Analyze(Imm, Size, false);

    MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
    SDLoc DL(CN);
    SDNode *RegOpnd;
    SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
                                                MVT::i64);

    // The first instruction can be a LUi which is different from other
    // instructions (ADDiu, ORI and SLL) in that it does not have a register
    // operand.
    if (Inst->Opc == Mips::LUi64)
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
    else
      RegOpnd =
        CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
                               CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
                               ImmOpnd);

    // The remaining instructions in the sequence are handled here.
    for (++Inst; Inst != Seq.end(); ++Inst) {
      ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
                                          MVT::i64);
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
                                       SDValue(RegOpnd, 0), ImmOpnd);
    }

    return std::make_pair(true, RegOpnd);
  }

  case ISD::INTRINSIC_W_CHAIN: {
    switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
    default:
      break;

    case Intrinsic::mips_cfcmsa: {
      SDValue ChainIn = Node->getOperand(0);
      SDValue RegIdx = Node->getOperand(2);
      SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
                                           getMSACtrlReg(RegIdx), MVT::i32);
      return std::make_pair(true, Reg.getNode());
    }
    }
    break;
  }

  case ISD::INTRINSIC_WO_CHAIN: {
    switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
    default:
      break;

    case Intrinsic::mips_move_v:
      // Like an assignment but will always produce a move.v even if
      // unnecessary.
      return std::make_pair(true,
                            CurDAG->getMachineNode(Mips::MOVE_V, DL,
                                                   Node->getValueType(0),
                                                   Node->getOperand(1)));
    }
    break;
  }

  case ISD::INTRINSIC_VOID: {
    switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
    default:
      break;

    case Intrinsic::mips_ctcmsa: {
      SDValue ChainIn = Node->getOperand(0);
      SDValue RegIdx  = Node->getOperand(2);
      SDValue Value   = Node->getOperand(3);
      SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
                                              getMSACtrlReg(RegIdx), Value);
      return std::make_pair(true, ChainOut.getNode());
    }
    }
    break;
  }

  case MipsISD::ThreadPointer: {
    EVT PtrVT = getTargetLowering()->getPointerTy();
    unsigned RdhwrOpc, DestReg;

    if (PtrVT == MVT::i32) {
      RdhwrOpc = Mips::RDHWR;
      DestReg = Mips::V1;
    } else {
      RdhwrOpc = Mips::RDHWR64;
      DestReg = Mips::V1_64;
    }

    SDNode *Rdhwr =
      CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node),
                             Node->getValueType(0),
                             CurDAG->getRegister(Mips::HWR29, MVT::i32));
    SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
                                         SDValue(Rdhwr, 0));
    SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
    ReplaceUses(SDValue(Node, 0), ResNode);
    return std::make_pair(true, ResNode.getNode());
  }

  case ISD::BUILD_VECTOR: {
    // Select appropriate ldi.[bhwd] instructions for constant splats of
    // 128-bit when MSA is enabled. Fixup any register class mismatches that
    // occur as a result.
    //
    // This allows the compiler to use a wider range of immediates than would
    // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
    // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
    // 0x01010101 } without using a constant pool. This would be sub-optimal
    // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
    // same set/ of registers. Similarly, ldi.h isn't capable of producing {
    // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.

    BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
    APInt SplatValue, SplatUndef;
    unsigned SplatBitSize;
    bool HasAnyUndefs;
    unsigned LdiOp;
    EVT ResVecTy = BVN->getValueType(0);
    EVT ViaVecTy;

    if (!Subtarget.hasMSA() || !BVN->getValueType(0).is128BitVector())
      return std::make_pair(false, (SDNode*)NULL);

    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
                              HasAnyUndefs, 8,
                              !Subtarget.isLittle()))
      return std::make_pair(false, (SDNode*)NULL);

    switch (SplatBitSize) {
    default:
      return std::make_pair(false, (SDNode*)NULL);
    case 8:
      LdiOp = Mips::LDI_B;
      ViaVecTy = MVT::v16i8;
      break;
    case 16:
      LdiOp = Mips::LDI_H;
      ViaVecTy = MVT::v8i16;
      break;
    case 32:
      LdiOp = Mips::LDI_W;
      ViaVecTy = MVT::v4i32;
      break;
    case 64:
      LdiOp = Mips::LDI_D;
      ViaVecTy = MVT::v2i64;
      break;
    }

    if (!SplatValue.isSignedIntN(10))
      return std::make_pair(false, (SDNode*)NULL);

    SDValue Imm = CurDAG->getTargetConstant(SplatValue,
                                            ViaVecTy.getVectorElementType());

    SDNode *Res = CurDAG->getMachineNode(LdiOp, SDLoc(Node), ViaVecTy, Imm);

    if (ResVecTy != ViaVecTy) {
      // If LdiOp is writing to a different register class to ResVecTy, then
      // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
      // since the source and destination register sets contain the same
      // registers.
      const TargetLowering *TLI = getTargetLowering();
      MVT ResVecTySimple = ResVecTy.getSimpleVT();
      const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
      Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, SDLoc(Node),
                                   ResVecTy, SDValue(Res, 0),
                                   CurDAG->getTargetConstant(RC->getID(),
                                                             MVT::i32));
    }

    return std::make_pair(true, Res);
  }

  }

  return std::make_pair(false, (SDNode*)NULL);
}
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
  const R600InstrInfo *TII =
                      static_cast<const R600InstrInfo*>(TM.getInstrInfo());
  unsigned int Opc = N->getOpcode();
  if (N->isMachineOpcode()) {
    return NULL;   // Already selected.
  }
  switch (Opc) {
  default: break;
  case AMDGPUISD::CONST_ADDRESS: {
    for (SDNode::use_iterator I = N->use_begin(), Next = llvm::next(I);
                              I != SDNode::use_end(); I = Next) {
      Next = llvm::next(I);
      if (!I->isMachineOpcode()) {
        continue;
      }
      unsigned Opcode = I->getMachineOpcode();
      bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
      int SrcIdx = I.getOperandNo();
      int SelIdx;
      // Unlike MachineInstrs, SDNodes do not have results in their operand
      // list, so we need to increment the SrcIdx, since
      // R600InstrInfo::getOperandIdx is based on the MachineInstr indices.
      if (HasDst) {
        SrcIdx++;
      }

      SelIdx = TII->getSelIdx(I->getMachineOpcode(), SrcIdx);
      if (SelIdx < 0) {
        continue;
      }

      SDValue CstOffset;
      if (N->getValueType(0).isVector() ||
          !SelectGlobalValueConstantOffset(N->getOperand(0), CstOffset))
        continue;

      // Gather constants values
      int SrcIndices[] = {
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src2),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
      };
      std::vector<unsigned> Consts;
      for (unsigned i = 0; i < sizeof(SrcIndices) / sizeof(int); i++) {
        int OtherSrcIdx = SrcIndices[i];
        int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
        if (OtherSrcIdx < 0 || OtherSelIdx < 0) {
          continue;
        }
        if (HasDst) {
          OtherSrcIdx--;
          OtherSelIdx--;
        }
        if (RegisterSDNode *Reg =
                         dyn_cast<RegisterSDNode>(I->getOperand(OtherSrcIdx))) {
          if (Reg->getReg() == AMDGPU::ALU_CONST) {
            ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(I->getOperand(OtherSelIdx));
            Consts.push_back(Cst->getZExtValue());
          }
        }
      }

      ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(CstOffset);
      Consts.push_back(Cst->getZExtValue());
      if (!TII->fitsConstReadLimitations(Consts))
        continue;

      // Convert back to SDNode indices
      if (HasDst) {
        SrcIdx--;
        SelIdx--;
      }
      std::vector<SDValue> Ops;
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
        if (i == SrcIdx) {
          Ops.push_back(CurDAG->getRegister(AMDGPU::ALU_CONST, MVT::f32));
        } else if (i == SelIdx) {
          Ops.push_back(CstOffset);
        } else {
          Ops.push_back(I->getOperand(i));
        }
      }
      CurDAG->UpdateNodeOperands(*I, Ops.data(), Ops.size());
    }
    break;
  }
  case ISD::BUILD_VECTOR: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }

    unsigned RegClassID;
    switch(N->getValueType(0).getVectorNumElements()) {
    case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break;
    case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break;
    default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
    }
    // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
    // that adds a 128 bits reg copy when going through TwoAddressInstructions
    // pass. We want to avoid 128 bits copies as much as possible because they
    // can't be bundled by our scheduler.
    SDValue RegSeqArgs[9] = {
      CurDAG->getTargetConstant(RegClassID, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32)
    };
    bool IsRegSeq = true;
    for (unsigned i = 0; i < N->getNumOperands(); i++) {
      if (dyn_cast<RegisterSDNode>(N->getOperand(i))) {
        IsRegSeq = false;
        break;
      }
      RegSeqArgs[2 * i + 1] = N->getOperand(i);
    }
    if (!IsRegSeq)
      break;
    return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(),
        RegSeqArgs, 2 * N->getNumOperands() + 1);
  }
  case ISD::BUILD_PAIR: {
    SDValue RC, SubReg0, SubReg1;
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }
    if (N->getValueType(0) == MVT::i128) {
      RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32);
    } else if (N->getValueType(0) == MVT::i64) {
      RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);
    } else {
      llvm_unreachable("Unhandled value type for BUILD_PAIR");
    }
    const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
                            N->getOperand(1), SubReg1 };
    return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
                                  SDLoc(N), N->getValueType(0), Ops);
  }

  case ISD::ConstantFP:
  case ISD::Constant: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    // XXX: Custom immediate lowering not implemented yet.  Instead we use
    // pseudo instructions defined in SIInstructions.td
    if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }

    uint64_t ImmValue = 0;
    unsigned ImmReg = AMDGPU::ALU_LITERAL_X;

    if (N->getOpcode() == ISD::ConstantFP) {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::f64);

      ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N);
      APFloat Value = C->getValueAPF();
      float FloatValue = Value.convertToFloat();
      if (FloatValue == 0.0) {
        ImmReg = AMDGPU::ZERO;
      } else if (FloatValue == 0.5) {
        ImmReg = AMDGPU::HALF;
      } else if (FloatValue == 1.0) {
        ImmReg = AMDGPU::ONE;
      } else {
        ImmValue = Value.bitcastToAPInt().getZExtValue();
      }
    } else {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::i64);

      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
      if (C->getZExtValue() == 0) {
        ImmReg = AMDGPU::ZERO;
      } else if (C->getZExtValue() == 1) {
        ImmReg = AMDGPU::ONE_INT;
      } else {
        ImmValue = C->getZExtValue();
      }
    }

    for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use);
                              Use != SDNode::use_end(); Use = Next) {
      Next = llvm::next(Use);
      std::vector<SDValue> Ops;
      for (unsigned i = 0; i < Use->getNumOperands(); ++i) {
        Ops.push_back(Use->getOperand(i));
      }

      if (!Use->isMachineOpcode()) {
          if (ImmReg == AMDGPU::ALU_LITERAL_X) {
            // We can only use literal constants (e.g. AMDGPU::ZERO,
            // AMDGPU::ONE, etc) in machine opcodes.
            continue;
          }
      } else {
        if (!TII->isALUInstr(Use->getMachineOpcode()) ||
            (TII->get(Use->getMachineOpcode()).TSFlags &
            R600_InstFlag::VECTOR)) {
          continue;
        }

        int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(),
                                        AMDGPU::OpName::literal);
        if (ImmIdx == -1) {
          continue;
        }

        if (TII->getOperandIdx(Use->getMachineOpcode(),
                               AMDGPU::OpName::dst) != -1) {
          // subtract one from ImmIdx, because the DST operand is usually index
          // 0 for MachineInstrs, but we have no DST in the Ops vector.
          ImmIdx--;
        }

        // Check that we aren't already using an immediate.
        // XXX: It's possible for an instruction to have more than one
        // immediate operand, but this is not supported yet.
        if (ImmReg == AMDGPU::ALU_LITERAL_X) {
          ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx));
          assert(C);

          if (C->getZExtValue() != 0) {
            // This instruction is already using an immediate.
            continue;
          }

          // Set the immediate value
          Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32);
        }
      }
      // Set the immediate register
      Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32);

      CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands());
    }
    break;
  }
  }
  SDNode *Result = SelectCode(N);

  // Fold operands of selected node

  const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
  if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
    const R600InstrInfo *TII =
        static_cast<const R600InstrInfo*>(TM.getInstrInfo());
    if (Result && Result->isMachineOpcode() && Result->getMachineOpcode() == AMDGPU::DOT_4) {
      bool IsModified = false;
      do {
        std::vector<SDValue> Ops;
        for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end();
            I != E; ++I)
          Ops.push_back(*I);
        IsModified = FoldDotOperands(Result->getMachineOpcode(), TII, Ops);
        if (IsModified) {
          Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size());
        }
      } while (IsModified);

    }
    if (Result && Result->isMachineOpcode() &&
        !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)
        && TII->hasInstrModifiers(Result->getMachineOpcode())) {
      // Fold FNEG/FABS
      // TODO: Isel can generate multiple MachineInst, we need to recursively
      // parse Result
      bool IsModified = false;
      do {
        std::vector<SDValue> Ops;
        for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end();
            I != E; ++I)
          Ops.push_back(*I);
        IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops);
        if (IsModified) {
          Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size());
        }
      } while (IsModified);

      // If node has a single use which is CLAMP_R600, folds it
      if (Result->hasOneUse() && Result->isMachineOpcode()) {
        SDNode *PotentialClamp = *Result->use_begin();
        if (PotentialClamp->isMachineOpcode() &&
            PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) {
          unsigned ClampIdx =
            TII->getOperandIdx(Result->getMachineOpcode(), AMDGPU::OpName::clamp);
          std::vector<SDValue> Ops;
          unsigned NumOp = Result->getNumOperands();
          for (unsigned i = 0; i < NumOp; ++i) {
            Ops.push_back(Result->getOperand(i));
          }
          Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32);
          Result = CurDAG->SelectNodeTo(PotentialClamp,
              Result->getMachineOpcode(), PotentialClamp->getVTList(),
              Ops.data(), NumOp);
        }
      }
    }
  }

  return Result;
}
Example #5
0
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
  unsigned int Opc = N->getOpcode();
  if (N->isMachineOpcode()) {
    return NULL;   // Already selected.
  }
  switch (Opc) {
  default: break;
  case ISD::BUILD_VECTOR: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) {
      break;
    }
    // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
    // that adds a 128 bits reg copy when going through TwoAddressInstructions
    // pass. We want to avoid 128 bits copies as much as possible because they
    // can't be bundled by our scheduler.
    SDValue RegSeqArgs[9] = {
      CurDAG->getTargetConstant(AMDGPU::R600_Reg128RegClassID, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32)
    };
    bool IsRegSeq = true;
    for (unsigned i = 0; i < N->getNumOperands(); i++) {
      if (dyn_cast<RegisterSDNode>(N->getOperand(i))) {
        IsRegSeq = false;
        break;
      }
      RegSeqArgs[2 * i + 1] = N->getOperand(i);
    }
    if (!IsRegSeq)
      break;
    return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(),
        RegSeqArgs, 2 * N->getNumOperands() + 1);
  }
  case ISD::ConstantFP:
  case ISD::Constant: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    // XXX: Custom immediate lowering not implemented yet.  Instead we use
    // pseudo instructions defined in SIInstructions.td
    if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) {
      break;
    }
    const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo());

    uint64_t ImmValue = 0;
    unsigned ImmReg = AMDGPU::ALU_LITERAL_X;

    if (N->getOpcode() == ISD::ConstantFP) {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::f64);

      ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N);
      APFloat Value = C->getValueAPF();
      float FloatValue = Value.convertToFloat();
      if (FloatValue == 0.0) {
        ImmReg = AMDGPU::ZERO;
      } else if (FloatValue == 0.5) {
        ImmReg = AMDGPU::HALF;
      } else if (FloatValue == 1.0) {
        ImmReg = AMDGPU::ONE;
      } else {
        ImmValue = Value.bitcastToAPInt().getZExtValue();
      }
    } else {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::i64);

      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
      if (C->getZExtValue() == 0) {
        ImmReg = AMDGPU::ZERO;
      } else if (C->getZExtValue() == 1) {
        ImmReg = AMDGPU::ONE_INT;
      } else {
        ImmValue = C->getZExtValue();
      }
    }

    for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use);
                              Use != SDNode::use_end(); Use = Next) {
      Next = llvm::next(Use);
      std::vector<SDValue> Ops;
      for (unsigned i = 0; i < Use->getNumOperands(); ++i) {
        Ops.push_back(Use->getOperand(i));
      }

      if (!Use->isMachineOpcode()) {
          if (ImmReg == AMDGPU::ALU_LITERAL_X) {
            // We can only use literal constants (e.g. AMDGPU::ZERO,
            // AMDGPU::ONE, etc) in machine opcodes.
            continue;
          }
      } else {
        if (!TII->isALUInstr(Use->getMachineOpcode()) ||
            (TII->get(Use->getMachineOpcode()).TSFlags &
            R600_InstFlag::VECTOR)) {
          continue;
        }

        int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), R600Operands::IMM);
        assert(ImmIdx != -1);

        // subtract one from ImmIdx, because the DST operand is usually index
        // 0 for MachineInstrs, but we have no DST in the Ops vector.
        ImmIdx--;

        // Check that we aren't already using an immediate.
        // XXX: It's possible for an instruction to have more than one
        // immediate operand, but this is not supported yet.
        if (ImmReg == AMDGPU::ALU_LITERAL_X) {
          ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx));
          assert(C);

          if (C->getZExtValue() != 0) {
            // This instruction is already using an immediate.
            continue;
          }

          // Set the immediate value
          Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32);
        }
      }
      // Set the immediate register
      Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32);

      CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands());
    }
    break;
  }
  }
  SDNode *Result = SelectCode(N);

  // Fold operands of selected node

  const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
  if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX) {
    const R600InstrInfo *TII =
        static_cast<const R600InstrInfo*>(TM.getInstrInfo());
    if (Result && Result->isMachineOpcode() &&
        !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)
        && TII->isALUInstr(Result->getMachineOpcode())) {
      // Fold FNEG/FABS/CONST_ADDRESS
      // TODO: Isel can generate multiple MachineInst, we need to recursively
      // parse Result
      bool IsModified = false;
      do {
        std::vector<SDValue> Ops;
        for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end();
            I != E; ++I)
          Ops.push_back(*I);
        IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops);
        if (IsModified) {
          Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size());
        }
      } while (IsModified);

      // If node has a single use which is CLAMP_R600, folds it
      if (Result->hasOneUse() && Result->isMachineOpcode()) {
        SDNode *PotentialClamp = *Result->use_begin();
        if (PotentialClamp->isMachineOpcode() &&
            PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) {
          unsigned ClampIdx =
            TII->getOperandIdx(Result->getMachineOpcode(), R600Operands::CLAMP);
          std::vector<SDValue> Ops;
          unsigned NumOp = Result->getNumOperands();
          for (unsigned i = 0; i < NumOp; ++i) {
            Ops.push_back(Result->getOperand(i));
          }
          Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32);
          Result = CurDAG->SelectNodeTo(PotentialClamp,
              Result->getMachineOpcode(), PotentialClamp->getVTList(),
              Ops.data(), NumOp);
        }
      }
    }
  }

  return Result;
}
std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
  unsigned Opcode = Node->getOpcode();
  SDLoc DL(Node);

  ///
  // Instruction Selection not handled by the auto-generated
  // tablegen selection should be handled here.
  ///
  SDNode *Result;

  switch(Opcode) {
  default: break;

  case ISD::SUBE: {
    SDValue InFlag = Node->getOperand(2);
    Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node);
    return std::make_pair(true, Result);
  }

  case ISD::ADDE: {
    if (Subtarget.hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
      break;
    SDValue InFlag = Node->getOperand(2);
    Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node);
    return std::make_pair(true, Result);
  }

  case ISD::ConstantFP: {
    ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
    if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
      if (Subtarget.hasMips64()) {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO_64, MVT::i64);
        Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
      } else {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO, MVT::i32);
        Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
                                        Zero);
      }

      return std::make_pair(true, Result);
    }
    break;
  }

  case ISD::Constant: {
    const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
    unsigned Size = CN->getValueSizeInBits(0);

    if (Size == 32)
      break;

    MipsAnalyzeImmediate AnalyzeImm;
    int64_t Imm = CN->getSExtValue();

    const MipsAnalyzeImmediate::InstSeq &Seq =
      AnalyzeImm.Analyze(Imm, Size, false);

    MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
    SDLoc DL(CN);
    SDNode *RegOpnd;
    SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
                                                MVT::i64);

    // The first instruction can be a LUi which is different from other
    // instructions (ADDiu, ORI and SLL) in that it does not have a register
    // operand.
    if (Inst->Opc == Mips::LUi64)
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
    else
      RegOpnd =
        CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
                               CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
                               ImmOpnd);

    // The remaining instructions in the sequence are handled here.
    for (++Inst; Inst != Seq.end(); ++Inst) {
      ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
                                          MVT::i64);
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
                                       SDValue(RegOpnd, 0), ImmOpnd);
    }

    return std::make_pair(true, RegOpnd);
  }

  case MipsISD::ThreadPointer: {
    EVT PtrVT = getTargetLowering()->getPointerTy();
    unsigned RdhwrOpc, SrcReg, DestReg;

    if (PtrVT == MVT::i32) {
      RdhwrOpc = Mips::RDHWR;
      SrcReg = Mips::HWR29;
      DestReg = Mips::V1;
    } else {
      RdhwrOpc = Mips::RDHWR64;
      SrcReg = Mips::HWR29_64;
      DestReg = Mips::V1_64;
    }

    SDNode *Rdhwr =
      CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node),
                             Node->getValueType(0),
                             CurDAG->getRegister(SrcReg, PtrVT));
    SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
                                         SDValue(Rdhwr, 0));
    SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
    ReplaceUses(SDValue(Node, 0), ResNode);
    return std::make_pair(true, ResNode.getNode());
  }

  case MipsISD::InsertLOHI: {
    unsigned RCID = Subtarget.hasDSP() ? Mips::ACRegsDSPRegClassID :
                                         Mips::ACRegsRegClassID;
    SDValue RegClass = CurDAG->getTargetConstant(RCID, MVT::i32);
    SDValue LoIdx = CurDAG->getTargetConstant(Mips::sub_lo, MVT::i32);
    SDValue HiIdx = CurDAG->getTargetConstant(Mips::sub_hi, MVT::i32);
    const SDValue Ops[] = { RegClass, Node->getOperand(0), LoIdx,
                            Node->getOperand(1), HiIdx };
    SDNode *Res = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
                                         MVT::Untyped, Ops);
    return std::make_pair(true, Res);
  }
  }

  return std::make_pair(false, (SDNode*)NULL);
}
Example #7
0
std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
  unsigned Opcode = Node->getOpcode();
  DebugLoc DL = Node->getDebugLoc();

  ///
  // Instruction Selection not handled by the auto-generated
  // tablegen selection should be handled here.
  ///
  EVT NodeTy = Node->getValueType(0);
  SDNode *Result;
  unsigned MultOpc;

  switch(Opcode) {
  default: break;

  case ISD::SUBE: {
    SDValue InFlag = Node->getOperand(2);
    Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node);
    return std::make_pair(true, Result);
  }

  case ISD::ADDE: {
    SDValue InFlag = Node->getOperand(2);
    Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node);
    return std::make_pair(true, Result);
  }

  /// Mul with two results
  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI: {
    if (NodeTy == MVT::i32)
      MultOpc = (Opcode == ISD::UMUL_LOHI ? Mips::MULTu : Mips::MULT);
    else
      MultOpc = (Opcode == ISD::UMUL_LOHI ? Mips::DMULTu : Mips::DMULT);

    std::pair<SDNode*, SDNode*> LoHi = selectMULT(Node, MultOpc, DL, NodeTy,
                                                  true, true);

    if (!SDValue(Node, 0).use_empty())
      ReplaceUses(SDValue(Node, 0), SDValue(LoHi.first, 0));

    if (!SDValue(Node, 1).use_empty())
      ReplaceUses(SDValue(Node, 1), SDValue(LoHi.second, 0));

    return std::make_pair(true, (SDNode*)NULL);
  }

  /// Special Muls
  case ISD::MUL: {
    // Mips32 has a 32-bit three operand mul instruction.
    if (Subtarget.hasMips32() && NodeTy == MVT::i32)
      break;
    MultOpc = NodeTy == MVT::i32 ? Mips::MULT : Mips::DMULT;
    Result = selectMULT(Node, MultOpc, DL, NodeTy, true, false).first;
    return std::make_pair(true, Result);
  }
  case ISD::MULHS:
  case ISD::MULHU: {
    if (NodeTy == MVT::i32)
      MultOpc = (Opcode == ISD::MULHU ? Mips::MULTu : Mips::MULT);
    else
      MultOpc = (Opcode == ISD::MULHU ? Mips::DMULTu : Mips::DMULT);

    Result = selectMULT(Node, MultOpc, DL, NodeTy, false, true).second;
    return std::make_pair(true, Result);
  }

  case ISD::ConstantFP: {
    ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
    if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
      if (Subtarget.hasMips64()) {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO_64, MVT::i64);
        Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
      } else {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO, MVT::i32);
        Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
                                        Zero);
      }

      return std::make_pair(true, Result);
    }
    break;
  }

  case ISD::Constant: {
    const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
    unsigned Size = CN->getValueSizeInBits(0);

    if (Size == 32)
      break;

    MipsAnalyzeImmediate AnalyzeImm;
    int64_t Imm = CN->getSExtValue();

    const MipsAnalyzeImmediate::InstSeq &Seq =
      AnalyzeImm.Analyze(Imm, Size, false);

    MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
    DebugLoc DL = CN->getDebugLoc();
    SDNode *RegOpnd;
    SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
                                                MVT::i64);

    // The first instruction can be a LUi which is different from other
    // instructions (ADDiu, ORI and SLL) in that it does not have a register
    // operand.
    if (Inst->Opc == Mips::LUi64)
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
    else
      RegOpnd =
        CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
                               CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
                               ImmOpnd);

    // The remaining instructions in the sequence are handled here.
    for (++Inst; Inst != Seq.end(); ++Inst) {
      ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
                                          MVT::i64);
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
                                       SDValue(RegOpnd, 0), ImmOpnd);
    }

    return std::make_pair(true, RegOpnd);
  }

  case MipsISD::ThreadPointer: {
    EVT PtrVT = TLI.getPointerTy();
    unsigned RdhwrOpc, SrcReg, DestReg;

    if (PtrVT == MVT::i32) {
      RdhwrOpc = Mips::RDHWR;
      SrcReg = Mips::HWR29;
      DestReg = Mips::V1;
    } else {
      RdhwrOpc = Mips::RDHWR64;
      SrcReg = Mips::HWR29_64;
      DestReg = Mips::V1_64;
    }

    SDNode *Rdhwr =
      CurDAG->getMachineNode(RdhwrOpc, Node->getDebugLoc(),
                             Node->getValueType(0),
                             CurDAG->getRegister(SrcReg, PtrVT));
    SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
                                         SDValue(Rdhwr, 0));
    SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
    ReplaceUses(SDValue(Node, 0), ResNode);
    return std::make_pair(true, ResNode.getNode());
  }
  }

  return std::make_pair(false, (SDNode*)NULL);
}