CubeExample(void) : cube_instr(make_cube.Instructions()) , cube_indices(make_cube.Indices()) , light_pos(prog, "LightPos") , projection_matrix(prog, "ProjectionMatrix") , tex_projection_matrix(prog, "TexProjectionMatrix") , model_matrix(prog, "ModelMatrix") { // Set the vertex shader source vs.Source( "#version 330\n" "uniform mat4 ProjectionMatrix, CameraMatrix, ModelMatrix;" "uniform mat4 TexProjectionMatrix;" "in vec4 Position;" "in vec3 Normal;" "out vec3 vertNormal;" "out vec3 vertLight;" "out vec4 vertTexCoord;" "uniform vec3 LightPos;" "void main(void)" "{" " vertNormal = (" " ModelMatrix *" " vec4(-Normal, 0.0)" " ).xyz;" " vertLight = (" " vec4(LightPos, 0.0)-" " ModelMatrix * Position" " ).xyz;" " vertTexCoord = " " TexProjectionMatrix *" " ModelMatrix *" " Position;" " gl_Position = " " ProjectionMatrix *" " CameraMatrix *" " ModelMatrix *" " Position;" "}" ); // compile it vs.Compile(); // set the fragment shader source fs.Source( "#version 330\n" "uniform sampler2D TexUnit;" "in vec3 vertNormal;" "in vec3 vertLight;" "in vec4 vertTexCoord;" "out vec4 fragColor;" "void main(void)" "{" " float l = length(vertLight);" " float d = l != 0.0 ? dot(" " vertNormal, " " normalize(vertLight)" " ) / l : 0.0;" " float i = 0.1 + 4.2*max(d, 0.0);" " vec2 coord = vertTexCoord.st/vertTexCoord.q;" " vec4 t = texture(TexUnit, coord*0.5 + 0.5);" " fragColor = vec4(t.rgb*i*sqrt(1.0-t.a), 1.0);" "}" ); // compile it fs.Compile(); // attach the shaders to the program prog.AttachShader(vs); prog.AttachShader(fs); // link and use it prog.Link(); prog.Use(); // bind the VAO for the cube cube.Bind(); verts.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.Positions(data); Buffer::Data(Buffer::Target::Array, data); VertexArrayAttrib attr(prog, "Position"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } normals.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.Normals(data); Buffer::Data(Buffer::Target::Array, data); VertexArrayAttrib attr(prog, "Normal"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } // setup the texture gl.Direct(Texture::Target::_2D, tex) .Image2D(images::LoadTexture("flower_glass")) .GenerateMipmap() .BorderColor(Vec4f(1.0f, 1.0f, 1.0f, 0.0f)) .MinFilter(TextureMinFilter::LinearMipmapLinear) .MagFilter(TextureMagFilter::Linear) .WrapS(TextureWrap::ClampToBorder) .WrapT(TextureWrap::ClampToBorder) .Bind(); UniformSampler(prog, "TexUnit").Set(0); Uniform<Mat4f>(prog, "CameraMatrix").Set( CamMatrixf::LookingAt(Vec3f(0.0f, 1.0f, 2.0f), Vec3f()) ); gl.ClearColor(0.1f, 0.1f, 0.1f, 0.0f); gl.ClearDepth(1.0f); gl.Enable(Capability::DepthTest); gl.Enable(Capability::CullFace); gl.FrontFace(make_cube.FaceWinding()); }
CubeExample(void) : cube_instr(make_cube.Instructions()) , cube_indices(make_cube.Indices()) , projection_matrix(prog, "ProjectionMatrix") , camera_matrix(prog, "CameraMatrix") , model_matrix(prog, "ModelMatrix") { // Set the vertex shader source vs.Source( "#version 330\n" "uniform mat4 ProjectionMatrix, CameraMatrix, ModelMatrix;" "in vec4 Position;" "in vec3 Normal;" "in vec2 TexCoord;" "out vec3 vertNormal;" "out vec3 vertLight;" "out vec2 vertTexCoord;" "uniform vec3 LightPos;" "void main(void)" "{" " vertNormal = mat3(ModelMatrix)*Normal;" " gl_Position = ModelMatrix * Position;" " vertLight = LightPos - gl_Position.xyz;" " vertTexCoord = TexCoord * 6.0;" " gl_Position = ProjectionMatrix * CameraMatrix * gl_Position;" "}" ); // compile it vs.Compile(); // set the fragment shader source fs.Source( "#version 330\n" "uniform sampler2D TexUnit;" "in vec3 vertNormal;" "in vec3 vertLight;" "in vec2 vertTexCoord;" "out vec4 fragColor;" "void main(void)" "{" " float l = dot(vertLight, vertLight);" " float d = l != 0.0 ? dot(" " vertNormal, " " normalize(vertLight)" " ) / l : 0.0;" " vec3 c = vec3(0.9, 0.8, 0.2);" " vec4 t = texture(TexUnit, vertTexCoord);" " float a = 1.0 - sqrt(abs(d)), e;" " if(gl_FrontFacing)" " {" " e = d >= 0.0 ?" " d * mix(0.5, 1.0, t.a):" " (-0.9*d) * (1.0 - t.a);" " }" " else" " {" " e = d >= 0.0 ?" " (0.6*d) * (1.0 - t.a):" " (-0.7*d) * mix(0.5, 1.0, t.a);" " }" " float i = 0.1 + 9.0*e;" " fragColor = vec4(" " t.r*c.r*i, " " t.g*c.g*i, " " t.b*c.b*i, " " clamp(pow(t.a,2) + a*0.4, 0.0, 1.0)" " );" "}" ); // compile it fs.Compile(); // attach the shaders to the program prog.AttachShader(vs); prog.AttachShader(fs); // link and use it prog.Link(); prog.Use(); // bind the VAO for the cube cube.Bind(); verts.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.Positions(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribArray attr(prog, "Position"); attr.Setup(n_per_vertex, DataType::Float); attr.Enable(); } normals.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.Normals(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribArray attr(prog, "Normal"); attr.Setup(n_per_vertex, DataType::Float); attr.Enable(); } texcoords.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.TexCoordinates(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribArray attr(prog, "TexCoord"); attr.Setup(n_per_vertex, DataType::Float); attr.Enable(); } // setup the texture { auto bound_tex = Bind(tex, Texture::Target::_2D); bound_tex.Image2D(images::LoadTexture("honeycomb")); bound_tex.GenerateMipmap(); bound_tex.MinFilter(TextureMinFilter::LinearMipmapLinear); bound_tex.MagFilter(TextureMagFilter::Linear); bound_tex.WrapS(TextureWrap::MirroredRepeat); bound_tex.WrapT(TextureWrap::MirroredRepeat); } // UniformSampler(prog, "TexUnit").Set(0); Uniform<Vec3f>(prog, "LightPos").Set(Vec3f(1.0f, 2.0f, 3.0f)); // gl.ClearColor(0.1f, 0.1f, 0.1f, 0.0f); gl.ClearDepth(1.0f); gl.Enable(Capability::DepthTest); gl.Enable(Capability::Blend); gl.BlendFunc( BlendFn::SrcAlpha, BlendFn::OneMinusSrcAlpha ); gl.Enable(Capability::CullFace); gl.FrontFace(make_cube.FaceWinding()); }
TorusExample(void) : make_torus() , torus_instr(make_torus.Instructions()) , torus_indices(make_torus.Indices()) { // Set the vertex shader source vs.Source( "#version 150\n" "uniform mat4 ProjectionMatrix, CameraMatrix;" "in vec4 Position;" "in vec3 Normal;" "in vec3 Color;" "out vec3 vertColor;" "out vec3 vertNormal;" "out vec3 vertViewDir;" "void main(void)" "{" " vertColor = normalize(vec3(1,1,1)-Color);" " vertNormal = Normal;" " vertViewDir = (" " vec4(0.0, 0.0, 1.0, 1.0)*" " CameraMatrix" " ).xyz;" " gl_Position = " " ProjectionMatrix *" " CameraMatrix *" " Position;" "}" ); // compile it vs.Compile(); // set the fragment shader source fs.Source( "#version 150\n" "in vec3 vertColor;" "in vec3 vertNormal;" "in vec3 vertViewDir;" "out vec4 fragColor;" "uniform vec3 LightPos[3];" "void main(void)" "{" " float amb = 0.2;" " float diff = 0.0;" " float spec = 0.0;" " for(int i=0;i!=3;++i)" " {" " diff += max(" " dot(vertNormal, LightPos[i])/" " dot(LightPos[i], LightPos[i])," " 0.0" " );" " float k = dot(vertNormal, LightPos[i]);" " vec3 r = 2.0*k*vertNormal - LightPos[i];" " spec += pow(max(" " dot(normalize(r), vertViewDir)," " 0.0" " ), 32.0 * dot(r, r));" " }" " fragColor = " " vec4(vertColor, 1.0)*(amb+diff)+" " vec4(1.0, 1.0, 1.0, 1.0)*spec;" "}" ); // compile it fs.Compile(); // attach the shaders to the program prog.AttachShader(vs); prog.AttachShader(fs); // link and use it prog.Link(); prog.Use(); // bind the VAO for the torus torus.Bind(); // bind the VBO for the torus vertex positions positions.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.Positions(data); // upload the data Buffer::Data(Buffer::Target::Array, data); // setup the vertex attribs array for the vertices VertexArrayAttrib attr(prog, "Position"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } // bind the VBO for the torus normals normals.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.Normals(data); // upload the data Buffer::Data(Buffer::Target::Array, data); // setup the vertex attribs array for the vertices VertexArrayAttrib attr(prog, "Normal"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } // bind the VBO for the torus colors colors.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.Tangents(data); // upload the data Buffer::Data(Buffer::Target::Array, data); // setup the vertex attribs array for the vertices VertexArrayAttrib attr(prog, "Color"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } // set the light positions Uniform<Vec3f> light_pos(prog, "LightPos"); light_pos[0].Set(Vec3f(2.0f,-1.0f, 0.0f)); light_pos[1].Set(Vec3f(0.0f, 3.0f,-1.0f)); light_pos[2].Set(Vec3f(0.0f,-1.0f, 4.0f)); // gl.ClearColor(0.8f, 0.8f, 0.7f, 0.0f); gl.ClearDepth(1.0f); gl.Enable(Capability::DepthTest); gl.Enable(Capability::CullFace); gl.FrontFace(make_torus.FaceWinding()); gl.CullFace(Face::Back); }
TorusExample(void) : make_torus(1.0, 0.5, 72, 48) , torus_instr(make_torus.Instructions()) , torus_indices(make_torus.Indices()) , projection_matrix(prog, "ProjectionMatrix") , camera_matrix(prog, "CameraMatrix") , model_matrix(prog, "ModelMatrix") { // Set the vertex shader source and compile it vs.Source( "#version 330\n" "uniform mat4 ProjectionMatrix, CameraMatrix, ModelMatrix;" "in vec4 Position;" "in vec3 Normal;" "in vec2 TexCoord;" "out vec3 vertNormal;" "out vec3 vertLight;" "out vec2 vertTexCoord;" "uniform vec3 LightPos;" "void main(void)" "{" " gl_Position = ModelMatrix * Position;" " vertNormal = mat3(ModelMatrix)*Normal;" " vertLight = LightPos - gl_Position.xyz;" " vertTexCoord = TexCoord;" " gl_Position = ProjectionMatrix * CameraMatrix * gl_Position;" "}" ).Compile(); // set the fragment shader source and compile it fs.Source( "#version 330\n" "uniform sampler2D TexUnit;" "in vec3 vertNormal;" "in vec3 vertLight;" "in vec2 vertTexCoord;" "out vec4 fragColor;" "void main(void)" "{" " float l = sqrt(length(vertLight));" " float d = l > 0? dot(" " vertNormal, " " normalize(vertLight)" " ) / l : 0.0;" " float i = 0.2 + 3.2*max(d, 0.0);" " fragColor = texture(TexUnit, vertTexCoord)*i;" "}" ).Compile(); // attach the shaders to the program prog.AttachShader(vs).AttachShader(fs); // link and use it prog.Link().Use(); // bind the VAO for the torus torus.Bind(); // bind the VBO for the torus vertices verts.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.Positions(data); // upload the data Buffer::Data(Buffer::Target::Array, data); // setup the vertex attribs array for the vertices VertexAttribArray attr(prog, "Position"); attr.Setup(n_per_vertex, DataType::Float); attr.Enable(); } // bind the VBO for the torus normals normals.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.Normals(data); // upload the data Buffer::Data(Buffer::Target::Array, data); // setup the vertex attribs array for the vertices VertexAttribArray attr(prog, "Normal"); attr.Setup(n_per_vertex, DataType::Float); attr.Enable(); } // bind the VBO for the torus texture coordinates texcoords.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.TexCoordinates(data); // upload the data Buffer::Data(Buffer::Target::Array, data); // setup the vertex attribs array for the vertices VertexAttribArray attr(prog, "TexCoord"); attr.Setup(n_per_vertex, DataType::Float); attr.Enable(); } // setup the texture Texture::Target tex_tgt = Texture::Target::_2D; tex.Bind(tex_tgt); { GLuint s = 256; std::vector<GLubyte> tex_data(s*s); for(GLuint v=0;v!=s;++v) for(GLuint u=0;u!=s;++u) tex_data[v*s+u] = rand() % 0x100; Texture::Image2D( tex_tgt, 0, PixelDataInternalFormat::Red, s, s, 0, PixelDataFormat::Red, PixelDataType::UnsignedByte, tex_data.data() ); Texture::MinFilter(tex_tgt, TextureMinFilter::Linear); Texture::MagFilter(tex_tgt, TextureMagFilter::Linear); Texture::WrapS(tex_tgt, TextureWrap::Repeat); Texture::WrapT(tex_tgt, TextureWrap::Repeat); Texture::SwizzleG(tex_tgt, TextureSwizzle::Red); Texture::SwizzleB(tex_tgt, TextureSwizzle::Red); } // typechecked uniform with exact data type // on compilers supporting strongly typed enums // you can use: //Typechecked<Uniform<SLtoCpp<SLDataType::Sampler2D>>>(prog, "TexUnit").Set(0); // without strongly typed enums you need to do: typedef SLtoCpp<OGLPLUS_CONST_ENUM_VALUE(SLDataType::Sampler2D)> GLSLsampler2D; Typechecked<Uniform<GLSLsampler2D>>(prog, "TexUnit").Set(0); // Uniform<Vec3f>(prog, "LightPos").Set(4.0f, 4.0f, -8.0f); gl.ClearColor(0.8f, 0.8f, 0.7f, 0.0f); gl.ClearDepth(1.0f); gl.Enable(Capability::DepthTest); gl.Enable(Capability::CullFace); gl.FrontFace(make_torus.FaceWinding()); gl.CullFace(Face::Back); }
TorusExample(void) : make_torus(1.0, 0.5, 18, 36) , torus_instr(make_torus.Instructions()) , torus_indices(make_torus.Indices()) , vs(ObjectDesc("Vertex")) , gs(ObjectDesc("Geometry")) , face_fs(ObjectDesc("Face fragment")) , frame_fs(ObjectDesc("Frame fragment")) , transf_prog(ObjectDesc("Transformation")) , face_prog(ObjectDesc("Face")) , frame_prog(ObjectDesc("Frame")) , projection_matrix(transf_prog, "ProjectionMatrix") , camera_matrix(transf_prog, "CameraMatrix") , model_matrix(transf_prog, "ModelMatrix") , transf_time(transf_prog, "Time") { vs.Source( "#version 330\n" "uniform mat4 ModelMatrix;" "in vec4 Position;" "in vec3 Normal;" "in vec2 TexCoord;" "out gl_PerVertex {" " vec4 gl_Position;" "};" "out vec3 vertNormal;" "out vec2 vertTexCoord;" "void main(void)" "{" " gl_Position = ModelMatrix * Position;" " vertNormal = (ModelMatrix*vec4(Normal,0.0)).xyz;" " vertTexCoord = TexCoord;" "}" ); vs.Compile(); gs.Source( "#version 330\n" "layout(triangles) in;" "layout(triangle_strip, max_vertices = 15) out;" "uniform mat4 CameraMatrix, ProjectionMatrix;" "uniform vec3 LightPos;" "uniform float Time;" "in gl_PerVertex {" " vec4 gl_Position;" "} gl_in[];" "in vec3 vertNormal[];" "in vec2 vertTexCoord[];" "out gl_PerVertex {" " vec4 gl_Position;" "};" "out vec3 geomNormal;" "out vec3 geomLight;" "out float geomGlow;" "flat out int geomTop;" "void main(void)" "{" " vec3 FaceNormal = normalize(" " vertNormal[0]+" " vertNormal[1]+" " vertNormal[2] " " );" " vec2 FaceCoord = 0.33333 * (" " vertTexCoord[0]+" " vertTexCoord[1]+" " vertTexCoord[2] " " );" " float Offs = (sin((FaceCoord.s + Time/10.0)* 3.14 * 2.0 * 10)*0.5 + 0.5)*0.4;" " Offs *= cos(FaceCoord.t * 3.1415 * 2.0)*0.5 + 0.51;" " vec3 pos[3], norm[3];" " for(int i=0; i!=3; ++i)" " pos[i] = gl_in[i].gl_Position.xyz;" " for(int i=0; i!=3; ++i)" " norm[i] = cross(" " FaceNormal, " " normalize(pos[(i+1)%3] - pos[i])" " );" " vec3 pofs = FaceNormal * Offs;" " geomTop = 0;" " for(int i=0; i!=3; ++i)" " {" " geomNormal = norm[i];" " for(int j=0; j!=2; ++j)" " {" " vec3 tpos = pos[(i+j)%3];" " geomLight = LightPos-tpos;" " geomGlow = 1.0;" " gl_Position = " " ProjectionMatrix *" " CameraMatrix *" " vec4(tpos, 1.0);" " EmitVertex();" " geomGlow = 0.7;" " geomLight = LightPos-tpos+pofs;" " gl_Position = " " ProjectionMatrix *" " CameraMatrix *" " vec4(tpos + pofs, 1.0);" " EmitVertex();" " }" " EndPrimitive();" " }" " geomGlow = 0.0;" " geomTop = 1;" " for(int i=0; i!=3; ++i)" " {" " geomLight = LightPos - (pos[i]+pofs);" " geomNormal = vertNormal[i];" " gl_Position = " " ProjectionMatrix *" " CameraMatrix *" " vec4(pos[i] + pofs, 1.0);" " EmitVertex();" " }" " EndPrimitive();" "}" ); gs.Compile(); transf_prog.AttachShader(vs); transf_prog.AttachShader(gs); transf_prog.MakeSeparable(); transf_prog.Link(); transf_prog.Use(); ProgramUniform<Vec3f>(transf_prog, "LightPos").Set(4, 4, -8); torus.Bind(); verts.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.Positions(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribArray attr(transf_prog, "Position"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } normals.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.Normals(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribArray attr(transf_prog, "Normal"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } texcoords.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_torus.TexCoordinates(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribArray attr(transf_prog, "TexCoord"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } face_fs.Source( "#version 330\n" "in vec3 geomNormal;" "in vec3 geomLight;" "in float geomGlow;" "flat in int geomTop;" "uniform vec3 TopColor, SideColor;" "const vec3 LightColor = vec3(1.0, 1.0, 1.0);" "out vec4 fragColor;" "void main(void)" "{" " float d = max(dot(" " normalize(geomLight)," " normalize(geomNormal)" " ), 0.0);" " vec3 color;" " if(geomTop != 0)" " {" " color = TopColor * d +" " LightColor * pow(d, 8.0);" " }" " else" " {" " color = SideColor * geomGlow +" " LightColor *" " pow(d, 2.0) * 0.2;" " }" " fragColor = vec4(color, 1.0);" "}" ); face_fs.Compile(); face_prog.AttachShader(face_fs); face_prog.MakeSeparable(); face_prog.Link(); ProgramUniform<Vec3f>(face_prog, "TopColor").Set(0.2f, 0.2f, 0.2f); ProgramUniform<Vec3f>(face_prog, "SideColor").Set(0.9f, 0.9f, 0.2f); face_pp.Bind(); face_prog.Use(); face_pp.UseStages(transf_prog).Vertex().Geometry(); face_pp.UseStages(face_prog).Fragment(); frame_fs.Source( "#version 330\n" "out vec4 fragColor;" "void main(void)" "{" " fragColor = vec4(0.2, 0.1, 0.0, 1.0);" "}" ); frame_fs.Compile(); frame_prog.AttachShader(frame_fs); frame_prog.MakeSeparable(); frame_prog.Link(); frame_pp.Bind(); frame_prog.Use(); frame_pp.UseStages(transf_prog).Vertex().Geometry(); frame_pp.UseStages(frame_prog).Fragment(); ProgramPipeline::Unbind(); Program::UseNone(); gl.ClearColor(0.7f, 0.6f, 0.5f, 0.0f); gl.ClearDepth(1.0f); gl.Enable(Capability::DepthTest); gl.DepthFunc(CompareFn::Less); gl.FrontFace(make_torus.FaceWinding()); }
CubeMapExample(void) : shape_instr(make_shape.Instructions()) , shape_indices(make_shape.Indices()) , projection_matrix(prog, "ProjectionMatrix") , camera_matrix(prog, "CameraMatrix") , model_matrix(prog, "ModelMatrix") { // Set the vertex shader source vs.Source( "#version 330\n" "uniform mat4 ProjectionMatrix, CameraMatrix, ModelMatrix;" "in vec4 Position;" "in vec3 Normal;" "in vec2 TexCoord;" "out vec3 vertNormal;" "out vec3 vertLightDir;" "out vec3 vertLightRefl;" "out vec3 vertViewDir;" "out vec3 vertViewRefl;" "uniform vec3 LightPos;" "void main(void)" "{" " gl_Position = ModelMatrix * Position;" " vertNormal = mat3(ModelMatrix)*Normal;" " vertLightDir = LightPos - gl_Position.xyz;" " vertLightRefl = reflect(" " -normalize(vertLightDir)," " normalize(vertNormal)" " );" " vertViewDir = (" " vec4(0.0, 0.0, 1.0, 1.0)*" " CameraMatrix" " ).xyz;" " vertViewRefl = reflect(" " normalize(vertViewDir)," " normalize(vertNormal)" " );" " gl_Position = ProjectionMatrix * CameraMatrix * gl_Position;" "}" ); // compile it vs.Compile(); // set the fragment shader source fs.Source( "#version 330\n" "uniform samplerCube TexUnit;" "in vec3 vertNormal;" "in vec3 vertLightDir;" "in vec3 vertLightRefl;" "in vec3 vertViewDir;" "in vec3 vertViewRefl;" "out vec4 fragColor;" "void main(void)" "{" " float l = length(vertLightDir);" " float d = dot(" " normalize(vertNormal), " " normalize(vertLightDir)" " ) / l;" " float s = dot(" " normalize(vertLightRefl)," " normalize(vertViewDir)" " );" " vec3 lt = vec3(1.0, 1.0, 1.0);" " vec3 env = texture(TexUnit, vertViewRefl).rgb;" " fragColor = vec4(" " env * 0.4 + " " (lt + env) * 1.5 * max(d, 0.0) + " " lt * pow(max(s, 0.0), 64), " " 1.0" " );" "}" ); // compile it fs.Compile(); // attach the shaders to the program prog.AttachShader(vs); prog.AttachShader(fs); // link and use it prog.Link(); prog.Use(); // bind the VAO for the shape shape.Bind(); verts.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_shape.Positions(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribArray attr(prog, "Position"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } normals.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_shape.Normals(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribArray attr(prog, "Normal"); attr.Setup<GLfloat>(n_per_vertex); attr.Enable(); } // setup the texture { GLuint tex_side = 256; auto image = images::NewtonFractal( tex_side, tex_side, Vec3f(0.3f, 0.1f, 0.2f), Vec3f(1.0f, 0.8f, 0.9f), Vec2f(-1.0f, -1.0f), Vec2f( 1.0f, 1.0f), images::NewtonFractal::X4Minus1(), images::NewtonFractal::DefaultMixer() ); auto tex_target = Texture::Target::CubeMap; // texture syntax sugar tex << tex_target; tex_target << TextureMinFilter::Linear; tex_target << TextureMagFilter::Linear; tex_target << TextureWrap::ClampToEdge; for(int i=0; i!=6; ++i) { Texture::CubeMapFace(i) << image; } } // typechecked uniform with the exact sampler type // on compilers supporting strongly typed enums // you can use: //Typechecked<Uniform<SLtoCpp<SLDataType::SamplerCube>>>(prog, "TexUnit").Set(0); // without strongly typed enums you need to do: typedef SLtoCpp<OGLPLUS_CONST_ENUM_VALUE(SLDataType::SamplerCube)> GLSLsamplerCube; Typechecked<Uniform<GLSLsamplerCube>>(prog, "TexUnit").Set(0); // Uniform<Vec3f>(prog, "LightPos").Set(Vec3f(3.0f, 5.0f, 4.0f)); // gl.ClearColor(0.2f, 0.05f, 0.1f, 0.0f); gl.ClearDepth(1.0f); gl.Enable(Capability::DepthTest); gl.Enable(Capability::CullFace); gl.FrontFace(make_shape.FaceWinding()); gl.CullFace(Face::Back); }
CubeExample() : cube_instr(make_cube.Instructions()) , cube_indices(make_cube.Indices()) , prog(make()) , projection_matrix(prog, "ProjectionMatrix") , camera_matrix(prog, "CameraMatrix") , model_matrix(prog, "ModelMatrix") , light_pos(prog, "LightPos") { // bind the VAO for the cube gl.Bind(cube); gl.Bind(Buffer::Target::Array, verts); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.Positions(data); Buffer::Data(Buffer::Target::Array, data); (prog | "Position").Setup<GLfloat>(n_per_vertex).Enable(); } gl.Bind(Buffer::Target::Array, normals); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.Normals(data); Buffer::Data(Buffer::Target::Array, data); (prog | "Normal").Setup<GLfloat>(n_per_vertex).Enable(); } gl.Bind(Buffer::Target::Array, tangents); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.Tangents(data); Buffer::Data(Buffer::Target::Array, data); (prog | "Tangent").Setup<GLfloat>(n_per_vertex).Enable(); } gl.Bind(Buffer::Target::Array, texcoords); { std::vector<GLfloat> data; GLuint n_per_vertex = make_cube.TexCoordinates(data); Buffer::Data(Buffer::Target::Array, data); (prog | "TexCoord").Setup<GLfloat>(n_per_vertex).Enable(); } { auto img = images::SphereBumpMap(512, 512, 2, 2); Uniform<GLsizei>(prog, "BumpTexWidth").Set(img.Width()); Uniform<GLsizei>(prog, "BumpTexHeight").Set(img.Height()); UniformSampler(prog, "BumpTex").Set(0); Texture::Active(0); gl.Bound(Texture::Target::_2D, bumpTex) .MinFilter(TextureMinFilter::LinearMipmapLinear) .MagFilter(TextureMagFilter::Linear) .WrapS(TextureWrap::Repeat) .WrapT(TextureWrap::Repeat) .Image2D(img) .GenerateMipmap(); } // gl.ClearColor(0.1f, 0.1f, 0.1f, 0.0f); gl.ClearDepth(1.0f); gl.Enable(Capability::DepthTest); gl.Enable(Capability::CullFace); gl.FrontFace(make_cube.FaceWinding()); }
ShadowVolExample(const ExampleParams& params) : shape_instr(make_shape.Instructions()) , shape_indices(make_shape.Indices()) , shape_vs(ShaderType::Vertex, ObjectDesc("Shape vertex")) , depth_vs(ShaderType::Vertex, ObjectDesc("Depth vertex")) , light_vs(ShaderType::Vertex, ObjectDesc("Light vertex")) , depth_gs(ShaderType::Geometry, ObjectDesc("Depth geometry")) , light_gs(ShaderType::Geometry, ObjectDesc("Light geometry")) , shape_fs(ShaderType::Fragment, ObjectDesc("Shape fragment")) , depth_fs(ShaderType::Fragment, ObjectDesc("Depthfragment")) , light_fs(ShaderType::Fragment, ObjectDesc("Light fragment")) , shape_prog(ObjectDesc("Shape")) , depth_prog(ObjectDesc("Depth")) , light_prog(ObjectDesc("Light")) , tex_side(128) , sample_count(params.HighQuality()?1024:128) { shape_vs.Source( "#version 330\n" "uniform mat4 ProjectionMatrix, CameraMatrix, ModelMatrix;" "in vec4 Position;" "in vec3 Normal;" "in vec2 TexCoord;" "out vec3 vertNormal;" "out vec3 vertLightDir;" "out vec3 vertLightRefl;" "out vec3 vertViewDir;" "out vec3 vertViewRefl;" "uniform vec3 LightPos;" "void main(void)" "{" " gl_Position = ModelMatrix * Position;" " vertNormal = mat3(ModelMatrix)*Normal;" " vertLightDir = LightPos - gl_Position.xyz;" " vertLightRefl = reflect(" " -normalize(vertLightDir)," " normalize(vertNormal)" " );" " vertViewDir = (vec4(0.0, 0.0, 1.0, 1.0)* CameraMatrix).xyz;" " vertViewRefl = reflect(" " normalize(vertViewDir)," " normalize(vertNormal)" " );" " gl_Position = ProjectionMatrix * CameraMatrix * gl_Position;" "}" ); shape_vs.Compile(); shape_fs.Source( "#version 330\n" "in vec3 vertNormal;" "in vec3 vertLightDir;" "in vec3 vertLightRefl;" "in vec3 vertViewDir;" "in vec3 vertViewRefl;" "out vec4 fragColor;" "void main(void)" "{" " float l = length(vertLightDir);" " float d = dot(" " normalize(vertNormal), " " normalize(vertLightDir)" " ) / l;" " float s = dot(" " normalize(vertLightRefl)," " normalize(vertViewDir)" " );" " vec3 ambi = vec3(0.6, 0.3, 0.5);" " vec3 diff = vec3(0.9, 0.7, 0.8);" " vec3 spec = vec3(1.0, 0.9, 0.95);" " fragColor = vec4(" " ambi * 0.3 + " " diff * 0.7 * max(d, 0.0) + " " spec * pow(max(s, 0.0), 64), " " 1.0" " );" "}" ); shape_fs.Compile(); shape_prog.AttachShader(shape_vs); shape_prog.AttachShader(shape_fs); shape_prog.Link(); depth_vs.Source( "#version 330\n" "uniform mat4 ModelMatrix;" "uniform vec3 LightPos;" "in vec4 Position;" "void main(void)" "{" " gl_Position = " " mat4(" " 1.0, 0.0, 0.0, -LightPos.x," " 0.0, 1.0, 0.0, -LightPos.y," " 0.0, 0.0, 1.0, -LightPos.z," " 0.0, 0.0, 0.0, 1.0" " )*" " ModelMatrix *" " mat4(" " 10.0, 0.0, 0.0, 0.0," " 0.0, 10.0, 0.0, 0.0," " 0.0, 0.0, 10.0, 0.0," " 0.0, 0.0, 0.0, 1.0 " " )*" " Position;" "}" ); depth_vs.Compile(); depth_gs.Source( "#version 330\n" "layout(triangles) in;" "layout(triangle_strip, max_vertices = 18) out;" "uniform mat4 ProjectionMatrix;" "const mat4 CubeFaceMatrix[6] = mat4[6](" " mat4(" " 0.0, 0.0, -1.0, 0.0," " 0.0, -1.0, 0.0, 0.0," " -1.0, 0.0, 0.0, 0.0," " 0.0, 0.0, 0.0, 1.0 " " ), mat4(" " 0.0, 0.0, 1.0, 0.0," " 0.0, -1.0, 0.0, 0.0," " 1.0, 0.0, 0.0, 0.0," " 0.0, 0.0, 0.0, 1.0 " " ), mat4(" " 1.0, 0.0, 0.0, 0.0," " 0.0, 0.0, -1.0, 0.0," " 0.0, 1.0, 0.0, 0.0," " 0.0, 0.0, 0.0, 1.0 " " ), mat4(" " 1.0, 0.0, 0.0, 0.0," " 0.0, 0.0, 1.0, 0.0," " 0.0, -1.0, 0.0, 0.0," " 0.0, 0.0, 0.0, 1.0 " " ), mat4(" " 1.0, 0.0, 0.0, 0.0," " 0.0, -1.0, 0.0, 0.0," " 0.0, 0.0, -1.0, 0.0," " 0.0, 0.0, 0.0, 1.0 " " ), mat4(" " -1.0, 0.0, 0.0, 0.0," " 0.0, -1.0, 0.0, 0.0," " 0.0, 0.0, 1.0, 0.0," " 0.0, 0.0, 0.0, 1.0 " " )" ");" "void main(void)" "{" " for(gl_Layer=0; gl_Layer!=6; ++gl_Layer)" " {" " for(int i=0; i!=3; ++i)" " {" " gl_Position = " " ProjectionMatrix *" " CubeFaceMatrix[gl_Layer]*" " gl_in[i].gl_Position;" " EmitVertex();" " }" " EndPrimitive();" " }" "}" ); depth_gs.Compile(); depth_fs.Source( "#version 330\n" "void main(void)" "{" " gl_FragDepth = gl_FragCoord.z;" "}" ); depth_fs.Compile(); depth_prog.AttachShader(depth_vs); depth_prog.AttachShader(depth_gs); depth_prog.AttachShader(depth_fs); depth_prog.Link(); depth_prog.Use(); Uniform<Mat4f>(depth_prog, "ProjectionMatrix").Set( CamMatrixf::PerspectiveX( RightAngles(1.0), 1.0, 0.1, 10.0 ) ); // bind the VAO for the shape shape.Bind(); shape_positions.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_shape.Positions(data); Buffer::Data(Buffer::Target::Array, data); VertexAttribSlot location; if(VertexAttribArray::QueryCommonLocation( "Position", location, shape_prog, depth_prog )) { VertexAttribArray shape_attr(location); shape_attr.Setup(n_per_vertex, DataType::Float); shape_attr.Enable(); } else assert(!"Inconsistent 'Position' location"); } shape_normals.Bind(Buffer::Target::Array); { std::vector<GLfloat> data; GLuint n_per_vertex = make_shape.Normals(data); Buffer::Data(Buffer::Target::Array, data); shape_prog.Use(); VertexAttribArray attr(shape_prog, "Normal"); attr.Setup(n_per_vertex, DataType::Float); attr.Enable(); } light_vs.Source( "#version 330\n" "in vec3 Position;" "out float vertZOffs;" "uniform vec3 LightPos;" "uniform int SampleCount;" "void main(void)" "{" " float hp = (SampleCount-1) * 0.5;" " vertZOffs = (gl_InstanceID - hp)/hp;" " gl_Position = vec4(Position + LightPos, 1.0);" "}" ); light_vs.Compile(); light_gs.Source( "#version 330\n" "layout(points) in;" "layout(triangle_strip, max_vertices = 4) out;" "in float vertZOffs[];" "out vec4 geomPosition;" "uniform mat4 CameraMatrix, ProjectionMatrix;" "uniform vec3 ViewX, ViewY, ViewZ;" "uniform float LightVolSize;" "void main(void)" "{" " float zo = vertZOffs[0];" " float yo[2] = float[2](-1.0, 1.0);" " float xo[2] = float[2](-1.0, 1.0);" " for(int j=0;j!=2;++j)" " for(int i=0;i!=2;++i)" " {" " geomPosition = vec4(" " gl_in[0].gl_Position.xyz+" " ViewX * xo[i] * LightVolSize+" " ViewY * yo[j] * LightVolSize+" " ViewZ * zo * LightVolSize," " 1.0" " );" " gl_Position = " " ProjectionMatrix *" " CameraMatrix *" " geomPosition;" " EmitVertex();" " }" " EndPrimitive();" "}" ); light_gs.Compile(); light_fs.Source( "#version 330\n" "in vec4 geomPosition;" "out vec4 fragColor;" "uniform samplerCubeShadow ShadowMap;" "uniform int SampleCount;" "uniform vec3 LightPos;" "void main(void)" "{" " vec3 LightDir = geomPosition.xyz - LightPos;" " vec4 ShadowCoord = vec4(" " normalize(LightDir)," " length(LightDir)" " );" " float s = texture(ShadowMap, ShadowCoord);" " float alpha = s / (SampleCount * pow(length(LightDir), 2));" " fragColor = vec4(1.0, 1.0, 1.0, alpha);" "}" ); light_fs.Compile(); light_prog.AttachShader(light_vs); light_prog.AttachShader(light_gs); light_prog.AttachShader(light_fs); light_prog.Link(); light_prog.Use(); // bind the VAO for the light volume light.Bind(); // bind the VBO for the light volume plane positions light_positions.Bind(Buffer::Target::Array); { GLfloat position[3] = {0.0, 0.0, 0.0}; Buffer::Data(Buffer::Target::Array, 3, position); VertexAttribArray attr(light_prog, "Position"); attr.Setup(3, DataType::Float); attr.Enable(); } Uniform<GLint>(light_prog, "SampleCount").Set(sample_count); Uniform<GLfloat>(light_prog, "LightVolSize").Set(4); UniformSampler(light_prog, "ShadowMap").Set(0); // Setup the texture and the offscreen FBO Texture::Active(0); { auto bound_tex = Bind(depth_tex, Texture::Target::CubeMap); bound_tex.MinFilter(TextureMinFilter::Linear); bound_tex.MagFilter(TextureMagFilter::Linear); bound_tex.WrapS(TextureWrap::ClampToEdge); bound_tex.WrapT(TextureWrap::ClampToEdge); bound_tex.WrapR(TextureWrap::ClampToEdge); bound_tex.CompareFunc(CompareFunction::LEqual); bound_tex.CompareMode( TextureCompareMode::CompareRefToTexture ); for(int i=0; i!=6; ++i) { Texture::Image2D( Texture::CubeMapFace(i), 0, PixelDataInternalFormat::DepthComponent, tex_side, tex_side, 0, PixelDataFormat::DepthComponent, PixelDataType::Float, nullptr ); } auto bound_fbo = Bind( depth_fbo, Framebuffer::Target::Draw ); bound_fbo.AttachTexture( FramebufferAttachment::Depth, depth_tex, 0 ); } // gl.ClearColor(0.2f, 0.05f, 0.1f, 0.0f); gl.ClearDepth(1.0f); gl.Enable(Capability::DepthTest); gl.Enable(Capability::CullFace); gl.FrontFace(make_shape.FaceWinding()); gl.CullFace(Face::Back); gl.BlendFunc(BlendFunction::SrcAlpha, BlendFunction::One); }