bool Execute(PointStream< Real > *ps, CMeshO &pm, PoissonParam<Real> &pp, vcg::CallBackPos* cb)
{
  Reset< Real >();
  XForm4x4< Real > xForm=XForm4x4< Real >::Identity();

  cb(1,"Running Screened Poisson Reconstruction\n" );

  double t;
  double tt=Time();
  Real isoValue = 0;

  Octree< Real > tree;
  tree.threads = 1;
  if( pp.MaxSolveDepthVal<0 ) pp.MaxSolveDepthVal = pp.MaxDepthVal;

  //    OctNode< TreeNodeData >::SetAllocator( MEMORY_ALLOCATOR_BLOCK_SIZE );
  OctNode< TreeNodeData >::SetAllocator( 0 );

  //    int kernelDepth = KernelDepth.set ?  KernelDepth.value : Depth.value-2;
  if(pp.KernelDepthVal<0) pp.KernelDepthVal =pp.MaxDepthVal-2;
  if( pp.KernelDepthVal>pp.MaxDepthVal )
    return false;

  cb(10,"Creating Tree");
  double maxMemoryUsage;
  t=Time();
  //     tree.maxMemoryUsage=0;
  typename Octree< Real >::PointInfo* pointInfo = new typename Octree< Real >::PointInfo();
  typename Octree< Real >::NormalInfo* normalInfo = new typename Octree< Real >::NormalInfo();
  std::vector< Real >* kernelDensityWeights = new std::vector< Real >();
  std::vector< Real >* centerWeights = new std::vector< Real >();
  //    int SetTree( char* fileName , int minDepth , int maxDepth , int fullDepth , int splatDepth , Real samplesPerNode ,
  //		Real scaleFactor , bool useConfidence , bool useNormalWeight , Real constraintWeight , int adaptiveExponent ,
  //		PointInfo& pointInfo , NormalInfo& normalInfo , std::vector< Real >& kernelDensityWeights , std::vector< Real >& centerWeights ,
  //		int boundaryType=BSplineElements< Degree >::NONE , XForm4x4< Real > xForm=XForm4x4< Real >::Identity , bool makeComplete=false );

  TreeNodeData::NodeCount=0;
  int pointCount = tree.template SetTree< Scalarm >(  0, pp.MinDepthVal , pp.MaxDepthVal , pp.FullDepthVal , pp.KernelDepthVal , pp.SamplesPerNodeVal ,
                                                      pp.ScaleVal , pp.ConfidenceFlag , pp.NormalWeightsFlag , pp.PointWeightVal , pp.AdaptiveExponentVal ,
                                                      *pointInfo , *normalInfo , *kernelDensityWeights , *centerWeights ,
                                                      ps, pp.BoundaryTypeVal , xForm , pp.CompleteFlag );

  DumpOutput("#             Tree set in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
  DumpOutput( "Input Points: %d\n" , pointCount );
  DumpOutput( "Leaves/Nodes: %d/%d\n" , tree.tree.leaves() , tree.tree.nodes() );
  DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage() )/(1<<20) );

  maxMemoryUsage = tree.maxMemoryUsage;
  cb(20,"Settng Constraints");
  t=Time() , tree.maxMemoryUsage=0;
  Pointer( Real ) constraints = tree.SetLaplacianConstraints( *normalInfo );
  delete normalInfo;
  DumpOutput("#      Constraints set in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
  DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage())/(1<<20) );
  maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );

  cb(70,"Solving Linear system");
  t=Time() , tree.maxMemoryUsage=0;
  Pointer( Real ) solution = tree.SolveSystem( *pointInfo , constraints , pp.ShowResidualFlag , pp.ItersVal , pp.MaxSolveDepthVal , pp.CGDepthVal , pp.CSSolverAccuracyVal );
  delete pointInfo;
  FreePointer( constraints );
  DumpOutput( "# Linear system solved in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
  DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage() )/(1<<20) );
  maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );

  CoredFileMeshData< PlyValueVertex< float > > mesh;

  tree.maxMemoryUsage=0;
  t=Time();
  isoValue = tree.GetIsoValue( solution , *centerWeights );
  delete centerWeights;
  DumpOutput( "Got average in: %f\n" , Time()-t );
  DumpOutput( "Iso-Value: %e\n" , isoValue );

  cb(80,"Building Isosurface");
  t = Time() , tree.maxMemoryUsage = 0;
  assert(kernelDensityWeights);
  tree.GetMCIsoSurface(  GetPointer( *kernelDensityWeights ) , solution , isoValue , mesh , true , !pp.NonManifoldFlag , false /*PolygonMesh.set*/ );
  DumpOutput("#        Got triangles in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
  maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );
  DumpOutput( "#             Total Solve: %9.1f (s), %9.1f (MB)\n" , Time()-tt , maxMemoryUsage );

  DumpOutput( "Vertices / Polygons: %d / %d\n" , mesh.outOfCorePointCount()+mesh.inCorePoints.size() , mesh.polygonCount() );
  FreePointer( solution );

  cb(90,"Creating Mesh");
  mesh.resetIterator();
  int vm = mesh.outOfCorePointCount()+mesh.inCorePoints.size();

  vcg::tri::Allocator<CMeshO>::AddVertices(pm,vm);


  int i;
  for (i=0; i < int(mesh.inCorePoints.size()); i++){
    pm.vert[i].P()[0] = mesh.inCorePoints[i].point[0];
    pm.vert[i].P()[1] = mesh.inCorePoints[i].point[1];
    pm.vert[i].P()[2] = mesh.inCorePoints[i].point[2];
    pm.vert[i].Q() = mesh.inCorePoints[i].value;
  }
  for (int ii=0; ii < mesh.outOfCorePointCount(); ii++){
    PlyValueVertex< float > p;
    mesh.nextOutOfCorePoint(p);
    pm.vert[ii+i].P()[0] = p.point[0];
    pm.vert[ii+i].P()[1] = p.point[1];
    pm.vert[ii+i].P()[2] = p.point[2];
    pm.vert[ii+i].Q() = p.value;
  }

  std::vector< CoredVertexIndex > polygon;

  while(mesh.nextPolygon( polygon ))
  {
    assert(polygon.size()==3);
    int indV[3];
    for( int i=0 ; i<int(polygon.size()) ; i++ )
    {
      if( polygon[i].inCore ) indV[i] = polygon[i].idx;
      else                    indV[i]= polygon[i].idx + int( mesh.inCorePoints.size() );
    }
    vcg::tri::Allocator<CMeshO>::AddFace(pm, &pm.vert[indV[0]], &pm.vert[indV[1]], &pm.vert[indV[2]]);
  }
  cb(100,"Done");
  return 1;
}
    void PoissonReconstruction::PoissonRecon(int argc , char* argv[], const MagicDGP::Point3DSet* pPC, std::vector< PlyValueVertex< float > >& vertices, std::vector< std::vector< int > >& polygons)
    {
        cmdLineString
            In( "in" ) ,
            Out( "out" ) ,
            VoxelGrid( "voxel" ) ,
            XForm( "xForm" );

        cmdLineReadable
            Performance( "performance" ) ,
            ShowResidual( "showResidual" ) ,
            NoComments( "noComments" ) ,
            PolygonMesh( "polygonMesh" ) ,
            Confidence( "confidence" ) ,
            NonManifold( "nonManifold" ) ,
            ASCII( "ascii" ) ,
            Density( "density" ) ,
            Verbose( "verbose" );

        cmdLineInt
            Depth( "depth" , 8 ) ,
            SolverDivide( "solverDivide" , 8 ) ,
            IsoDivide( "isoDivide" , 8 ) ,
            KernelDepth( "kernelDepth" ) ,
            AdaptiveExponent( "adaptiveExp" , 1 ) ,
            MinIters( "minIters" , 24 ) ,
            FixedIters( "iters" , -1 ) ,
            VoxelDepth( "voxelDepth" , -1 ) ,
            MinDepth( "minDepth" , 5 ) ,
            MaxSolveDepth( "maxSolveDepth" ) ,
            BoundaryType( "boundary" , 1 ) ,
            Threads( "threads" , omp_get_num_procs() );

        cmdLineFloat
            SamplesPerNode( "samplesPerNode" , 1.f ) ,
            Scale( "scale" , 1.1f ) ,
            SolverAccuracy( "accuracy" , float(1e-3) ) ,
            PointWeight( "pointWeight" , 4.f );

        cmdLineReadable* params[] =
        {
            &In , &Depth , &Out , &XForm ,
            &SolverDivide , &IsoDivide , &Scale , &Verbose , &SolverAccuracy , &NoComments ,
            &KernelDepth , &SamplesPerNode , &Confidence , &NonManifold , &PolygonMesh , &ASCII , &ShowResidual , &MinIters , &FixedIters , &VoxelDepth ,
            &PointWeight , &VoxelGrid , &Threads , &MinDepth , &MaxSolveDepth ,
            &AdaptiveExponent , &BoundaryType ,
            &Density
        };

        cmdLineParse( argc , argv , sizeof(params)/sizeof(cmdLineReadable*) , params , 1 );
        /*if( Density.set ) 
            return Execute< 2 , PlyValueVertex< Real > , true  >(argc , argv, pPC);
        else       
            return Execute< 2 ,      PlyVertex< Real > , false >(argc , argv, pPC);*/
        //Execute
        int i;
        int paramNum = sizeof(params)/sizeof(cmdLineReadable*);
        int commentNum=0;
        char **comments;

        comments = new char*[paramNum + 7];
        for( i=0 ; i<paramNum+7 ; i++ ) comments[i] = new char[1024];

        //if( Verbose.set ) echoStdout=1;

        XForm4x4< Real > xForm , iXForm;
        if( XForm.set )
        {
            FILE* fp = fopen( XForm.value , "r" );
            if( !fp )
            {
                fprintf( stderr , "[WARNING] Could not read x-form from: %s\n" , XForm.value );
                xForm = XForm4x4< Real >::Identity();
            }
            else
            {
                for( int i=0 ; i<4 ; i++ ) for( int j=0 ; j<4 ; j++ ) fscanf( fp , " %f " , &xForm( i , j ) );
                fclose( fp );
            }
        }
        else xForm = XForm4x4< Real >::Identity();
        iXForm = xForm.inverse();

        //DumpOutput2( comments[commentNum++] , "Running Screened Poisson Reconstruction (Version 5.0)\n" , Degree );
        //char str[1024];
        //for( int i=0 ; i<paramNum ; i++ )
        //    if( params[i]->set )
        //    {
        //        params[i]->writeValue( str );
        //        if( strlen( str ) ) DumpOutput2( comments[commentNum++] , "\t--%s %s\n" , params[i]->name , str );
        //        else                DumpOutput2( comments[commentNum++] , "\t--%s\n" , params[i]->name );
        //    }

        double t;
        double tt=Time();
        Real isoValue = 0;

        //Octree< Degree , OutputDensity > tree;
        Octree< 2 , true > tree;
        tree.threads = Threads.value;
        //if( !In.set )
        //{
        //    ShowUsage(argv[0]);
        //    return 0;
        //}
        if( !MaxSolveDepth.set ) MaxSolveDepth.value = Depth.value;
        if( SolverDivide.value<MinDepth.value )
        {
            fprintf( stderr , "[WARNING] %s must be at least as large as %s: %d>=%d\n" , SolverDivide.name , MinDepth.name , SolverDivide.value , MinDepth.value );
            SolverDivide.value = MinDepth.value;
        }
        if( IsoDivide.value<MinDepth.value )
        {
	        fprintf( stderr , "[WARNING] %s must be at least as large as %s: %d>=%d\n" , IsoDivide.name , MinDepth.name , IsoDivide.value , IsoDivide.value );
	        IsoDivide.value = MinDepth.value;
        }
	
        OctNode< TreeNodeData< true > , Real >::SetAllocator( MEMORY_ALLOCATOR_BLOCK_SIZE );

        t=Time();
        int kernelDepth = KernelDepth.set ?  KernelDepth.value : Depth.value-2;

        tree.setBSplineData( Depth.value , BoundaryType.value );
        //if( kernelDepth>Depth.value )
        //{
        //    fprintf( stderr,"[ERROR] %s can't be greater than %s: %d <= %d\n" , KernelDepth.name , Depth.name , KernelDepth.value , Depth.value );
        //    return EXIT_FAILURE;
        //}
        //
        int pointNumber = pPC->GetPointNumber();
        std::vector<float> posList(pointNumber * 3);
        std::vector<float> norList(pointNumber * 3);
        for (int pIndex = 0; pIndex < pointNumber; pIndex++)
        {
            posList.at(3 * pIndex + 0) = pPC->GetPoint(pIndex)->GetPosition()[0];
            posList.at(3 * pIndex + 1) = pPC->GetPoint(pIndex)->GetPosition()[1];
            posList.at(3 * pIndex + 2) = pPC->GetPoint(pIndex)->GetPosition()[2];
            norList.at(3 * pIndex + 0) = pPC->GetPoint(pIndex)->GetNormal()[0];
            norList.at(3 * pIndex + 1) = pPC->GetPoint(pIndex)->GetNormal()[1];
            norList.at(3 * pIndex + 2) = pPC->GetPoint(pIndex)->GetNormal()[2];
        }
        //
        double maxMemoryUsage;
        t=Time() , tree.maxMemoryUsage=0;
        //int pointCount = tree.setTree( In.value , Depth.value , MinDepth.value , kernelDepth , Real(SamplesPerNode.value) , Scale.value , Confidence.set , PointWeight.value , AdaptiveExponent.value , xForm );
        int pointCount = tree.setTree( posList, norList, Depth.value , MinDepth.value , kernelDepth , Real(SamplesPerNode.value) , Scale.value , Confidence.set , PointWeight.value , AdaptiveExponent.value , xForm );
        tree.ClipTree();
        tree.finalize( IsoDivide.value );

        /*DumpOutput2( comments[commentNum++] , "#             Tree set in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
        DumpOutput( "Input Points: %d\n" , pointCount );
        DumpOutput( "Leaves/Nodes: %d/%d\n" , tree.tree.leaves() , tree.tree.nodes() );
        DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage() )/(1<<20) );*/

        maxMemoryUsage = tree.maxMemoryUsage;
        t=Time() , tree.maxMemoryUsage=0;
        tree.SetLaplacianConstraints();
        /*DumpOutput2( comments[commentNum++] , "#      Constraints set in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
        DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage())/(1<<20) );*/
        maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );

        t=Time() , tree.maxMemoryUsage=0;
        tree.LaplacianMatrixIteration( SolverDivide.value, ShowResidual.set , MinIters.value , SolverAccuracy.value , MaxSolveDepth.value , FixedIters.value );
        /*DumpOutput2( comments[commentNum++] , "# Linear system solved in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
        DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage() )/(1<<20) );*/
        maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );

        CoredFileMeshData< PlyValueVertex< Real > > mesh;

        if( Verbose.set ) tree.maxMemoryUsage=0;
        t=Time();
        isoValue = tree.GetIsoValue();
        //DumpOutput( "Got average in: %f\n" , Time()-t );
        //DumpOutput( "Iso-Value: %e\n" , isoValue );

        if( VoxelGrid.set )
        {
            double t = Time();
            FILE* fp = fopen( VoxelGrid.value , "wb" );
            if( !fp ) fprintf( stderr , "Failed to open voxel file for writing: %s\n" , VoxelGrid.value );
            else
            {
                int res;
                Pointer( Real ) values = tree.GetSolutionGrid( res , isoValue , VoxelDepth.value );
                fwrite( &res , sizeof(int) , 1 , fp );
                if( sizeof(Real)==sizeof(float) ) fwrite( values , sizeof(float) , res*res*res , fp );
                else
                {
                    float *fValues = new float[res*res*res];
                    for( int i=0 ; i<res*res*res ; i++ ) fValues[i] = float( values[i] );
                    fwrite( fValues , sizeof(float) , res*res*res , fp );
                    delete[] fValues;
                }
                fclose( fp );
                DeletePointer( values );
            }
            //DumpOutput( "Got voxel grid in: %f\n" , Time()-t );
        }

        if( Out.set )
        {
            t = Time() , tree.maxMemoryUsage = 0;
            tree.GetMCIsoTriangles( isoValue , IsoDivide.value , &mesh , 0 , 1 , !NonManifold.set , PolygonMesh.set );
            //if( PolygonMesh.set ) DumpOutput2( comments[commentNum++] , "#         Got polygons in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
            //else                  DumpOutput2( comments[commentNum++] , "#        Got triangles in: %9.1f (s), %9.1f (MB)\n" , Time()-t , tree.maxMemoryUsage );
            maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );
            //DumpOutput2( comments[commentNum++],"#             Total Solve: %9.1f (s), %9.1f (MB)\n" , Time()-tt , maxMemoryUsage );

            //if( NoComments.set )
            //{
            //    if( ASCII.set ) PlyWritePolygons( Out.value , &mesh , PLY_ASCII         , NULL , 0 , iXForm );
            //    else            PlyWritePolygons( Out.value , &mesh , PLY_BINARY_NATIVE , NULL , 0 , iXForm );
            //}
            //else
            //{
            //    if( ASCII.set ) PlyWritePolygons( Out.value , &mesh , PLY_ASCII         , comments , commentNum , iXForm );
            //    else            PlyWritePolygons( Out.value , &mesh , PLY_BINARY_NATIVE , comments , commentNum , iXForm );
            //}
            vertices.clear();
            polygons.clear();
            int incorePointNum = int( mesh.inCorePoints.size() );
            int outofcorePointNum = mesh.outOfCorePointCount();
            DebugLog << "incorePointNum: " << incorePointNum << std::endl;
            DebugLog << "outofcorePointNum: " << outofcorePointNum << std::endl;
            mesh.resetIterator();
            for(int pIndex = 0 ; pIndex < incorePointNum ; pIndex++ )
            {
                PlyValueVertex< Real > vertex = iXForm * mesh.inCorePoints[pIndex];
                vertices.push_back(vertex);
                //ply_put_element(ply, (void *) &vertex);
            }
            for(int pIndex = 0; pIndex < outofcorePointNum; pIndex++ )
            {
                PlyValueVertex< Real > vertex;
                mesh.nextOutOfCorePoint( vertex );
                vertex = iXForm * ( vertex );
                vertices.push_back(vertex);
                //ply_put_element(ply, (void *) &vertex);
            }
            int polyNum = mesh.polygonCount();
            DebugLog << "polyNum: " << polyNum << std::endl;
            for (int pIndex = 0; pIndex < polyNum; pIndex++)
            {
                std::vector< CoredVertexIndex > coreIndex;
                mesh.nextPolygon(coreIndex);
                std::vector< int > pureIndex;
                for (int ii = 0; ii < coreIndex.size(); ii++)
                {
                    if (coreIndex.at(ii).inCore)
                    {
                        pureIndex.push_back(coreIndex.at(ii).idx);
                    }
                    else
                    {
                        pureIndex.push_back(coreIndex.at(ii).idx + incorePointNum);
                    }
                }
                if (coreIndex.size() != 3)
                {
                    DebugLog << "Error: coreIndex.size: " << coreIndex.size() << std::endl;
                }
                polygons.push_back(pureIndex);
            }
            //just for test
            /*DebugLog << "Export inter object" << std::endl;
            std::ofstream fout("pc_inter.obj");
            for (int pIndex = 0; pIndex < vertices.size(); pIndex++)
            {
                PlyValueVertex< float > vert = vertices.at(pIndex);
                fout << "v " << vert.point[0] << " " << vert.point[1] << " " << vert.point[2] << std::endl;
            }
            for (int pIndex = 0; pIndex < polygons.size(); pIndex++)
            {
                fout << "f " << polygons.at(pIndex).at(0) + 1 << " " << polygons.at(pIndex).at(1) + 1 << " " << polygons.at(pIndex).at(2) + 1 << std::endl;
            }
            fout.close();*/
        }
    }
Example #3
0
int Execute( int argc , char* argv[] )
{
    Reset< Real >();
    int i;
    int paramNum = sizeof(params)/sizeof(cmdLineReadable*);
    int commentNum=0;
    char **comments;

    comments = new char*[paramNum+7];
    for( i=0 ; i<paramNum+7 ; i++ ) comments[i] = new char[1024];

    if( Verbose.set ) echoStdout=1;

    XForm4x4< Real > xForm , iXForm;
    if( XForm.set )
    {
        FILE* fp = fopen( XForm.value , "r" );
        if( !fp )
        {
            fprintf( stderr , "[WARNING] Could not read x-form from: %s\n" , XForm.value );
            xForm = XForm4x4< Real >::Identity();
        }
        else
        {
            for( int i=0 ; i<4 ; i++ ) for( int j=0 ; j<4 ; j++ )
            {
                float f;
                fscanf( fp , " %f " , &f );
                xForm(i,j) = (Real)f;
            }
            fclose( fp );
        }
    }
    else xForm = XForm4x4< Real >::Identity();
    iXForm = xForm.inverse();

    DumpOutput2( comments[commentNum++] , "Running Screened Poisson Reconstruction (Version 6.13)\n" );
    char str[1024];
    for( int i=0 ; i<paramNum ; i++ )
        if( params[i]->set )
        {
            params[i]->writeValue( str );
            if( strlen( str ) ) DumpOutput2( comments[commentNum++] , "\t--%s %s\n" , params[i]->name , str );
            else                DumpOutput2( comments[commentNum++] , "\t--%s\n" , params[i]->name );
        }

    double t;
    double tt=PTime();
    Real isoValue = 0;

    Octree< Real > tree;
    tree.threads = Threads.value;
    if( !In.set )
    {
        ShowUsage(argv[0]);
        return 0;
    }
    if( !MaxSolveDepth.set ) MaxSolveDepth.value = Depth.value;

    OctNode< TreeNodeData >::SetAllocator( MEMORY_ALLOCATOR_BLOCK_SIZE );

    t=PTime();
    int kernelDepth = KernelDepth.set ?  KernelDepth.value : Depth.value-2;
    if( kernelDepth>Depth.value )
    {
        fprintf( stderr,"[ERROR] %s can't be greater than %s: %d <= %d\n" , KernelDepth.name , Depth.name , KernelDepth.value , Depth.value );
        return EXIT_FAILURE;
    }

    double maxMemoryUsage;
    t=PTime() , tree.maxMemoryUsage=0;
    typename Octree< Real >::PointInfo* pointInfo = new typename Octree< Real >::PointInfo();
    typename Octree< Real >::NormalInfo* normalInfo = new typename Octree< Real >::NormalInfo();
    std::vector< Real >* kernelDensityWeights = new std::vector< Real >();
    std::vector< Real >* centerWeights = new std::vector< Real >();
    PointStream< float >* pointStream;
    char* ext = GetFileExtension( In.value );
    if     ( !strcasecmp( ext , "bnpts" ) ) pointStream = new BinaryPointStream< float >( In.value );
    else if( !strcasecmp( ext , "ply"   ) ) pointStream = new    PLYPointStream< float >( In.value );
    else                                    pointStream = new  ASCIIPointStream< float >( In.value );
    delete[] ext;
    int pointCount = tree.template SetTree< float >( pointStream , MinDepth.value , Depth.value , FullDepth.value , kernelDepth , Real(SamplesPerNode.value) , Scale.value , Confidence.set , NormalWeights.set , PointWeight.value , AdaptiveExponent.value , *pointInfo , *normalInfo , *kernelDensityWeights , *centerWeights , BoundaryType.value , xForm , Complete.set );
    if( !Density.set ) delete kernelDensityWeights , kernelDensityWeights = NULL;

    DumpOutput2( comments[commentNum++] , "#             Tree set in: %9.1f (s), %9.1f (MB)\n" , PTime()-t , tree.maxMemoryUsage );
    DumpOutput( "Input Points: %d\n" , pointCount );
    DumpOutput( "Leaves/Nodes: %d/%d\n" , tree.tree.leaves() , tree.tree.nodes() );
    DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage() )/(1<<20) );

    maxMemoryUsage = tree.maxMemoryUsage;
    t=PTime() , tree.maxMemoryUsage=0;
    Pointer( Real ) constraints = tree.SetLaplacianConstraints( *normalInfo );
    delete normalInfo;
    DumpOutput2( comments[commentNum++] , "#      Constraints set in: %9.1f (s), %9.1f (MB)\n" , PTime()-t , tree.maxMemoryUsage );
    DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage())/(1<<20) );
    maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );

    t=PTime() , tree.maxMemoryUsage=0;
    Pointer( Real ) solution = tree.SolveSystem( *pointInfo , constraints , ShowResidual.set , Iters.value , MaxSolveDepth.value , CGDepth.value , CSSolverAccuracy.value );
    delete pointInfo;
    FreePointer( constraints );
    DumpOutput2( comments[commentNum++] , "# Linear system solved in: %9.1f (s), %9.1f (MB)\n" , PTime()-t , tree.maxMemoryUsage );
    DumpOutput( "Memory Usage: %.3f MB\n" , float( MemoryInfo::Usage() )/(1<<20) );
    maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );

    CoredFileMeshData< Vertex > mesh;

    if( Verbose.set ) tree.maxMemoryUsage=0;
    t=PTime();
    isoValue = tree.GetIsoValue( solution , *centerWeights );
    delete centerWeights;
    DumpOutput( "Got average in: %f\n" , PTime()-t );
    DumpOutput( "Iso-Value: %e\n" , isoValue );

    if( VoxelGrid.set )
    {
        double t = PTime();
        FILE* fp = fopen( VoxelGrid.value , "wb" );
        if( !fp ) fprintf( stderr , "Failed to open voxel file for writing: %s\n" , VoxelGrid.value );
        else
        {
            int res;
            Pointer( Real ) values = tree.Evaluate( solution , res , isoValue , VoxelDepth.value );
            fwrite( &res , sizeof(int) , 1 , fp );
            if( sizeof(Real)==sizeof(float) ) fwrite( values , sizeof(float) , res*res*res , fp );
            else
            {
                float *fValues = new float[res*res*res];
                for( int i=0 ; i<res*res*res ; i++ ) fValues[i] = float( values[i] );
                fwrite( fValues , sizeof(float) , res*res*res , fp );
                delete[] fValues;
            }
            fclose( fp );
            DeletePointer( values );
        }
        DumpOutput( "Got voxel grid in: %f\n" , PTime()-t );
    }

    if( Out.set )
    {
        t = PTime() , tree.maxMemoryUsage = 0;
        tree.GetMCIsoSurface( kernelDensityWeights ? GetPointer( *kernelDensityWeights ) : NullPointer< Real >() , solution , isoValue , mesh , true , !NonManifold.set , PolygonMesh.set );
        if( PolygonMesh.set ) DumpOutput2( comments[commentNum++] , "#         Got polygons in: %9.1f (s), %9.1f (MB)\n" , PTime()-t , tree.maxMemoryUsage );
        else                  DumpOutput2( comments[commentNum++] , "#        Got triangles in: %9.1f (s), %9.1f (MB)\n" , PTime()-t , tree.maxMemoryUsage );
        maxMemoryUsage = std::max< double >( maxMemoryUsage , tree.maxMemoryUsage );
        DumpOutput2( comments[commentNum++],"#             Total Solve: %9.1f (s), %9.1f (MB)\n" , PTime()-tt , maxMemoryUsage );

        if( NoComments.set )
        {
            if( ASCII.set ) PlyWritePolygons( Out.value , &mesh , PLY_ASCII         , NULL , 0 , iXForm );
            else            PlyWritePolygons( Out.value , &mesh , PLY_BINARY_NATIVE , NULL , 0 , iXForm );
        }
        else
        {
            if( ASCII.set ) PlyWritePolygons( Out.value , &mesh , PLY_ASCII         , comments , commentNum , iXForm );
            else            PlyWritePolygons( Out.value , &mesh , PLY_BINARY_NATIVE , comments , commentNum , iXForm );
        }
        DumpOutput( "Vertices / Polygons: %d / %d\n" , mesh.outOfCorePointCount()+mesh.inCorePoints.size() , mesh.polygonCount() );
    }
    FreePointer( solution );
    return 1;
}