void subtractMultipleTo(DMat<RT>& C, const DMat<RT>& A, const DMat<RT>& B) // C = C - A*B { typedef typename RT::ElementType ElementType; typedef typename DMat<RT>::ConstIterator ConstIterator; M2_ASSERT(A.numColumns() == B.numRows()); M2_ASSERT(A.numRows() == C.numRows()); M2_ASSERT(B.numColumns() == C.numColumns()); ElementType* result = C.array(); ElementType tmp; A.ring().init(tmp); // WARNING: this routine expects the result matrix to be in ROW MAJOR ORDER for (size_t i = 0; i<A.numRows(); i++) for (size_t j = 0; j<B.numColumns(); j++) { ConstIterator i1 = A.rowBegin(i); ConstIterator iend = A.rowEnd(i); ConstIterator j1 = B.columnBegin(j); while (i1 != iend) { A.ring().mult(tmp, *i1, *j1); A.ring().subtract(*result, *result, tmp); ++i1; ++j1; } result++; } A.ring().clear(tmp); }
void mult(const DMat<RT>& A, const DMat<RT>& B, DMat<RT>& result_product) { //printf("entering dmat mult\n"); typedef typename RT::ElementType ElementType; typedef typename DMat<RT>::ConstIterator ConstIterator; M2_ASSERT(A.numColumns() == B.numRows()); M2_ASSERT(A.numRows() == result_product.numRows()); M2_ASSERT(B.numColumns() == result_product.numColumns()); ElementType* result = result_product.array(); ElementType tmp; A.ring().init(tmp); // WARNING: this routine expects the result matrix to be in ROW MAJOR ORDER for (size_t i = 0; i<A.numRows(); i++) for (size_t j = 0; j<B.numColumns(); j++) { ConstIterator i1 = A.rowBegin(i); ConstIterator iend = A.rowEnd(i); ConstIterator j1 = B.columnBegin(j); while (i1 != iend) { A.ring().mult(tmp, *i1, *j1); A.ring().add(*result, *result, tmp); ++i1; ++j1; } result++; } A.ring().clear(tmp); }
bool SLEvaluatorConcrete<RT>::evaluate(const DMat<RT>& inputs, DMat<RT>& outputs) { if (varsPos.size() != inputs.numRows()*inputs.numColumns()) { ERROR("inputs: the number of inputs does not match the number of entries in the inputs matrix"); std::cout << varsPos.size() << " != " << inputs.numRows()*inputs.numColumns() << std::endl; return false; } size_t i=0; for(size_t r=0; r<inputs.numRows(); r++) for(size_t c=0; c<inputs.numColumns(); c++) ring().set(values[varsPos[i++]],inputs.entry(r,c)); nIt = slp->mNodes.begin(); numInputsIt = slp->mNumInputs.begin(); inputPositionsIt = slp->mInputPositions.begin(); for (vIt = values.begin()+slp->inputCounter; vIt != values.end(); ++vIt) computeNextNode(); if (slp->mOutputPositions.size() != outputs.numRows()*outputs.numColumns()) { ERROR("outputs: the number of outputs does not match the number of entries in the outputs matrix"); std::cout << slp->mOutputPositions.size() << " != " << outputs.numRows() << " * " << outputs.numColumns() << std::endl; return false; } i=0; for(size_t r=0; r<outputs.numRows(); r++) for(size_t c=0; c<outputs.numColumns(); c++) ring().set(outputs.entry(r,c),values[ap(slp->mOutputPositions[i++])]); return true; }
bool isEqual(const DMat<RT>& A, const DMat<RT>& B) { assert(&A.ring() == &B.ring()); if (B.numRows() != A.numRows()) return false; if (B.numColumns() != A.numColumns()) return false; size_t top = A.numRows() * A.numColumns(); auto elemsA = A.array(); auto elemsB = B.array(); for (size_t i = 0; i < top; i++) if (!A.ring().is_equal(*elemsA++, *elemsB++)) return false; return true; }
void subtractInPlace(DMat<RT>& A, const DMat<RT>& B) // A -= B { M2_ASSERT(&B.ring() == &A.ring()); M2_ASSERT(B.numRows() == A.numRows()); M2_ASSERT(B.numColumns() == A.numColumns()); size_t len = A.numRows() * A.numColumns(); for (size_t i=0; i<len; i++) { A.ring().subtract(A.array()[i], A.array()[i], B.array()[i]); } }
void transpose(const DMat<RT>& A, DMat<RT>& result) { assert(&A != &result); // these cannot be aliased! assert(result.numRows() == A.numColumns()); assert(result.numColumns() == A.numRows()); for (size_t c = 0; c < A.numColumns(); ++c) { auto i = A.columnBegin(c); auto j = result.rowBegin(c); auto end = A.columnEnd(c); for (; i != end; ++i, ++j) A.ring().set(*j, *i); } }
void addInPlace(DMat<RT>& A, const DMat<RT>& B) // A += B. { assert(&B.ring() == &A.ring()); assert(B.numRows() == A.numRows()); assert(B.numColumns() == A.numColumns()); size_t len = A.numRows() * A.numColumns(); for (size_t i = 0; i < len; i++) { A.ring().add(A.array()[i], A.array()[i], B.array()[i]); } }
void scalarMultInPlace(DMat<RT>& A, const typename RT::ElementType &f) { for (size_t i=0; i<A.numRows()*A.numColumns(); i++) { A.ring().mult(A.array()[i], f, A.array()[i]); } }
bool isZero(const DMat<RT>& A) { size_t len = A.numRows() * A.numColumns(); if (len == 0) return true; for (auto t = A.array() + len - 1; t >= A.array(); t--) if (!A.ring().is_zero(*t)) return false; return true; }
engine_RawArrayIntPairOrNull rawLQUPFactorizationInPlace(MutableMatrix *A, M2_bool transpose) { #ifdef HAVE_FFLAS_FFPACK // Suppose A is m x n // then we get A = LQUP = LSP, see e.g. http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-28.pdf // P and Q are permutation info using LAPACK's convention:, see // http://www.netlib.org/lapack/explore-html/d0/d39/_v_a_r_i_a_n_t_s_2lu_2_r_e_c_2dgetrf_8f.html // P is n element permutation on column: size(P)=min(m,n); // for 1 <= i <= min(m,n), col i of the matrix was interchanged with col P(i). // Qt is m element permutation on rows (inverse permutation) // for 1 <= i <= min(m,n), col i of the matrix was interchanged with col P(i). A->transpose(); DMat<M2::ARingZZpFFPACK> *mat = A->coerce< DMat<M2::ARingZZpFFPACK> >(); if (mat == 0) { throw exc::engine_error("LUDivine not defined for this ring"); // ERROR("LUDivine not defined for this ring"); // return 0; } size_t nelems = mat->numColumns(); if (mat->numRows() < mat->numColumns()) nelems = mat->numRows(); std::vector<size_t> P(nelems, -1); std::vector<size_t> Qt(nelems, -1); // ignore return value (rank) of: LUdivine(mat->ring().field(), FFLAS::FflasNonUnit, (transpose ? FFLAS::FflasTrans : FFLAS::FflasNoTrans), mat->numRows(), mat->numColumns(), mat->array(), mat->numColumns(), &P[0], &Qt[0]); engine_RawArrayIntPairOrNull result = new engine_RawArrayIntPair_struct; result->a = stdvector_to_M2_arrayint(Qt); result->b = stdvector_to_M2_arrayint(P); return result; #endif return 0; }
void negateInPlace(DMat<RT>& A) // A = -A { size_t len = A.numRows() * A.numColumns(); for (size_t i=0; i<len; i++) { A.ring().negate(A.array()[i], A.array()[i]); } }
inline M2_arrayintOrNull rankProfile(const DMat<RT>& A, bool row_profile) { std::vector<size_t> profile; if (row_profile) { // First transpose A DMat<RT> B(A.ring(), A.numColumns(), A.numRows()); MatrixOps::transpose(A,B); DMatLinAlg<RT> LUdecomp(B); LUdecomp.columnRankProfile(profile); return stdvector_to_M2_arrayint(profile); } else { DMatLinAlg<RT> LUdecomp(A); LUdecomp.columnRankProfile(profile); return stdvector_to_M2_arrayint(profile); } }
DMat(const DMat<ACoeffRing>& M) : mRing(& M.ring()) { fmpq_mat_init(mArray, M.numRows(), M.numColumns()); fmpq_mat_set(mArray, M.mArray); }