Example #1
0
void HillClimber::initializeSampler( void )
{
    
    std::vector<DagNode *>& dagNodes = model->getDagNodes();
    std::vector<DagNode *> orderedStochNodes = model->getOrderedStochasticNodes(  );
    
    // Get rid of previous move schedule, if any
    if ( schedule )
    {
        delete schedule;
    }
    schedule = NULL;
    
    // Get initial lnProbability of model
    
    // first we touch all nodes so that the likelihood is dirty
    for (std::vector<DagNode *>::iterator i=dagNodes.begin(); i!=dagNodes.end(); i++)
    {
        
        DagNode *the_node = *i;
        the_node->setMcmcMode( true );
        the_node->setPriorOnly( false );
        the_node->touch();
        
    }
    
    
    int numTries    = 0;
    int maxNumTries = 100;
    double lnProbability = 0.0;
    for ( ; numTries < maxNumTries; numTries ++ )
    {
        // a flag if we failed to find a valid starting value
        bool failed = false;
        
        lnProbability = 0.0;
        for (std::vector<DagNode *>::iterator i=dagNodes.begin(); i!=dagNodes.end(); i++)
        {
            DagNode* node = (*i);
            node->touch();
            
            double lnProb = node->getLnProbability();
            
            if ( !RbMath::isAComputableNumber(lnProb) )
            {
                std::stringstream ss;
                ss << "Could not compute lnProb for node " << node->getName() << "." << std::endl;
                node->printValue( ss );
                ss << std::endl;
                RBOUT( ss.str() );
                
                // set the flag
                failed = true;
                
                break;
            }
            lnProbability += lnProb;
            
        }
        
        // now we keep all nodes so that the likelihood is stored
        for (std::vector<DagNode *>::iterator i=dagNodes.begin(); i!=dagNodes.end(); i++)
        {
            (*i)->keep();
        }
        
        if ( failed == true )
        {
            std::cout << "Drawing new initial states ... " << std::endl;
            for (std::vector<DagNode *>::iterator i=orderedStochNodes.begin(); i!=orderedStochNodes.end(); i++)
            {
                
                if ( !(*i)->isClamped() && (*i)->isStochastic() )
                {
                    (*i)->redraw();
                    (*i)->reInitialized();
                    
                }
                else if ( (*i)->isClamped() )
                {
                    // make sure that the clamped node also recompute their probabilities
                    (*i)->reInitialized();
                    (*i)->touch();
                }
                
            }
        }
        else
        {
            break;
        }
        
    }
    
    if ( numTries == maxNumTries )
    {
        std::stringstream msg;
        msg << "Unable to find a starting state with computable probability";
        if ( numTries > 1 )
        {
            msg << " after " << numTries << " tries";
        }
        throw RbException( msg.str() );
        
    }
    
    // Create the move scheduler
    if ( scheduleType == "sequential" )
    {
        schedule = new SequentialMoveSchedule( &moves );
    }
    else if ( scheduleType == "single" )
    {
        schedule = new SingleRandomMoveSchedule( &moves );
    }
    else
    {
        schedule = new RandomMoveSchedule( &moves );
    }
    
    generation = 0;
}
Example #2
0
/** Monitor value at generation gen */
void ScreenMonitor::monitor(unsigned long gen) {
    
    // get the printing frequency
    unsigned long samplingFrequency = printgen;
    
    if (gen % samplingFrequency == 0) {
        // print the iteration number first
        std::cout << gen;
        
        if ( posterior ) {
            // add a separator before every new element
            std::cout << separator;
            
            const std::vector<DagNode*> &n = model->getDagNodes();
            double pp = 0.0;
            for (std::vector<DagNode*>::const_iterator it = n.begin(); it != n.end(); ++it) {
                pp += (*it)->getLnProbability();
            }
            std::cout << pp;
        }
        
        if ( likelihood ) {
            // add a separator before every new element
            std::cout << separator;
            
            const std::vector<DagNode*> &n = model->getDagNodes();
            double pp = 0.0;
            for (std::vector<DagNode*>::const_iterator it = n.begin(); it != n.end(); ++it) {
                if ( (*it)->isClamped() ) {
                    pp += (*it)->getLnProbability();
                }
            }
            std::cout << pp;
        }
        
        if ( prior ) {
            // add a separator before every new element
            std::cout << separator;
            
            const std::vector<DagNode*> &n = model->getDagNodes();
            double pp = 0.0;
            for (std::vector<DagNode*>::const_iterator it = n.begin(); it != n.end(); ++it) {
                if ( !(*it)->isClamped() ) {
                    pp += (*it)->getLnProbability();
                }
            }
            std::cout << pp;
        }
        
        for (std::vector<DagNode*>::iterator i = nodes.begin(); i != nodes.end(); ++i) {
            // add a separator before every new element
            std::cout << separator;
            
            // get the node
            DagNode *node = *i;
            
            // print the value
            node->printValue(std::cout, separator);
        }
        
        std::cout << std::endl;
        
    }
}