bool LLVMUserExpression::FinalizeJITExecution( DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx, lldb::ExpressionVariableSP &result, lldb::addr_t function_stack_bottom, lldb::addr_t function_stack_top) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); if (log) log->Printf("-- [UserExpression::FinalizeJITExecution] Dematerializing " "after execution --"); if (!m_dematerializer_sp) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't apply expression side effects : no " "dematerializer is present"); return false; } Error dematerialize_error; m_dematerializer_sp->Dematerialize(dematerialize_error, function_stack_bottom, function_stack_top); if (!dematerialize_error.Success()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't apply expression side effects : %s", dematerialize_error.AsCString("unknown error")); return false; } result = GetResultAfterDematerialization(exe_ctx.GetBestExecutionContextScope()); if (result) result->TransferAddress(); m_dematerializer_sp.reset(); return true; }
bool GoUserExpression::Parse(DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx, lldb_private::ExecutionPolicy execution_policy, bool keep_result_in_memory, bool generate_debug_info, uint32_t line_offset) { InstallContext(exe_ctx); m_interpreter.reset(new GoInterpreter(exe_ctx, GetUserText())); if (m_interpreter->Parse()) return true; const char *error_cstr = m_interpreter->error().AsCString(); if (error_cstr && error_cstr[0]) diagnostic_manager.PutCString(eDiagnosticSeverityError, error_cstr); else diagnostic_manager.Printf(eDiagnosticSeverityError, "expression can't be interpreted or run"); return false; }
unsigned ClangFunctionCaller::CompileFunction(lldb::ThreadSP thread_to_use_sp, DiagnosticManager &diagnostic_manager) { if (m_compiled) return 0; // Compilation might call code, make sure to keep on the thread the caller // indicated. ThreadList::ExpressionExecutionThreadPusher execution_thread_pusher( thread_to_use_sp); // FIXME: How does clang tell us there's no return value? We need to handle // that case. unsigned num_errors = 0; std::string return_type_str( m_function_return_type.GetTypeName().AsCString("")); // Cons up the function we're going to wrap our call in, then compile it... // We declare the function "extern "C"" because the compiler might be in C++ // mode which would mangle the name and then we couldn't find it again... m_wrapper_function_text.clear(); m_wrapper_function_text.append("extern \"C\" void "); m_wrapper_function_text.append(m_wrapper_function_name); m_wrapper_function_text.append(" (void *input)\n{\n struct "); m_wrapper_function_text.append(m_wrapper_struct_name); m_wrapper_function_text.append(" \n {\n"); m_wrapper_function_text.append(" "); m_wrapper_function_text.append(return_type_str); m_wrapper_function_text.append(" (*fn_ptr) ("); // Get the number of arguments. If we have a function type and it is // prototyped, // trust that, otherwise use the values we were given. // FIXME: This will need to be extended to handle Variadic functions. We'll // need // to pull the defined arguments out of the function, then add the types from // the // arguments list for the variable arguments. uint32_t num_args = UINT32_MAX; bool trust_function = false; // GetArgumentCount returns -1 for an unprototyped function. CompilerType function_clang_type; if (m_function_ptr) { function_clang_type = m_function_ptr->GetCompilerType(); if (function_clang_type) { int num_func_args = function_clang_type.GetFunctionArgumentCount(); if (num_func_args >= 0) { trust_function = true; num_args = num_func_args; } } } if (num_args == UINT32_MAX) num_args = m_arg_values.GetSize(); std::string args_buffer; // This one stores the definition of all the args in // "struct caller". std::string args_list_buffer; // This one stores the argument list called from // the structure. for (size_t i = 0; i < num_args; i++) { std::string type_name; if (trust_function) { type_name = function_clang_type.GetFunctionArgumentTypeAtIndex(i) .GetTypeName() .AsCString(""); } else { CompilerType clang_qual_type = m_arg_values.GetValueAtIndex(i)->GetCompilerType(); if (clang_qual_type) { type_name = clang_qual_type.GetTypeName().AsCString(""); } else { diagnostic_manager.Printf( eDiagnosticSeverityError, "Could not determine type of input value %" PRIu64 ".", (uint64_t)i); return 1; } } m_wrapper_function_text.append(type_name); if (i < num_args - 1) m_wrapper_function_text.append(", "); char arg_buf[32]; args_buffer.append(" "); args_buffer.append(type_name); snprintf(arg_buf, 31, "arg_%" PRIu64, (uint64_t)i); args_buffer.push_back(' '); args_buffer.append(arg_buf); args_buffer.append(";\n"); args_list_buffer.append("__lldb_fn_data->"); args_list_buffer.append(arg_buf); if (i < num_args - 1) args_list_buffer.append(", "); } m_wrapper_function_text.append( ");\n"); // Close off the function calling prototype. m_wrapper_function_text.append(args_buffer); m_wrapper_function_text.append(" "); m_wrapper_function_text.append(return_type_str); m_wrapper_function_text.append(" return_value;"); m_wrapper_function_text.append("\n };\n struct "); m_wrapper_function_text.append(m_wrapper_struct_name); m_wrapper_function_text.append("* __lldb_fn_data = (struct "); m_wrapper_function_text.append(m_wrapper_struct_name); m_wrapper_function_text.append(" *) input;\n"); m_wrapper_function_text.append( " __lldb_fn_data->return_value = __lldb_fn_data->fn_ptr ("); m_wrapper_function_text.append(args_list_buffer); m_wrapper_function_text.append(");\n}\n"); Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); if (log) log->Printf("Expression: \n\n%s\n\n", m_wrapper_function_text.c_str()); // Okay, now compile this expression lldb::ProcessSP jit_process_sp(m_jit_process_wp.lock()); if (jit_process_sp) { const bool generate_debug_info = true; m_parser.reset(new ClangExpressionParser(jit_process_sp.get(), *this, generate_debug_info)); num_errors = m_parser->Parse(diagnostic_manager); } else { diagnostic_manager.PutString(eDiagnosticSeverityError, "no process - unable to inject function"); num_errors = 1; } m_compiled = (num_errors == 0); if (!m_compiled) return num_errors; return num_errors; }
//------------------------------------------------------------------ /// Install the utility function into a process /// /// @param[in] diagnostic_manager /// A diagnostic manager to report errors and warnings to. /// /// @param[in] exe_ctx /// The execution context to install the utility function to. /// /// @return /// True on success (no errors); false otherwise. //------------------------------------------------------------------ bool ClangUtilityFunction::Install(DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx) { if (m_jit_start_addr != LLDB_INVALID_ADDRESS) { diagnostic_manager.PutCString(eDiagnosticSeverityWarning, "already installed"); return false; } //////////////////////////////////// // Set up the target and compiler // Target *target = exe_ctx.GetTargetPtr(); if (!target) { diagnostic_manager.PutCString(eDiagnosticSeverityError, "invalid target"); return false; } Process *process = exe_ctx.GetProcessPtr(); if (!process) { diagnostic_manager.PutCString(eDiagnosticSeverityError, "invalid process"); return false; } ////////////////////////// // Parse the expression // bool keep_result_in_memory = false; ResetDeclMap(exe_ctx, keep_result_in_memory); if (!DeclMap()->WillParse(exe_ctx, NULL)) { diagnostic_manager.PutCString( eDiagnosticSeverityError, "current process state is unsuitable for expression parsing"); return false; } const bool generate_debug_info = true; ClangExpressionParser parser(exe_ctx.GetBestExecutionContextScope(), *this, generate_debug_info); unsigned num_errors = parser.Parse(diagnostic_manager); if (num_errors) { ResetDeclMap(); return false; } ////////////////////////////////// // JIT the output of the parser // bool can_interpret = false; // should stay that way Error jit_error = parser.PrepareForExecution( m_jit_start_addr, m_jit_end_addr, m_execution_unit_sp, exe_ctx, can_interpret, eExecutionPolicyAlways); if (m_jit_start_addr != LLDB_INVALID_ADDRESS) { m_jit_process_wp = process->shared_from_this(); if (parser.GetGenerateDebugInfo()) m_execution_unit_sp->CreateJITModule(FunctionName()); } #if 0 // jingham: look here StreamFile logfile ("/tmp/exprs.txt", "a"); logfile.Printf ("0x%16.16" PRIx64 ": func = %s, source =\n%s\n", m_jit_start_addr, m_function_name.c_str(), m_function_text.c_str()); #endif DeclMap()->DidParse(); ResetDeclMap(); if (jit_error.Success()) { return true; } else { const char *error_cstr = jit_error.AsCString(); if (error_cstr && error_cstr[0]) { diagnostic_manager.Printf(eDiagnosticSeverityError, "%s", error_cstr); } else { diagnostic_manager.PutCString(eDiagnosticSeverityError, "expression can't be interpreted or run"); } return false; } }
lldb::ExpressionResults LLVMUserExpression::DoExecute(DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options, lldb::UserExpressionSP &shared_ptr_to_me, lldb::ExpressionVariableSP &result) { // The expression log is quite verbose, and if you're just tracking the execution of the // expression, it's quite convenient to have these logs come out with the STEP log as well. Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EXPRESSIONS | LIBLLDB_LOG_STEP)); if (m_jit_start_addr != LLDB_INVALID_ADDRESS || m_can_interpret) { lldb::addr_t struct_address = LLDB_INVALID_ADDRESS; if (!PrepareToExecuteJITExpression(diagnostic_manager, exe_ctx, struct_address)) { diagnostic_manager.Printf(eDiagnosticSeverityError, "errored out in %s, couldn't PrepareToExecuteJITExpression", __FUNCTION__); return lldb::eExpressionSetupError; } lldb::addr_t function_stack_bottom = LLDB_INVALID_ADDRESS; lldb::addr_t function_stack_top = LLDB_INVALID_ADDRESS; if (m_can_interpret) { llvm::Module *module = m_execution_unit_sp->GetModule(); llvm::Function *function = m_execution_unit_sp->GetFunction(); if (!module || !function) { diagnostic_manager.PutCString(eDiagnosticSeverityError, "supposed to interpret, but nothing is there"); return lldb::eExpressionSetupError; } Error interpreter_error; std::vector<lldb::addr_t> args; if (!AddArguments(exe_ctx, args, struct_address, diagnostic_manager)) { diagnostic_manager.Printf(eDiagnosticSeverityError, "errored out in %s, couldn't AddArguments", __FUNCTION__); return lldb::eExpressionSetupError; } function_stack_bottom = m_stack_frame_bottom; function_stack_top = m_stack_frame_top; IRInterpreter::Interpret(*module, *function, args, *m_execution_unit_sp.get(), interpreter_error, function_stack_bottom, function_stack_top, exe_ctx); if (!interpreter_error.Success()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "supposed to interpret, but failed: %s", interpreter_error.AsCString()); return lldb::eExpressionDiscarded; } } else { if (!exe_ctx.HasThreadScope()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "%s called with no thread selected", __FUNCTION__); return lldb::eExpressionSetupError; } Address wrapper_address(m_jit_start_addr); std::vector<lldb::addr_t> args; if (!AddArguments(exe_ctx, args, struct_address, diagnostic_manager)) { diagnostic_manager.Printf(eDiagnosticSeverityError, "errored out in %s, couldn't AddArguments", __FUNCTION__); return lldb::eExpressionSetupError; } lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallUserExpression(exe_ctx.GetThreadRef(), wrapper_address, args, options, shared_ptr_to_me)); StreamString ss; if (!call_plan_sp || !call_plan_sp->ValidatePlan(&ss)) { diagnostic_manager.PutCString(eDiagnosticSeverityError, ss.GetData()); return lldb::eExpressionSetupError; } ThreadPlanCallUserExpression *user_expression_plan = static_cast<ThreadPlanCallUserExpression *>(call_plan_sp.get()); lldb::addr_t function_stack_pointer = user_expression_plan->GetFunctionStackPointer(); function_stack_bottom = function_stack_pointer - HostInfo::GetPageSize(); function_stack_top = function_stack_pointer; if (log) log->Printf("-- [UserExpression::Execute] Execution of expression begins --"); if (exe_ctx.GetProcessPtr()) exe_ctx.GetProcessPtr()->SetRunningUserExpression(true); lldb::ExpressionResults execution_result = exe_ctx.GetProcessRef().RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostic_manager); if (exe_ctx.GetProcessPtr()) exe_ctx.GetProcessPtr()->SetRunningUserExpression(false); if (log) log->Printf("-- [UserExpression::Execute] Execution of expression completed --"); if (execution_result == lldb::eExpressionInterrupted || execution_result == lldb::eExpressionHitBreakpoint) { const char *error_desc = NULL; if (call_plan_sp) { lldb::StopInfoSP real_stop_info_sp = call_plan_sp->GetRealStopInfo(); if (real_stop_info_sp) error_desc = real_stop_info_sp->GetDescription(); } if (error_desc) diagnostic_manager.Printf(eDiagnosticSeverityError, "Execution was interrupted, reason: %s.", error_desc); else diagnostic_manager.PutCString(eDiagnosticSeverityError, "Execution was interrupted."); if ((execution_result == lldb::eExpressionInterrupted && options.DoesUnwindOnError()) || (execution_result == lldb::eExpressionHitBreakpoint && options.DoesIgnoreBreakpoints())) diagnostic_manager.AppendMessageToDiagnostic( "The process has been returned to the state before expression evaluation."); else { if (execution_result == lldb::eExpressionHitBreakpoint) user_expression_plan->TransferExpressionOwnership(); diagnostic_manager.AppendMessageToDiagnostic( "The process has been left at the point where it was interrupted, " "use \"thread return -x\" to return to the state before expression evaluation."); } return execution_result; } else if (execution_result == lldb::eExpressionStoppedForDebug) { diagnostic_manager.PutCString( eDiagnosticSeverityRemark, "Execution was halted at the first instruction of the expression " "function because \"debug\" was requested.\n" "Use \"thread return -x\" to return to the state before expression evaluation."); return execution_result; } else if (execution_result != lldb::eExpressionCompleted) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't execute function; result was %s", Process::ExecutionResultAsCString(execution_result)); return execution_result; } } if (FinalizeJITExecution(diagnostic_manager, exe_ctx, result, function_stack_bottom, function_stack_top)) { return lldb::eExpressionCompleted; } else { return lldb::eExpressionResultUnavailable; } } else { diagnostic_manager.PutCString(eDiagnosticSeverityError, "Expression can't be run, because there is no JIT compiled function"); return lldb::eExpressionSetupError; } }
bool LLVMUserExpression::PrepareToExecuteJITExpression(DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx, lldb::addr_t &struct_address) { lldb::TargetSP target; lldb::ProcessSP process; lldb::StackFrameSP frame; if (!LockAndCheckContext(exe_ctx, target, process, frame)) { diagnostic_manager.PutCString(eDiagnosticSeverityError, "The context has changed before we could JIT the expression!"); return false; } if (m_options.GetREPLEnabled()) { Error materialize_error; m_dematerializer_sp = m_materializer_ap->Materialize(frame, *m_execution_unit_sp, LLDB_INVALID_ADDRESS, materialize_error); if (!materialize_error.Success()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't materialize: %s\n", materialize_error.AsCString()); return false; } return true; } if (m_jit_start_addr != LLDB_INVALID_ADDRESS || m_can_interpret) { if (m_materialized_address == LLDB_INVALID_ADDRESS) { Error alloc_error; IRMemoryMap::AllocationPolicy policy = m_can_interpret ? IRMemoryMap::eAllocationPolicyHostOnly : IRMemoryMap::eAllocationPolicyMirror; const bool zero_memory = false; m_materialized_address = m_execution_unit_sp->Malloc(m_materializer_ap->GetStructByteSize(), m_materializer_ap->GetStructAlignment(), lldb::ePermissionsReadable | lldb::ePermissionsWritable, policy, zero_memory, alloc_error); if (!alloc_error.Success()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't allocate space for materialized struct: %s", alloc_error.AsCString()); return false; } } struct_address = m_materialized_address; if (m_can_interpret && m_stack_frame_bottom == LLDB_INVALID_ADDRESS) { Error alloc_error; const size_t stack_frame_size = 512 * 1024; const bool zero_memory = false; m_stack_frame_bottom = m_execution_unit_sp->Malloc(stack_frame_size, 8, lldb::ePermissionsReadable | lldb::ePermissionsWritable, IRMemoryMap::eAllocationPolicyHostOnly, zero_memory, alloc_error); m_stack_frame_top = m_stack_frame_bottom + stack_frame_size; if (!alloc_error.Success()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't allocate space for the stack frame: %s", alloc_error.AsCString()); return false; } } Error materialize_error; m_dematerializer_sp = m_materializer_ap->Materialize(frame, *m_execution_unit_sp, struct_address, materialize_error); if (!materialize_error.Success()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't materialize: %s", materialize_error.AsCString()); return false; } } return true; }
bool FunctionCaller::WriteFunctionArguments(ExecutionContext &exe_ctx, lldb::addr_t &args_addr_ref, ValueList &arg_values, DiagnosticManager &diagnostic_manager) { // All the information to reconstruct the struct is provided by the // StructExtractor. if (!m_struct_valid) { diagnostic_manager.PutCString( eDiagnosticSeverityError, "Argument information was not correctly parsed, so the function cannot be called."); return false; } Error error; lldb::ExpressionResults return_value = lldb::eExpressionSetupError; Process *process = exe_ctx.GetProcessPtr(); if (process == NULL) return return_value; lldb::ProcessSP jit_process_sp(m_jit_process_wp.lock()); if (process != jit_process_sp.get()) return false; if (args_addr_ref == LLDB_INVALID_ADDRESS) { args_addr_ref = process->AllocateMemory(m_struct_size, lldb::ePermissionsReadable|lldb::ePermissionsWritable, error); if (args_addr_ref == LLDB_INVALID_ADDRESS) return false; m_wrapper_args_addrs.push_back (args_addr_ref); } else { // Make sure this is an address that we've already handed out. if (find (m_wrapper_args_addrs.begin(), m_wrapper_args_addrs.end(), args_addr_ref) == m_wrapper_args_addrs.end()) { return false; } } // TODO: verify fun_addr needs to be a callable address Scalar fun_addr (m_function_addr.GetCallableLoadAddress(exe_ctx.GetTargetPtr())); uint64_t first_offset = m_member_offsets[0]; process->WriteScalarToMemory(args_addr_ref + first_offset, fun_addr, process->GetAddressByteSize(), error); // FIXME: We will need to extend this for Variadic functions. Error value_error; size_t num_args = arg_values.GetSize(); if (num_args != m_arg_values.GetSize()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Wrong number of arguments - was: %" PRIu64 " should be: %" PRIu64 "", (uint64_t)num_args, (uint64_t)m_arg_values.GetSize()); return false; } for (size_t i = 0; i < num_args; i++) { // FIXME: We should sanity check sizes. uint64_t offset = m_member_offsets[i+1]; // Clang sizes are in bytes. Value *arg_value = arg_values.GetValueAtIndex(i); // FIXME: For now just do scalars: // Special case: if it's a pointer, don't do anything (the ABI supports passing cstrings) if (arg_value->GetValueType() == Value::eValueTypeHostAddress && arg_value->GetContextType() == Value::eContextTypeInvalid && arg_value->GetCompilerType().IsPointerType()) continue; const Scalar &arg_scalar = arg_value->ResolveValue(&exe_ctx); if (!process->WriteScalarToMemory(args_addr_ref + offset, arg_scalar, arg_scalar.GetByteSize(), error)) return false; } return true; }
unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { ClangDiagnosticManagerAdapter *adapter = static_cast<ClangDiagnosticManagerAdapter *>(m_compiler->getDiagnostics().getClient()); clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); adapter->ResetManager(&diagnostic_manager); const char *expr_text = m_expr.Text(); clang::SourceManager &source_mgr = m_compiler->getSourceManager(); bool created_main_file = false; if (m_compiler->getCodeGenOpts().getDebugInfo() == codegenoptions::FullDebugInfo) { int temp_fd = -1; llvm::SmallString<PATH_MAX> result_path; FileSpec tmpdir_file_spec; if (HostInfo::GetLLDBPath(lldb::ePathTypeLLDBTempSystemDir, tmpdir_file_spec)) { tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); std::string temp_source_path = tmpdir_file_spec.GetPath(); llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); } else { llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); } if (temp_fd != -1) { lldb_private::File file(temp_fd, true); const size_t expr_text_len = strlen(expr_text); size_t bytes_written = expr_text_len; if (file.Write(expr_text, bytes_written).Success()) { if (bytes_written == expr_text_len) { file.Close(); source_mgr.setMainFileID(source_mgr.createFileID(m_file_manager->getFile(result_path), SourceLocation(), SrcMgr::C_User)); created_main_file = true; } } } } if (!created_main_file) { std::unique_ptr<MemoryBuffer> memory_buffer = MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); } diag_buf->BeginSourceFile(m_compiler->getLangOpts(), &m_compiler->getPreprocessor()); ClangExpressionHelper *type_system_helper = dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); ASTConsumer *ast_transformer = type_system_helper->ASTTransformer(m_code_generator.get()); if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) decl_map->InstallCodeGenerator(m_code_generator.get()); if (ast_transformer) { ast_transformer->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), ast_transformer, m_compiler->getASTContext()); } else { m_code_generator->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), m_compiler->getASTContext()); } diag_buf->EndSourceFile(); unsigned num_errors = diag_buf->getNumErrors(); if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { num_errors++; diagnostic_manager.PutCString(eDiagnosticSeverityError, "while importing modules:"); diagnostic_manager.AppendMessageToDiagnostic(m_pp_callbacks->getErrorString().c_str()); } if (!num_errors) { if (type_system_helper->DeclMap() && !type_system_helper->DeclMap()->ResolveUnknownTypes()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't infer the type of a variable"); num_errors++; } } if (!num_errors) { type_system_helper->CommitPersistentDecls(); } adapter->ResetManager(); return num_errors; }
unsigned ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, CodeCompleteConsumer *completion_consumer, unsigned completion_line, unsigned completion_column) { ClangDiagnosticManagerAdapter *adapter = static_cast<ClangDiagnosticManagerAdapter *>( m_compiler->getDiagnostics().getClient()); clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); adapter->ResetManager(&diagnostic_manager); const char *expr_text = m_expr.Text(); clang::SourceManager &source_mgr = m_compiler->getSourceManager(); bool created_main_file = false; // Clang wants to do completion on a real file known by Clang's file manager, // so we have to create one to make this work. // TODO: We probably could also simulate to Clang's file manager that there // is a real file that contains our code. bool should_create_file = completion_consumer != nullptr; // We also want a real file on disk if we generate full debug info. should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == codegenoptions::FullDebugInfo; if (should_create_file) { int temp_fd = -1; llvm::SmallString<128> result_path; if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); std::string temp_source_path = tmpdir_file_spec.GetPath(); llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); } else { llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); } if (temp_fd != -1) { lldb_private::File file(temp_fd, true); const size_t expr_text_len = strlen(expr_text); size_t bytes_written = expr_text_len; if (file.Write(expr_text, bytes_written).Success()) { if (bytes_written == expr_text_len) { file.Close(); source_mgr.setMainFileID( source_mgr.createFileID(m_file_manager->getFile(result_path), SourceLocation(), SrcMgr::C_User)); created_main_file = true; } } } } if (!created_main_file) { std::unique_ptr<MemoryBuffer> memory_buffer = MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); } diag_buf->BeginSourceFile(m_compiler->getLangOpts(), &m_compiler->getPreprocessor()); ClangExpressionHelper *type_system_helper = dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); ASTConsumer *ast_transformer = type_system_helper->ASTTransformer(m_code_generator.get()); if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) decl_map->InstallCodeGenerator(m_code_generator.get()); // If we want to parse for code completion, we need to attach our code // completion consumer to the Sema and specify a completion position. // While parsing the Sema will call this consumer with the provided // completion suggestions. if (completion_consumer) { auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); auto &PP = m_compiler->getPreprocessor(); // Lines and columns start at 1 in Clang, but code completion positions are // indexed from 0, so we need to add 1 to the line and column here. ++completion_line; ++completion_column; PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); } if (ast_transformer) { ast_transformer->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), ast_transformer, m_compiler->getASTContext(), false, TU_Complete, completion_consumer); } else { m_code_generator->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), m_compiler->getASTContext(), false, TU_Complete, completion_consumer); } diag_buf->EndSourceFile(); unsigned num_errors = diag_buf->getNumErrors(); if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { num_errors++; diagnostic_manager.PutString(eDiagnosticSeverityError, "while importing modules:"); diagnostic_manager.AppendMessageToDiagnostic( m_pp_callbacks->getErrorString()); } if (!num_errors) { if (type_system_helper->DeclMap() && !type_system_helper->DeclMap()->ResolveUnknownTypes()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't infer the type of a variable"); num_errors++; } } if (!num_errors) { type_system_helper->CommitPersistentDecls(); } adapter->ResetManager(); return num_errors; }
bool ClangUserExpression::AddArguments(ExecutionContext &exe_ctx, std::vector<lldb::addr_t> &args, lldb::addr_t struct_address, DiagnosticManager &diagnostic_manager) { lldb::addr_t object_ptr = LLDB_INVALID_ADDRESS; lldb::addr_t cmd_ptr = LLDB_INVALID_ADDRESS; if (m_needs_object_ptr) { lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP(); if (!frame_sp) return true; ConstString object_name; if (m_in_cplusplus_method) { object_name.SetCString("this"); } else if (m_in_objectivec_method) { object_name.SetCString("self"); } else { diagnostic_manager.PutString( eDiagnosticSeverityError, "need object pointer but don't know the language"); return false; } Status object_ptr_error; object_ptr = GetObjectPointer(frame_sp, object_name, object_ptr_error); if (!object_ptr_error.Success()) { exe_ctx.GetTargetRef().GetDebugger().GetAsyncOutputStream()->Printf( "warning: `%s' is not accessible (substituting 0)\n", object_name.AsCString()); object_ptr = 0; } if (m_in_objectivec_method) { ConstString cmd_name("_cmd"); cmd_ptr = GetObjectPointer(frame_sp, cmd_name, object_ptr_error); if (!object_ptr_error.Success()) { diagnostic_manager.Printf( eDiagnosticSeverityWarning, "couldn't get cmd pointer (substituting NULL): %s", object_ptr_error.AsCString()); cmd_ptr = 0; } } args.push_back(object_ptr); if (m_in_objectivec_method) args.push_back(cmd_ptr); args.push_back(struct_address); } else { args.push_back(struct_address); } return true; }
bool ClangUserExpression::Parse(DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx, lldb_private::ExecutionPolicy execution_policy, bool keep_result_in_memory, bool generate_debug_info) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); if (!PrepareForParsing(diagnostic_manager, exe_ctx)) return false; if (log) log->Printf("Parsing the following code:\n%s", m_transformed_text.c_str()); //////////////////////////////////// // Set up the target and compiler // Target *target = exe_ctx.GetTargetPtr(); if (!target) { diagnostic_manager.PutString(eDiagnosticSeverityError, "invalid target"); return false; } ////////////////////////// // Parse the expression // m_materializer_ap.reset(new Materializer()); ResetDeclMap(exe_ctx, m_result_delegate, keep_result_in_memory); OnExit on_exit([this]() { ResetDeclMap(); }); if (!DeclMap()->WillParse(exe_ctx, m_materializer_ap.get())) { diagnostic_manager.PutString( eDiagnosticSeverityError, "current process state is unsuitable for expression parsing"); return false; } if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) { DeclMap()->SetLookupsEnabled(true); } Process *process = exe_ctx.GetProcessPtr(); ExecutionContextScope *exe_scope = process; if (!exe_scope) exe_scope = exe_ctx.GetTargetPtr(); // We use a shared pointer here so we can use the original parser - if it // succeeds or the rewrite parser we might make if it fails. But the // parser_sp will never be empty. ClangExpressionParser parser(exe_scope, *this, generate_debug_info); unsigned num_errors = parser.Parse(diagnostic_manager); // Check here for FixItHints. If there are any try to apply the fixits and // set the fixed text in m_fixed_text before returning an error. if (num_errors) { if (diagnostic_manager.HasFixIts()) { if (parser.RewriteExpression(diagnostic_manager)) { size_t fixed_start; size_t fixed_end; const std::string &fixed_expression = diagnostic_manager.GetFixedExpression(); if (ExpressionSourceCode::GetOriginalBodyBounds( fixed_expression, m_expr_lang, fixed_start, fixed_end)) m_fixed_text = fixed_expression.substr(fixed_start, fixed_end - fixed_start); } } return false; } ////////////////////////////////////////////////////////////////////////////////////////// // Prepare the output of the parser for execution, evaluating it statically // if possible // { Status jit_error = parser.PrepareForExecution( m_jit_start_addr, m_jit_end_addr, m_execution_unit_sp, exe_ctx, m_can_interpret, execution_policy); if (!jit_error.Success()) { const char *error_cstr = jit_error.AsCString(); if (error_cstr && error_cstr[0]) diagnostic_manager.PutString(eDiagnosticSeverityError, error_cstr); else diagnostic_manager.PutString(eDiagnosticSeverityError, "expression can't be interpreted or run"); return false; } } if (exe_ctx.GetProcessPtr() && execution_policy == eExecutionPolicyTopLevel) { Status static_init_error = parser.RunStaticInitializers(m_execution_unit_sp, exe_ctx); if (!static_init_error.Success()) { const char *error_cstr = static_init_error.AsCString(); if (error_cstr && error_cstr[0]) diagnostic_manager.Printf(eDiagnosticSeverityError, "couldn't run static initializers: %s\n", error_cstr); else diagnostic_manager.PutString(eDiagnosticSeverityError, "couldn't run static initializers\n"); return false; } } if (m_execution_unit_sp) { bool register_execution_unit = false; if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) { register_execution_unit = true; } // If there is more than one external function in the execution unit, it // needs to keep living even if it's not top level, because the result // could refer to that function. if (m_execution_unit_sp->GetJittedFunctions().size() > 1) { register_execution_unit = true; } if (register_execution_unit) { llvm::cast<PersistentExpressionState>( exe_ctx.GetTargetPtr()->GetPersistentExpressionStateForLanguage( m_language)) ->RegisterExecutionUnit(m_execution_unit_sp); } } if (generate_debug_info) { lldb::ModuleSP jit_module_sp(m_execution_unit_sp->GetJITModule()); if (jit_module_sp) { ConstString const_func_name(FunctionName()); FileSpec jit_file; jit_file.GetFilename() = const_func_name; jit_module_sp->SetFileSpecAndObjectName(jit_file, ConstString()); m_jit_module_wp = jit_module_sp; target->GetImages().Append(jit_module_sp); } } if (process && m_jit_start_addr != LLDB_INVALID_ADDRESS) m_jit_process_wp = lldb::ProcessWP(process->shared_from_this()); return true; }
unsigned ClangExpressionParser::Parse (DiagnosticManager &diagnostic_manager, uint32_t first_line, uint32_t last_line, uint32_t line_offset) { ClangDiagnosticManagerAdapter *adapter = static_cast<ClangDiagnosticManagerAdapter *>(m_compiler->getDiagnostics().getClient()); clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); adapter->ResetManager(&diagnostic_manager); const char *expr_text = m_expr.Text(); clang::SourceManager &SourceMgr = m_compiler->getSourceManager(); bool created_main_file = false; if (m_expr.GetOptions() && m_expr.GetOptions()->GetPoundLineFilePath() == NULL && m_compiler->getCodeGenOpts().getDebugInfo() == CodeGenOptions::FullDebugInfo) { std::string temp_source_path; if (ExpressionSourceCode::SaveExpressionTextToTempFile(expr_text, *m_expr.GetOptions(), temp_source_path)) { auto file = m_file_manager->getFile(temp_source_path); if (file) { SourceMgr.setMainFileID(SourceMgr.createFileID (file, SourceLocation(), SrcMgr::C_User)); created_main_file = true; } } } if (!created_main_file) { std::unique_ptr<MemoryBuffer> memory_buffer = MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); SourceMgr.setMainFileID(SourceMgr.createFileID(std::move(memory_buffer))); } diag_buf->BeginSourceFile(m_compiler->getLangOpts(), &m_compiler->getPreprocessor()); ClangExpressionHelper *type_system_helper = dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); ASTConsumer *ast_transformer = type_system_helper->ASTTransformer(m_code_generator.get()); if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) decl_map->InstallCodeGenerator(m_code_generator.get()); if (ast_transformer) { ast_transformer->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), ast_transformer, m_compiler->getASTContext()); } else { m_code_generator->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), m_compiler->getASTContext()); } diag_buf->EndSourceFile(); unsigned num_errors = diag_buf->getNumErrors(); if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { num_errors++; diagnostic_manager.PutCString(eDiagnosticSeverityError, "while importing modules:"); diagnostic_manager.AppendMessageToDiagnostic(m_pp_callbacks->getErrorString().c_str()); } if (!num_errors) { if (type_system_helper->DeclMap() && !type_system_helper->DeclMap()->ResolveUnknownTypes()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't infer the type of a variable"); num_errors++; } } if (!num_errors) { type_system_helper->CommitPersistentDecls(); } adapter->ResetManager(); return num_errors; }