Example #1
0
void test1(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 1 - traditional, bad\n";

   // traditional sum of squares and products method of calculation
   // but not adjusting means; maybe subject to round-off error

   // make matrix of predictor values with 1s into col 1 of matrix
   int npred1 = npred+1;        // number of cols including col of ones.
   Matrix X(nobs,npred1);
   X.Column(1) = 1.0;

   // load x1 and x2 into X
   //    [use << rather than = when loading arrays]
   X.Column(2) << x1;  X.Column(3) << x2;

   // vector of Y values
   ColumnVector Y(nobs); Y << y;

   // form sum of squares and product matrix
   //    [use << rather than = for copying Matrix into SymmetricMatrix]
   SymmetricMatrix SSQ; SSQ << X.t() * X;

   // calculate estimate
   //    [bracket last two terms to force this multiplication first]
   //    [ .i() means inverse, but inverse is not explicity calculated]
   ColumnVector A = SSQ.i() * (X.t() * Y);

   // Get variances of estimates from diagonal elements of inverse of SSQ
   // get inverse of SSQ - we need it for finding D
   DiagonalMatrix D; D << SSQ.i();
   ColumnVector V = D.AsColumn();

   // Calculate fitted values and residuals
   ColumnVector Fitted = X * A;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // Get diagonals of Hat matrix (an expensive way of doing this)
   DiagonalMatrix Hat;  Hat << X * (X.t() * X).i() * X.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";

   // make vector of standard errors
   ColumnVector SE(npred1);
   for (int i=1; i<=npred1; i++) SE(i) = sqrt(V(i)*ResVar);
   // use concatenation function to form matrix and use matrix print
   // to get two columns
   cout << setw(11) << setprecision(5) << (A | SE) << endl;

   cout << "\nObservations, fitted value, residual value, hat value\n";

   // use concatenation again; select only columns 2 to 3 of X
   cout << setw(9) << setprecision(3) <<
     (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
Example #2
0
void test3(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 3 - Cholesky\n";

   // traditional sum of squares and products method of calculation
   // with subtraction of means - using Cholesky decomposition

   Matrix X(nobs,npred);
   X.Column(1) << x1;  X.Column(2) << x2;
   ColumnVector Y(nobs); Y << y;
   ColumnVector Ones(nobs); Ones = 1.0;
   RowVector M = Ones.t() * X / nobs;
   Matrix XC(nobs,npred);
   XC = X - Ones * M;
   ColumnVector YC(nobs);
   Real m = Sum(Y) / nobs;  YC = Y - Ones * m;
   SymmetricMatrix SSQ; SSQ << XC.t() * XC;

   // Cholesky decomposition of SSQ
   LowerTriangularMatrix L = Cholesky(SSQ);

   // calculate estimate
   ColumnVector A = L.t().i() * (L.i() * (XC.t() * YC));

   // calculate estimate of constant term
   Real a = m - (M * A).AsScalar();

   // Get variances of estimates from diagonal elements of invoice of SSQ
   DiagonalMatrix D; D << L.t().i() * L.i();
   ColumnVector V = D.AsColumn();
   Real v = 1.0/nobs + (L.i() * M.t()).SumSquare();

   // Calculate fitted values and residuals
   int npred1 = npred+1;
   ColumnVector Fitted = X * A + a;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // Get diagonals of Hat matrix (an expensive way of doing this)
   Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
   DiagonalMatrix Hat;  Hat << X1 * (X1.t() * X1).i() * X1.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   cout.setf(ios::fixed, ios::floatfield);
   cout << setw(11) << setprecision(5)  << a << " ";
   cout << setw(11) << setprecision(5)  << sqrt(v*ResVar) << endl;
   ColumnVector SE(npred);
   for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar);
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) <<
      (X | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
Example #3
0
int main()
{
   {
      // Get the data
      ColumnVector X(6);
      ColumnVector Y(6);
      X << 1   << 2   <<  3   <<  4   <<  6   <<  8;
      Y << 3.2 << 7.9 << 11.1 << 14.5 << 16.7 << 18.3;


      // Do the fit
      Model_3pe model(X);                // the model object
      NonLinearLeastSquares NLLS(model); // the non-linear least squares
                                         // object
      ColumnVector Para(3);              // for the parameters
      Para << 9 << -6 << .5;             // trial values of parameters
      cout << "Fitting parameters\n";
      NLLS.Fit(Y,Para);                  // do the fit

      // Inspect the results
      ColumnVector SE;                   // for the standard errors
      NLLS.GetStandardErrors(SE);
      cout << "\n\nEstimates and standard errors\n" <<
         setw(10) << setprecision(2) << (Para | SE) << endl;
      Real ResidualSD = sqrt(NLLS.ResidualVariance());
      cout << "\nResidual s.d. = " << setw(10) << setprecision(2) <<
         ResidualSD << endl;
      SymmetricMatrix Correlations;
      NLLS.GetCorrelations(Correlations);
      cout << "\nCorrelationMatrix\n" <<
         setw(10) << setprecision(2) << Correlations << endl;
      ColumnVector Residuals;
      NLLS.GetResiduals(Residuals);
      DiagonalMatrix Hat;
      NLLS.GetHatDiagonal(Hat);
      cout << "\nX, Y, Residual, Hat\n" << setw(10) << setprecision(2) <<
         (X | Y | Residuals | Hat.AsColumn()) << endl;
      // recover var/cov matrix
      SymmetricMatrix D;
      D << SE.AsDiagonal() * Correlations * SE.AsDiagonal();
      cout << "\nVar/cov\n" << setw(14) << setprecision(4) << D << endl;
   }

#ifdef DO_FREE_CHECK
   FreeCheck::Status();
#endif
 
   return 0;
}
Example #4
0
void test4(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 4 - QR triangularisation\n";

   // QR triangularisation method
 
   // load data - 1s into col 1 of matrix
   int npred1 = npred+1;
   Matrix X(nobs,npred1); ColumnVector Y(nobs);
   X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y;

   // do Householder triangularisation
   // no need to deal with constant term separately
   Matrix X1 = X;                 // Want copy of matrix
   ColumnVector Y1 = Y;
   UpperTriangularMatrix U; ColumnVector M;
   QRZ(X1, U); QRZ(X1, Y1, M);    // Y1 now contains resids
   ColumnVector A = U.i() * M;
   ColumnVector Fitted = X * A;
   Real ResVar = Y1.SumSquare() / (nobs-npred1);

   // get variances of estimates
   U = U.i(); DiagonalMatrix D; D << U * U.t();

   // Get diagonals of Hat matrix
   DiagonalMatrix Hat;  Hat << X1 * X1.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   ColumnVector SE(npred1);
   for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) << 
      (X.Columns(2,3) | Y | Fitted | Y1 | Hat.AsColumn());
   cout << "\n\n";
}
Example #5
0
void test5(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 5 - singular value\n";

   // Singular value decomposition method
 
   // load data - 1s into col 1 of matrix
   int npred1 = npred+1;
   Matrix X(nobs,npred1); ColumnVector Y(nobs);
   X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y;

   // do SVD
   Matrix U, V; DiagonalMatrix D;
   SVD(X,D,U,V);                              // X = U * D * V.t()
   ColumnVector Fitted = U.t() * Y;
   ColumnVector A = V * ( D.i() * Fitted );
   Fitted = U * Fitted;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // get variances of estimates
   D << V * (D * D).i() * V.t();

   // Get diagonals of Hat matrix
   DiagonalMatrix Hat;  Hat << U * U.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   ColumnVector SE(npred1);
   for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) << 
      (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
Example #6
0
int my_main()                  // called by main()
{
   Tracer tr("my_main ");      // for tracking exceptions
   
   int n = 7;                 // this is the order we will work with
   int i, j;

   // declare a matrix
   SymmetricMatrix H(n);
   
   // load values for Hilbert matrix
   for (i = 1; i <= n; ++i) for (j = 1; j <= i; ++j)
      H(i, j) = 1.0 / (i + j - 1);

   // print the matrix
   cout << "SymmetricMatrix H" << endl;
   cout << setw(10) << setprecision(7) << H << endl;
   
   // calculate its eigenvalues and eigenvectors and print them
   Matrix U; DiagonalMatrix D;
   EigenValues(H, D, U);
   cout << "Eigenvalues of H" << endl;
   cout << setw(17) << setprecision(14) << D.AsColumn() << endl;
   cout << "Eigenvector matrix, U" << endl;
   cout << setw(10) << setprecision(7) << U << endl;

   // check orthogonality
   cout << "U * U.t() (should be near identity)" << endl;   
   cout << setw(10) << setprecision(7) << (U * U.t()) << endl;
   
   // check decomposition
   cout << "U * D * U.t() (should be near H)" << endl;   
   cout << setw(10) << setprecision(7) << (U * D * U.t()) << endl;
   
   return 0;
}
Example #7
0
void test2(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 2 - traditional, OK\n";

   // traditional sum of squares and products method of calculation
   // with subtraction of means - less subject to round-off error
   // than test1

   // make matrix of predictor values
   Matrix X(nobs,npred);

   // load x1 and x2 into X
   //    [use << rather than = when loading arrays]
   X.Column(1) << x1;  X.Column(2) << x2;

   // vector of Y values
   ColumnVector Y(nobs); Y << y;

   // make vector of 1s
   ColumnVector Ones(nobs); Ones = 1.0;

   // calculate means (averages) of x1 and x2 [ .t() takes transpose]
   RowVector M = Ones.t() * X / nobs;

   // and subtract means from x1 and x1
   Matrix XC(nobs,npred);
   XC = X - Ones * M;

   // do the same to Y [use Sum to get sum of elements]
   ColumnVector YC(nobs);
   Real m = Sum(Y) / nobs;  YC = Y - Ones * m;

   // form sum of squares and product matrix
   //    [use << rather than = for copying Matrix into SymmetricMatrix]
   SymmetricMatrix SSQ; SSQ << XC.t() * XC;

   // calculate estimate
   //    [bracket last two terms to force this multiplication first]
   //    [ .i() means inverse, but inverse is not explicity calculated]
   ColumnVector A = SSQ.i() * (XC.t() * YC);

   // calculate estimate of constant term
   //    [AsScalar converts 1x1 matrix to Real]
   Real a = m - (M * A).AsScalar();

   // Get variances of estimates from diagonal elements of inverse of SSQ
   //    [ we are taking inverse of SSQ - we need it for finding D ]
   Matrix ISSQ = SSQ.i(); DiagonalMatrix D; D << ISSQ;
   ColumnVector V = D.AsColumn();
   Real v = 1.0/nobs + (M * ISSQ * M.t()).AsScalar();
					    // for calc variance of const

   // Calculate fitted values and residuals
   int npred1 = npred+1;
   ColumnVector Fitted = X * A + a;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // Get diagonals of Hat matrix (an expensive way of doing this)
   Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
   DiagonalMatrix Hat;  Hat << X1 * (X1.t() * X1).i() * X1.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   cout.setf(ios::fixed, ios::floatfield);
   cout << setw(11) << setprecision(5)  << a << " ";
   cout << setw(11) << setprecision(5)  << sqrt(v*ResVar) << endl;
   // make vector of standard errors
   ColumnVector SE(npred);
   for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar);
   // use concatenation function to form matrix and use matrix print
   // to get two columns
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) <<
     (X | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
Example #8
0
void trymatc()
{
//   cout << "\nTwelfth test of Matrix package\n";
   Tracer et("Twelfth test of Matrix package");
   Tracer::PrintTrace();
   DiagonalMatrix D(15); D=1.5;
   Matrix A(15,15);
   int i,j;
   for (i=1;i<=15;i++) for (j=1;j<=15;j++) A(i,j)=i*i+j-150;
   { A = A + D; }
   ColumnVector B(15);
   for (i=1;i<=15;i++) B(i)=i+i*i-150.0;
   {
      Tracer et1("Stage 1");
      ColumnVector B1=B;
      B=(A*2.0).i() * B1;
      Matrix X = A*B-B1/2.0;
      Clean(X, 0.000000001); Print(X);
      A.ReSize(3,5);
      for (i=1; i<=3; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;

      B = A.AsColumn()+10000;
      RowVector R = (A+10000).AsColumn().t();
      Print( RowVector(R-B.t()) );
   }

   {
      Tracer et1("Stage 2");
      B = A.AsColumn()+10000;
      Matrix XR = (A+10000).AsMatrix(15,1).t();
      Print( RowVector(XR-B.t()) );
   }

   {
      Tracer et1("Stage 3");
      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0+10000;
      Matrix MR = (A+10000).AsColumn().t();
      Print( RowVector(MR-B.t()) );

      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
      MR = A.AsColumn().t();
      Print( RowVector(MR-B.t()) );
   }

   {
      Tracer et1("Stage 4");
      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
      RowVector R = A.AsColumn().t();
      Print( RowVector(R-B.t()) );
   }

   {
      Tracer et1("Stage 5");
      RowVector R = (A.AsColumn()-5000).t();
      B = ((R.t()+10000) - A.AsColumn())-5000;
      Print( RowVector(B.t()) );
   }

   {
      Tracer et1("Stage 6");
      B = A.AsColumn(); ColumnVector B1 = (A+10000).AsColumn() - 10000;
      Print(ColumnVector(B1-B));
   }

   {
      Tracer et1("Stage 7");
      Matrix X = B.AsMatrix(3,5); Print(Matrix(X-A));
      for (i=1; i<=3; i++) for (j=1; j<=5; j++) B(5*(i-1)+j) -= i+100*j;
      Print(B);
   }

   {
      Tracer et1("Stage 8");
      A.ReSize(7,7); D.ReSize(7);
      for (i=1; i<=7; i++) for (j=1; j<=7; j++) A(i,j) = i*j*j;
      for (i=1; i<=7; i++) D(i,i) = i;
      UpperTriangularMatrix U; U << A;
      Matrix X = A; for (i=1; i<=7; i++) X(i,i) = i;
      A.Inject(D); Print(Matrix(X-A));
      X = U; U.Inject(D); A = U; for (i=1; i<=7; i++) X(i,i) = i;
      Print(Matrix(X-A));
   }

   {
      Tracer et1("Stage 9");
      A.ReSize(7,5);
      for (i=1; i<=7; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;
      Matrix Y = A; Y = Y - ((const Matrix&)A); Print(Y);
      Matrix X = A;
      Y = A; Y = ((const Matrix&)X) - A; Print(Y); Y = 0.0;
      Y = ((const Matrix&)X) - ((const Matrix&)A); Print(Y);
   }

   {
      Tracer et1("Stage 10");
      // some tests on submatrices
      UpperTriangularMatrix U(20);
      for (i=1; i<=20; i++) for (j=i; j<=20; j++) U(i,j)=100 * i + j;
      UpperTriangularMatrix V = U.SymSubMatrix(1,5);
      UpperTriangularMatrix U1 = U;
      U1.SubMatrix(4,8,5,9) /= 2;
      U1.SubMatrix(4,8,5,9) += 388 * V;
      U1.SubMatrix(4,8,5,9) *= 2;
      U1.SubMatrix(4,8,5,9) += V;
      U1 -= U; UpperTriangularMatrix U2 = U1;
      U1 << U1.SubMatrix(4,8,5,9);
      U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
      U1 -= (777*V); Print(U1);

      U1 = U; U1.SubMatrix(4,8,5,9) -= U.SymSubMatrix(1,5);
      U1 -= U;  U2 = U1; U1 << U1.SubMatrix(4,8,5,9);
      U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
      U1 += V; Print(U1);

      U1 = U;
      U1.SubMatrix(3,10,15,19) += 29;
      U1 -= U;
      Matrix X = U1.SubMatrix(3,10,15,19); X -= 29; Print(X);
      U1.SubMatrix(3,10,15,19) *= 0; Print(U1);

      LowerTriangularMatrix L = U.t();
      LowerTriangularMatrix M = L.SymSubMatrix(1,5);
      LowerTriangularMatrix L1 = L;
      L1.SubMatrix(5,9,4,8) /= 2;
      L1.SubMatrix(5,9,4,8) += 388 * M;
      L1.SubMatrix(5,9,4,8) *= 2;
      L1.SubMatrix(5,9,4,8) += M;
      L1 -= L; LowerTriangularMatrix L2 = L1;
      L1 << L1.SubMatrix(5,9,4,8);
      L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
      L1 -= (777*M); Print(L1);

      L1 = L; L1.SubMatrix(5,9,4,8) -= L.SymSubMatrix(1,5);
      L1 -= L; L2 =L1; L1 << L1.SubMatrix(5,9,4,8);
      L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
      L1 += M; Print(L1);

      L1 = L;
      L1.SubMatrix(15,19,3,10) -= 29;
      L1 -= L;
      X = L1.SubMatrix(15,19,3,10); X += 29; Print(X);
      L1.SubMatrix(15,19,3,10) *= 0; Print(L1);
   }

   {
      Tracer et1("Stage 11");
      // more tests on submatrices
      Matrix M(20,30);
      for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
      Matrix M1 = M;

      for (j=1; j<=30; j++)
         { ColumnVector CV = 3 * M1.Column(j); M.Column(j) += CV; }
      for (i=1; i<=20; i++)
         { RowVector RV = 5 * M1.Row(i); M.Row(i) -= RV; }

      M += M1; Print(M);
 
   }

   {
      Tracer et1("Stage 12");
      // more tests on Release
      Matrix M(20,30);
      for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
      Matrix M1 = M;
      M.Release();
      Matrix M2 = M;
      Matrix X = M;   Print(X);
      X = M1 - M2;    Print(X);

#ifndef DONT_DO_NRIC
      nricMatrix N = M1;
      nricMatrix N1 = N;
      N.Release();
      nricMatrix N2 = N;
      nricMatrix Y = N;   Print(Y);
      Y = N1 - N2;        Print(Y);
      
      N = M1 / 2; N1 = N * 2; N.Release(); N2 = N * 2; Y = N; Print(N);
      Y = (N1 - M1) | (N2 - M1); Print(Y);
#endif

   }
   
   {
      Tracer et("Stage 13");
      // test sum of squares of rows or columns
      MultWithCarry mwc;
      DiagonalMatrix DM; Matrix X;
      // rectangular matrix
      Matrix A(20, 15);
      FillWithValues(mwc, A);
      // sum of squares of rows
      DM << A * A.t();
      ColumnVector CV = A.sum_square_rows();
      X = CV - DM.AsColumn(); Clean(X, 0.000000001); Print(X);
      DM << A.t() * A;
      RowVector RV = A.sum_square_columns();
      X = RV - DM.AsRow(); Clean(X, 0.000000001); Print(X);
      X = RV - A.t().sum_square_rows().t(); Clean(X, 0.000000001); Print(X);
      X = CV - A.t().sum_square_columns().t(); Clean(X, 0.000000001); Print(X);
      // UpperTriangularMatrix
      A.ReSize(17,17); FillWithValues(mwc, A);
      UpperTriangularMatrix UT; UT << A;
      Matrix A1 = UT;
      X = UT.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = UT.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // LowerTriangularMatrix
      LowerTriangularMatrix LT; LT << A;
      A1 = LT;
      X = LT.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = LT.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // SymmetricMatrix
      SymmetricMatrix SM; SM << A;
      A1 = SM;
      X = SM.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = SM.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // DiagonalMatrix
      DM << A;
      A1 = DM;
      X = DM.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = DM.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // BandMatrix
      BandMatrix BM(17, 3, 5); BM.Inject(A);
      A1 = BM;
      X = BM.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = BM.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // SymmetricBandMatrix
      SymmetricBandMatrix SBM(17, 4); SBM.Inject(A);
      A1 = SBM;
      X = SBM.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = SBM.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // IdentityMatrix
      IdentityMatrix IM(29);
      X = IM.sum_square_rows() - 1; Print(X);
      X = IM.sum_square_columns() - 1; Print(X);
      // Matrix with zero rows
      A1.ReSize(0,10);
      X.ReSize(1,10); X = 0; X -= A1.sum_square_columns(); Print(X);
      X.ReSize(0,1); X -= A1.sum_square_rows(); Print(X);
      // Matrix with zero columns
      A1.ReSize(10,0);
      X.ReSize(10,1); X = 0; X -= A1.sum_square_rows(); Print(X);
      X.ReSize(1,0); X -= A1.sum_square_columns(); Print(X);
      
   }
   
   {
      Tracer et("Stage 14");
      // test extend orthonormal
      MultWithCarry mwc;
      Matrix A(20,5); FillWithValues(mwc, A);
      // Orthonormalise
      UpperTriangularMatrix R;
      Matrix A_old = A;
      QRZ(A,R);
      // Check decomposition
      Matrix X = A * R - A_old; Clean(X, 0.000000001); Print(X);
      // Check orthogonality
      X = A.t() * A - IdentityMatrix(5);
      Clean(X, 0.000000001); Print(X);
      // Try orthonality extend 
      SquareMatrix A1(20);
      A1.Columns(1,5) = A;
      extend_orthonormal(A1,5);
      // check columns unchanged
      X = A - A1.Columns(1,5); Print(X);
      // Check orthogonality
      X = A1.t() * A1 - IdentityMatrix(20);
      Clean(X, 0.000000001); Print(X); 
      X = A1 * A1.t() - IdentityMatrix(20);
      Clean(X, 0.000000001); Print(X);
      // Test with smaller number of columns 
      Matrix A2(20,15);
      A2.Columns(1,5) = A;
      extend_orthonormal(A2,5);
      // check columns unchanged
      X = A - A2.Columns(1,5); Print(X);
      // Check orthogonality
      X = A2.t() * A2 - IdentityMatrix(15);
      Clean(X, 0.000000001); Print(X);
      // check it works with no columns to start with
      A2.ReSize(100,100);
      extend_orthonormal(A2,0);
      // Check orthogonality
      X = A2.t() * A2 - IdentityMatrix(100);
      Clean(X, 0.000000001); Print(X);
      X = A2 * A2.t() - IdentityMatrix(100);
      Clean(X, 0.000000001); Print(X);
 
   }
   

//   cout << "\nEnd of twelfth test\n";
}