void test1(Real* y, Real* x1, Real* x2, int nobs, int npred) { cout << "\n\nTest 1 - traditional, bad\n"; // traditional sum of squares and products method of calculation // but not adjusting means; maybe subject to round-off error // make matrix of predictor values with 1s into col 1 of matrix int npred1 = npred+1; // number of cols including col of ones. Matrix X(nobs,npred1); X.Column(1) = 1.0; // load x1 and x2 into X // [use << rather than = when loading arrays] X.Column(2) << x1; X.Column(3) << x2; // vector of Y values ColumnVector Y(nobs); Y << y; // form sum of squares and product matrix // [use << rather than = for copying Matrix into SymmetricMatrix] SymmetricMatrix SSQ; SSQ << X.t() * X; // calculate estimate // [bracket last two terms to force this multiplication first] // [ .i() means inverse, but inverse is not explicity calculated] ColumnVector A = SSQ.i() * (X.t() * Y); // Get variances of estimates from diagonal elements of inverse of SSQ // get inverse of SSQ - we need it for finding D DiagonalMatrix D; D << SSQ.i(); ColumnVector V = D.AsColumn(); // Calculate fitted values and residuals ColumnVector Fitted = X * A; ColumnVector Residual = Y - Fitted; Real ResVar = Residual.SumSquare() / (nobs-npred1); // Get diagonals of Hat matrix (an expensive way of doing this) DiagonalMatrix Hat; Hat << X * (X.t() * X).i() * X.t(); // print out answers cout << "\nEstimates and their standard errors\n\n"; // make vector of standard errors ColumnVector SE(npred1); for (int i=1; i<=npred1; i++) SE(i) = sqrt(V(i)*ResVar); // use concatenation function to form matrix and use matrix print // to get two columns cout << setw(11) << setprecision(5) << (A | SE) << endl; cout << "\nObservations, fitted value, residual value, hat value\n"; // use concatenation again; select only columns 2 to 3 of X cout << setw(9) << setprecision(3) << (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn()); cout << "\n\n"; }
void test3(Real* y, Real* x1, Real* x2, int nobs, int npred) { cout << "\n\nTest 3 - Cholesky\n"; // traditional sum of squares and products method of calculation // with subtraction of means - using Cholesky decomposition Matrix X(nobs,npred); X.Column(1) << x1; X.Column(2) << x2; ColumnVector Y(nobs); Y << y; ColumnVector Ones(nobs); Ones = 1.0; RowVector M = Ones.t() * X / nobs; Matrix XC(nobs,npred); XC = X - Ones * M; ColumnVector YC(nobs); Real m = Sum(Y) / nobs; YC = Y - Ones * m; SymmetricMatrix SSQ; SSQ << XC.t() * XC; // Cholesky decomposition of SSQ LowerTriangularMatrix L = Cholesky(SSQ); // calculate estimate ColumnVector A = L.t().i() * (L.i() * (XC.t() * YC)); // calculate estimate of constant term Real a = m - (M * A).AsScalar(); // Get variances of estimates from diagonal elements of invoice of SSQ DiagonalMatrix D; D << L.t().i() * L.i(); ColumnVector V = D.AsColumn(); Real v = 1.0/nobs + (L.i() * M.t()).SumSquare(); // Calculate fitted values and residuals int npred1 = npred+1; ColumnVector Fitted = X * A + a; ColumnVector Residual = Y - Fitted; Real ResVar = Residual.SumSquare() / (nobs-npred1); // Get diagonals of Hat matrix (an expensive way of doing this) Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X; DiagonalMatrix Hat; Hat << X1 * (X1.t() * X1).i() * X1.t(); // print out answers cout << "\nEstimates and their standard errors\n\n"; cout.setf(ios::fixed, ios::floatfield); cout << setw(11) << setprecision(5) << a << " "; cout << setw(11) << setprecision(5) << sqrt(v*ResVar) << endl; ColumnVector SE(npred); for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar); cout << setw(11) << setprecision(5) << (A | SE) << endl; cout << "\nObservations, fitted value, residual value, hat value\n"; cout << setw(9) << setprecision(3) << (X | Y | Fitted | Residual | Hat.AsColumn()); cout << "\n\n"; }
int main() { { // Get the data ColumnVector X(6); ColumnVector Y(6); X << 1 << 2 << 3 << 4 << 6 << 8; Y << 3.2 << 7.9 << 11.1 << 14.5 << 16.7 << 18.3; // Do the fit Model_3pe model(X); // the model object NonLinearLeastSquares NLLS(model); // the non-linear least squares // object ColumnVector Para(3); // for the parameters Para << 9 << -6 << .5; // trial values of parameters cout << "Fitting parameters\n"; NLLS.Fit(Y,Para); // do the fit // Inspect the results ColumnVector SE; // for the standard errors NLLS.GetStandardErrors(SE); cout << "\n\nEstimates and standard errors\n" << setw(10) << setprecision(2) << (Para | SE) << endl; Real ResidualSD = sqrt(NLLS.ResidualVariance()); cout << "\nResidual s.d. = " << setw(10) << setprecision(2) << ResidualSD << endl; SymmetricMatrix Correlations; NLLS.GetCorrelations(Correlations); cout << "\nCorrelationMatrix\n" << setw(10) << setprecision(2) << Correlations << endl; ColumnVector Residuals; NLLS.GetResiduals(Residuals); DiagonalMatrix Hat; NLLS.GetHatDiagonal(Hat); cout << "\nX, Y, Residual, Hat\n" << setw(10) << setprecision(2) << (X | Y | Residuals | Hat.AsColumn()) << endl; // recover var/cov matrix SymmetricMatrix D; D << SE.AsDiagonal() * Correlations * SE.AsDiagonal(); cout << "\nVar/cov\n" << setw(14) << setprecision(4) << D << endl; } #ifdef DO_FREE_CHECK FreeCheck::Status(); #endif return 0; }
void test4(Real* y, Real* x1, Real* x2, int nobs, int npred) { cout << "\n\nTest 4 - QR triangularisation\n"; // QR triangularisation method // load data - 1s into col 1 of matrix int npred1 = npred+1; Matrix X(nobs,npred1); ColumnVector Y(nobs); X.Column(1) = 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y; // do Householder triangularisation // no need to deal with constant term separately Matrix X1 = X; // Want copy of matrix ColumnVector Y1 = Y; UpperTriangularMatrix U; ColumnVector M; QRZ(X1, U); QRZ(X1, Y1, M); // Y1 now contains resids ColumnVector A = U.i() * M; ColumnVector Fitted = X * A; Real ResVar = Y1.SumSquare() / (nobs-npred1); // get variances of estimates U = U.i(); DiagonalMatrix D; D << U * U.t(); // Get diagonals of Hat matrix DiagonalMatrix Hat; Hat << X1 * X1.t(); // print out answers cout << "\nEstimates and their standard errors\n\n"; ColumnVector SE(npred1); for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar); cout << setw(11) << setprecision(5) << (A | SE) << endl; cout << "\nObservations, fitted value, residual value, hat value\n"; cout << setw(9) << setprecision(3) << (X.Columns(2,3) | Y | Fitted | Y1 | Hat.AsColumn()); cout << "\n\n"; }
void test5(Real* y, Real* x1, Real* x2, int nobs, int npred) { cout << "\n\nTest 5 - singular value\n"; // Singular value decomposition method // load data - 1s into col 1 of matrix int npred1 = npred+1; Matrix X(nobs,npred1); ColumnVector Y(nobs); X.Column(1) = 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y; // do SVD Matrix U, V; DiagonalMatrix D; SVD(X,D,U,V); // X = U * D * V.t() ColumnVector Fitted = U.t() * Y; ColumnVector A = V * ( D.i() * Fitted ); Fitted = U * Fitted; ColumnVector Residual = Y - Fitted; Real ResVar = Residual.SumSquare() / (nobs-npred1); // get variances of estimates D << V * (D * D).i() * V.t(); // Get diagonals of Hat matrix DiagonalMatrix Hat; Hat << U * U.t(); // print out answers cout << "\nEstimates and their standard errors\n\n"; ColumnVector SE(npred1); for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar); cout << setw(11) << setprecision(5) << (A | SE) << endl; cout << "\nObservations, fitted value, residual value, hat value\n"; cout << setw(9) << setprecision(3) << (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn()); cout << "\n\n"; }
int my_main() // called by main() { Tracer tr("my_main "); // for tracking exceptions int n = 7; // this is the order we will work with int i, j; // declare a matrix SymmetricMatrix H(n); // load values for Hilbert matrix for (i = 1; i <= n; ++i) for (j = 1; j <= i; ++j) H(i, j) = 1.0 / (i + j - 1); // print the matrix cout << "SymmetricMatrix H" << endl; cout << setw(10) << setprecision(7) << H << endl; // calculate its eigenvalues and eigenvectors and print them Matrix U; DiagonalMatrix D; EigenValues(H, D, U); cout << "Eigenvalues of H" << endl; cout << setw(17) << setprecision(14) << D.AsColumn() << endl; cout << "Eigenvector matrix, U" << endl; cout << setw(10) << setprecision(7) << U << endl; // check orthogonality cout << "U * U.t() (should be near identity)" << endl; cout << setw(10) << setprecision(7) << (U * U.t()) << endl; // check decomposition cout << "U * D * U.t() (should be near H)" << endl; cout << setw(10) << setprecision(7) << (U * D * U.t()) << endl; return 0; }
void test2(Real* y, Real* x1, Real* x2, int nobs, int npred) { cout << "\n\nTest 2 - traditional, OK\n"; // traditional sum of squares and products method of calculation // with subtraction of means - less subject to round-off error // than test1 // make matrix of predictor values Matrix X(nobs,npred); // load x1 and x2 into X // [use << rather than = when loading arrays] X.Column(1) << x1; X.Column(2) << x2; // vector of Y values ColumnVector Y(nobs); Y << y; // make vector of 1s ColumnVector Ones(nobs); Ones = 1.0; // calculate means (averages) of x1 and x2 [ .t() takes transpose] RowVector M = Ones.t() * X / nobs; // and subtract means from x1 and x1 Matrix XC(nobs,npred); XC = X - Ones * M; // do the same to Y [use Sum to get sum of elements] ColumnVector YC(nobs); Real m = Sum(Y) / nobs; YC = Y - Ones * m; // form sum of squares and product matrix // [use << rather than = for copying Matrix into SymmetricMatrix] SymmetricMatrix SSQ; SSQ << XC.t() * XC; // calculate estimate // [bracket last two terms to force this multiplication first] // [ .i() means inverse, but inverse is not explicity calculated] ColumnVector A = SSQ.i() * (XC.t() * YC); // calculate estimate of constant term // [AsScalar converts 1x1 matrix to Real] Real a = m - (M * A).AsScalar(); // Get variances of estimates from diagonal elements of inverse of SSQ // [ we are taking inverse of SSQ - we need it for finding D ] Matrix ISSQ = SSQ.i(); DiagonalMatrix D; D << ISSQ; ColumnVector V = D.AsColumn(); Real v = 1.0/nobs + (M * ISSQ * M.t()).AsScalar(); // for calc variance of const // Calculate fitted values and residuals int npred1 = npred+1; ColumnVector Fitted = X * A + a; ColumnVector Residual = Y - Fitted; Real ResVar = Residual.SumSquare() / (nobs-npred1); // Get diagonals of Hat matrix (an expensive way of doing this) Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X; DiagonalMatrix Hat; Hat << X1 * (X1.t() * X1).i() * X1.t(); // print out answers cout << "\nEstimates and their standard errors\n\n"; cout.setf(ios::fixed, ios::floatfield); cout << setw(11) << setprecision(5) << a << " "; cout << setw(11) << setprecision(5) << sqrt(v*ResVar) << endl; // make vector of standard errors ColumnVector SE(npred); for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar); // use concatenation function to form matrix and use matrix print // to get two columns cout << setw(11) << setprecision(5) << (A | SE) << endl; cout << "\nObservations, fitted value, residual value, hat value\n"; cout << setw(9) << setprecision(3) << (X | Y | Fitted | Residual | Hat.AsColumn()); cout << "\n\n"; }
void trymatc() { // cout << "\nTwelfth test of Matrix package\n"; Tracer et("Twelfth test of Matrix package"); Tracer::PrintTrace(); DiagonalMatrix D(15); D=1.5; Matrix A(15,15); int i,j; for (i=1;i<=15;i++) for (j=1;j<=15;j++) A(i,j)=i*i+j-150; { A = A + D; } ColumnVector B(15); for (i=1;i<=15;i++) B(i)=i+i*i-150.0; { Tracer et1("Stage 1"); ColumnVector B1=B; B=(A*2.0).i() * B1; Matrix X = A*B-B1/2.0; Clean(X, 0.000000001); Print(X); A.ReSize(3,5); for (i=1; i<=3; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j; B = A.AsColumn()+10000; RowVector R = (A+10000).AsColumn().t(); Print( RowVector(R-B.t()) ); } { Tracer et1("Stage 2"); B = A.AsColumn()+10000; Matrix XR = (A+10000).AsMatrix(15,1).t(); Print( RowVector(XR-B.t()) ); } { Tracer et1("Stage 3"); B = (A.AsMatrix(15,1)+A.AsColumn())/2.0+10000; Matrix MR = (A+10000).AsColumn().t(); Print( RowVector(MR-B.t()) ); B = (A.AsMatrix(15,1)+A.AsColumn())/2.0; MR = A.AsColumn().t(); Print( RowVector(MR-B.t()) ); } { Tracer et1("Stage 4"); B = (A.AsMatrix(15,1)+A.AsColumn())/2.0; RowVector R = A.AsColumn().t(); Print( RowVector(R-B.t()) ); } { Tracer et1("Stage 5"); RowVector R = (A.AsColumn()-5000).t(); B = ((R.t()+10000) - A.AsColumn())-5000; Print( RowVector(B.t()) ); } { Tracer et1("Stage 6"); B = A.AsColumn(); ColumnVector B1 = (A+10000).AsColumn() - 10000; Print(ColumnVector(B1-B)); } { Tracer et1("Stage 7"); Matrix X = B.AsMatrix(3,5); Print(Matrix(X-A)); for (i=1; i<=3; i++) for (j=1; j<=5; j++) B(5*(i-1)+j) -= i+100*j; Print(B); } { Tracer et1("Stage 8"); A.ReSize(7,7); D.ReSize(7); for (i=1; i<=7; i++) for (j=1; j<=7; j++) A(i,j) = i*j*j; for (i=1; i<=7; i++) D(i,i) = i; UpperTriangularMatrix U; U << A; Matrix X = A; for (i=1; i<=7; i++) X(i,i) = i; A.Inject(D); Print(Matrix(X-A)); X = U; U.Inject(D); A = U; for (i=1; i<=7; i++) X(i,i) = i; Print(Matrix(X-A)); } { Tracer et1("Stage 9"); A.ReSize(7,5); for (i=1; i<=7; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j; Matrix Y = A; Y = Y - ((const Matrix&)A); Print(Y); Matrix X = A; Y = A; Y = ((const Matrix&)X) - A; Print(Y); Y = 0.0; Y = ((const Matrix&)X) - ((const Matrix&)A); Print(Y); } { Tracer et1("Stage 10"); // some tests on submatrices UpperTriangularMatrix U(20); for (i=1; i<=20; i++) for (j=i; j<=20; j++) U(i,j)=100 * i + j; UpperTriangularMatrix V = U.SymSubMatrix(1,5); UpperTriangularMatrix U1 = U; U1.SubMatrix(4,8,5,9) /= 2; U1.SubMatrix(4,8,5,9) += 388 * V; U1.SubMatrix(4,8,5,9) *= 2; U1.SubMatrix(4,8,5,9) += V; U1 -= U; UpperTriangularMatrix U2 = U1; U1 << U1.SubMatrix(4,8,5,9); U2.SubMatrix(4,8,5,9) -= U1; Print(U2); U1 -= (777*V); Print(U1); U1 = U; U1.SubMatrix(4,8,5,9) -= U.SymSubMatrix(1,5); U1 -= U; U2 = U1; U1 << U1.SubMatrix(4,8,5,9); U2.SubMatrix(4,8,5,9) -= U1; Print(U2); U1 += V; Print(U1); U1 = U; U1.SubMatrix(3,10,15,19) += 29; U1 -= U; Matrix X = U1.SubMatrix(3,10,15,19); X -= 29; Print(X); U1.SubMatrix(3,10,15,19) *= 0; Print(U1); LowerTriangularMatrix L = U.t(); LowerTriangularMatrix M = L.SymSubMatrix(1,5); LowerTriangularMatrix L1 = L; L1.SubMatrix(5,9,4,8) /= 2; L1.SubMatrix(5,9,4,8) += 388 * M; L1.SubMatrix(5,9,4,8) *= 2; L1.SubMatrix(5,9,4,8) += M; L1 -= L; LowerTriangularMatrix L2 = L1; L1 << L1.SubMatrix(5,9,4,8); L2.SubMatrix(5,9,4,8) -= L1; Print(L2); L1 -= (777*M); Print(L1); L1 = L; L1.SubMatrix(5,9,4,8) -= L.SymSubMatrix(1,5); L1 -= L; L2 =L1; L1 << L1.SubMatrix(5,9,4,8); L2.SubMatrix(5,9,4,8) -= L1; Print(L2); L1 += M; Print(L1); L1 = L; L1.SubMatrix(15,19,3,10) -= 29; L1 -= L; X = L1.SubMatrix(15,19,3,10); X += 29; Print(X); L1.SubMatrix(15,19,3,10) *= 0; Print(L1); } { Tracer et1("Stage 11"); // more tests on submatrices Matrix M(20,30); for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j; Matrix M1 = M; for (j=1; j<=30; j++) { ColumnVector CV = 3 * M1.Column(j); M.Column(j) += CV; } for (i=1; i<=20; i++) { RowVector RV = 5 * M1.Row(i); M.Row(i) -= RV; } M += M1; Print(M); } { Tracer et1("Stage 12"); // more tests on Release Matrix M(20,30); for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j; Matrix M1 = M; M.Release(); Matrix M2 = M; Matrix X = M; Print(X); X = M1 - M2; Print(X); #ifndef DONT_DO_NRIC nricMatrix N = M1; nricMatrix N1 = N; N.Release(); nricMatrix N2 = N; nricMatrix Y = N; Print(Y); Y = N1 - N2; Print(Y); N = M1 / 2; N1 = N * 2; N.Release(); N2 = N * 2; Y = N; Print(N); Y = (N1 - M1) | (N2 - M1); Print(Y); #endif } { Tracer et("Stage 13"); // test sum of squares of rows or columns MultWithCarry mwc; DiagonalMatrix DM; Matrix X; // rectangular matrix Matrix A(20, 15); FillWithValues(mwc, A); // sum of squares of rows DM << A * A.t(); ColumnVector CV = A.sum_square_rows(); X = CV - DM.AsColumn(); Clean(X, 0.000000001); Print(X); DM << A.t() * A; RowVector RV = A.sum_square_columns(); X = RV - DM.AsRow(); Clean(X, 0.000000001); Print(X); X = RV - A.t().sum_square_rows().t(); Clean(X, 0.000000001); Print(X); X = CV - A.t().sum_square_columns().t(); Clean(X, 0.000000001); Print(X); // UpperTriangularMatrix A.ReSize(17,17); FillWithValues(mwc, A); UpperTriangularMatrix UT; UT << A; Matrix A1 = UT; X = UT.sum_square_rows() - A1.sum_square_rows(); Print(X); X = UT.sum_square_columns() - A1.sum_square_columns(); Print(X); // LowerTriangularMatrix LowerTriangularMatrix LT; LT << A; A1 = LT; X = LT.sum_square_rows() - A1.sum_square_rows(); Print(X); X = LT.sum_square_columns() - A1.sum_square_columns(); Print(X); // SymmetricMatrix SymmetricMatrix SM; SM << A; A1 = SM; X = SM.sum_square_rows() - A1.sum_square_rows(); Print(X); X = SM.sum_square_columns() - A1.sum_square_columns(); Print(X); // DiagonalMatrix DM << A; A1 = DM; X = DM.sum_square_rows() - A1.sum_square_rows(); Print(X); X = DM.sum_square_columns() - A1.sum_square_columns(); Print(X); // BandMatrix BandMatrix BM(17, 3, 5); BM.Inject(A); A1 = BM; X = BM.sum_square_rows() - A1.sum_square_rows(); Print(X); X = BM.sum_square_columns() - A1.sum_square_columns(); Print(X); // SymmetricBandMatrix SymmetricBandMatrix SBM(17, 4); SBM.Inject(A); A1 = SBM; X = SBM.sum_square_rows() - A1.sum_square_rows(); Print(X); X = SBM.sum_square_columns() - A1.sum_square_columns(); Print(X); // IdentityMatrix IdentityMatrix IM(29); X = IM.sum_square_rows() - 1; Print(X); X = IM.sum_square_columns() - 1; Print(X); // Matrix with zero rows A1.ReSize(0,10); X.ReSize(1,10); X = 0; X -= A1.sum_square_columns(); Print(X); X.ReSize(0,1); X -= A1.sum_square_rows(); Print(X); // Matrix with zero columns A1.ReSize(10,0); X.ReSize(10,1); X = 0; X -= A1.sum_square_rows(); Print(X); X.ReSize(1,0); X -= A1.sum_square_columns(); Print(X); } { Tracer et("Stage 14"); // test extend orthonormal MultWithCarry mwc; Matrix A(20,5); FillWithValues(mwc, A); // Orthonormalise UpperTriangularMatrix R; Matrix A_old = A; QRZ(A,R); // Check decomposition Matrix X = A * R - A_old; Clean(X, 0.000000001); Print(X); // Check orthogonality X = A.t() * A - IdentityMatrix(5); Clean(X, 0.000000001); Print(X); // Try orthonality extend SquareMatrix A1(20); A1.Columns(1,5) = A; extend_orthonormal(A1,5); // check columns unchanged X = A - A1.Columns(1,5); Print(X); // Check orthogonality X = A1.t() * A1 - IdentityMatrix(20); Clean(X, 0.000000001); Print(X); X = A1 * A1.t() - IdentityMatrix(20); Clean(X, 0.000000001); Print(X); // Test with smaller number of columns Matrix A2(20,15); A2.Columns(1,5) = A; extend_orthonormal(A2,5); // check columns unchanged X = A - A2.Columns(1,5); Print(X); // Check orthogonality X = A2.t() * A2 - IdentityMatrix(15); Clean(X, 0.000000001); Print(X); // check it works with no columns to start with A2.ReSize(100,100); extend_orthonormal(A2,0); // Check orthogonality X = A2.t() * A2 - IdentityMatrix(100); Clean(X, 0.000000001); Print(X); X = A2 * A2.t() - IdentityMatrix(100); Clean(X, 0.000000001); Print(X); } // cout << "\nEnd of twelfth test\n"; }