// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> bool AmplitudeProcessor::computeNoise(const DoubleArray &data, int i1, int i2, double *offset, double *amplitude) { // compute offset and rms within the time window if(i1<0) i1=0; if(i2<0) return false; if(i2>(int)data.size()) i2=(int)data.size(); // If noise window is zero return an amplitude and offset of zero as well. if ( i2-i1 == 0 ) { *amplitude = 0; *offset = 0; return true; } DoubleArrayPtr d = static_cast<DoubleArray*>(data.slice(i1, i2)); double ofs, amp; // compute pre-arrival offset ofs = d->median(); // compute rms after removing offset amp = 2 * d->rms(ofs); if ( offset ) *offset = ofs; if ( amplitude ) *amplitude = amp; return true; }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> bool AmplitudeProcessor_Mjma::deconvolveData(Response *resp, DoubleArray &data, int numberOfIntegrations) { Math::Restitution::FFT::TransferFunctionPtr tf = resp->getTransferFunction(numberOfIntegrations); if ( tf == NULL ) { setStatus(DeconvolutionFailed, 0); return false; } Math::SeismometerResponse::Seismometer5sec paz(Math::Velocity); Math::Restitution::FFT::PolesAndZeros seis5sec(paz); Math::Restitution::FFT::TransferFunctionPtr cascade = *tf / seis5sec; // Remove linear trend double m,n; Math::Statistics::computeLinearTrend(data.size(), data.typedData(), m, n); Math::Statistics::detrend(data.size(), data.typedData(), m, n); return Math::Restitution::transformFFT(data.size(), data.typedData(), _stream.fsamp, cascade.get(), _config.respTaper, _config.respMinFreq, _config.respMaxFreq); }
/*! Updates the ImageView and the ParameterSelector associated with the given panel. */ void VideoParserWindow::UpdatePanel(VideoControlPanel* pPanel, int sel, DoubleArray params, bool checkViewSync) { // Get the potentially new parameter range from the component DoubleArray minVals, maxVals, steps; m_videoProcessor.GetParameterInfo(sel, &minVals, &maxVals, &steps); // Ensure that the current parameters are within the "new" ranges if (params.size() == minVals.size()) { for (unsigned i = 0; i < params.size(); i++) { if (params[i] > maxVals[i]) params[i] = maxVals[i]; if (params[i] < minVals[i]) params[i] = minVals[i]; } } else { params = minVals; } // Update the selected view with the new image UpdateImageView(pPanel, sel, params, checkViewSync); // Update the displayed parameter value and range pPanel->GetParamSelector()->Update(params, minVals, maxVals, steps); pPanel->GetCommandSelector()->UpdateCommands( m_videoProcessor.GetUserCommands(sel)); }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> bool AmplitudeProcessor_Md::deconvolveData(Response* resp, DoubleArray& data, int numberOfIntegrations) { if ( numberOfIntegrations < -1 ) return false; SEISCOMP_DEBUG("Inside deconvolve function"); double m, n; Math::Restitution::FFT::TransferFunctionPtr tf = resp->getTransferFunction(numberOfIntegrations < 0 ? 0 : numberOfIntegrations); if ( !tf ) return false; Math::GroundMotion gm; if ( numberOfIntegrations < 0 ) gm = Math::Displacement; else gm = Math::Velocity; Math::Restitution::FFT::TransferFunctionPtr cascade; Math::SeismometerResponse::WoodAnderson woodAndersonResp(gm, _config.woodAndersonResponse); Math::SeismometerResponse::Seismometer5sec seis5sResp(gm); Math::SeismometerResponse::L4C_1Hz l4c1hzResp(gm); Math::Restitution::FFT::PolesAndZeros woodAnderson(woodAndersonResp); Math::Restitution::FFT::PolesAndZeros seis5sec(seis5sResp); Math::Restitution::FFT::PolesAndZeros l4c1hz(l4c1hzResp); SEISCOMP_DEBUG("SEISMO = %d", aFile.SEISMO); switch ( aFile.SEISMO ) { case 1: cascade = *tf / woodAnderson; break; case 2: cascade = *tf / seis5sec; break; case 9: SEISCOMP_INFO("%s Applying filter L4C 1Hz to data", AMPTAG); cascade = *tf / l4c1hz; break; default: cascade = tf; SEISCOMP_INFO("%s No seismometer specified, no signal reconvolution performed", AMPTAG); return false; break; } // Remove linear trend Math::Statistics::computeLinearTrend(data.size(), data.typedData(), m, n); Math::Statistics::detrend(data.size(), data.typedData(), m, n); return Math::Restitution::transformFFT(data.size(), data.typedData(), _stream.fsamp, cascade.get(), _config.respTaper, _config.respMinFreq, _config.respMaxFreq); }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> bool AmplitudeProcessor_msbb::computeAmplitude(const DoubleArray &data, size_t i1, size_t i2, size_t si1, size_t si2, double offset, AmplitudeIndex *dt, AmplitudeValue *amplitude, double *period, double *snr) { /* * Low-level signal amplitude computation. This is magnitude specific. * * Input: * f double array of length n * i1,i2 indices defining the measurement window, * 0 <= i1 < i2 <= n * offset this is subtracted from the samples in f before * computation * * Output: * dt Point at which the measurement was mad/completed. May * be the peak time or end of integration. * amplitude amplitude. This may be a peak amplitude as well as a * sum or integral. * period dominant period of the signal. Optional. If the period * is not computed, set it to -1. */ size_t imax = find_absmax(data.size(), (const double*)data.data(), si1, si2, offset); double amax = fabs(data[imax] - offset); double pmax = -1; double pstd = 0; // standard error of period if ( !measure_period(data.size(), static_cast<const double*>(data.data()), imax, offset, &pmax, &pstd) ) pmax = -1; if ( amax < *_noiseAmplitude * _config.snrMin ) { amplitude->value = amax / *_noiseAmplitude; setStatus(LowSNR, amplitude->value); return false; } dt->index = imax; *period = pmax; amplitude->value = amax; if ( _usedComponent <= SecondHorizontal ) { if ( _streamConfig[_usedComponent].gain != 0.0 ) amplitude->value /= _streamConfig[_usedComponent].gain; else { setStatus(MissingGain, 0.0); return false; } } else return false; return true; }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> bool AmplitudeProcessor::deconvolveData(Response *resp, DoubleArray &data, int numberOfIntegrations) { // Remove linear trend double m,n; Math::Statistics::computeLinearTrend(data.size(), data.typedData(), m, n); Math::Statistics::detrend(data.size(), data.typedData(), m, n); return resp->deconvolveFFT(data, _stream.fsamp, _config.respTaper, _config.respMinFreq, _config.respMaxFreq, numberOfIntegrations); }
int Ardb::ZAdd(const DBID& db, const Slice& key, DoubleArray& scores, const SliceArray& svs) { KeyLockerGuard keyguard(m_key_locker, db, key); ZSetMetaValue meta; GetZSetMetaValue(db, key, meta); BatchWriteGuard guard(GetEngine()); int count = 0; bool metachange = false; for (uint32 i = 0; i < scores.size(); i++) { int tryret = TryZAdd(db, key, meta, scores[i], svs[i]); if (tryret == 2) { count++; } if (!metachange && tryret > 0) { metachange = true; } } if (metachange) { SetZSetMetaValue(db, key, meta); } return count; }
//-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST(ArrayTest, CopyData) { DoubleArray a; a.resize(6); a[0] = 1.23; a[1] = 4.56; a[2] = 7.89; double data[] = { 3.2, 1.0, 0.0 }; a.copyData(data, 3, 3); ASSERT_DOUBLE_EQ(3.2, a[3]); ASSERT_DOUBLE_EQ(1.0, a[4]); ASSERT_DOUBLE_EQ(0.0, a[5]); DoubleArray b; b.resize(3); b[0] = 10.0; b[1] = 20.0; b[2] = 30.0; a.copyData(b, b.size(), 2, 0); ASSERT_DOUBLE_EQ(1.23, a[0]); ASSERT_DOUBLE_EQ(4.56, a[1]); ASSERT_DOUBLE_EQ(10.0, a[2]); ASSERT_DOUBLE_EQ(20.0, a[3]); ASSERT_DOUBLE_EQ(30.0, a[4]); ASSERT_DOUBLE_EQ(0.0, a[5]); }
/* This has a funny way of dealing with edges. In case of a Gaussian blur, divides by the sum of all of the numbers in the mask by definition. Might prove harsh on edges. In all other cases, divides by 8 no matter what, so that can equalize at edges. Also, when one of the pixels needed in the mask calculation is off the bounds of the image, the center pixel value is substituted, so that there is less difference. This doesnt pick up as many stray lines on edges, but also proves to often not pick up enough lines. */ DoubleArray Mask::applyMask(DoubleArray array){ ICoord size = array.size(); DoubleArray newarray = DoubleArray(size); width = (int)maskArray.size()(0)/2; /* in case the maskArray was edited */ for (DoubleArray::iterator i = array.begin();i !=array.end(); ++i){ ICoord curr = i.coord(); double num = 0; double c = 0; int d = 1; for (int i = -width; i <= width; ++i){ // scans through the mask for (int j = -width; j <= width; ++j){ ICoord a = ICoord(i,j); if (pixelInBounds(curr + a, size)){ num = num + array[curr+a]*maskArray[ICoord(i + width, j + width)]; c = c + maskArray[ICoord(i + width, j + width)]; } else{ num = num + array[curr]*maskArray[ICoord(i + width, j + width)]; /* if pixel needed for mask is out of the image, then substitute the center pixel */ d = d + 1; /* count number of pixels out of bounds */ } } } if (type == GAUSSIAN_MASK) newarray[curr] = num/159; else if (type == SMALL_GAUSSIAN_MASK) newarray[curr] = num/99; else newarray[curr] = num/8; } return newarray; }
DoubleArray MASKS::applyMasks(const DoubleArray& image) { //This applies the mask that is stored onto an array of doubles representing //the image. DoubleArray newImage(image.size(),0.0); double tempSum=0; int startI,endI,startK,endK; int M=maskArrays.width(), N=maskArrays.height(); for(int x=0;x<image.width();x++) { for(int y=0;y<image.height();y++) { startI=-M/2; endI=M/2; startK=-N/2; endK=N/2; if(x-M/2<0) startI=-x; if(y-N/2<0) startK=-y; if(x+M/2>=image.width()) endI=image.width()-x-1; if(y+N/2>=image.height()) endK=image.height()-y-1; for(int i=startI;i<=endI;i++) { for(int k=startK;k<=endK;k++) { tempSum+=image[ICoord(x+i,y+k)]*maskArrays[ICoord(M/2+i,N/2+k)]; //If M and N aren't odd, will get segmentation fault } } newImage[ICoord(x,y)]=tempSum; // if(tempSum<0) tempSum=0; } } return newImage; }
void doClassifying(DoubleArray & gray) { ICoord size = gray.size(); DoubleArray newgray = DoubleArray(size); ClassifyClass classif = ClassifyClass(); newgray = classif.classifyRegions(gray); gray = newgray; }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> void Detector::process(const Record *record, const DoubleArray &filteredData) { _amplProc.pickIndex = 0; SimpleDetector::process(record, filteredData); if ( _amplProc.isRunning() ) { calculateMaxAmplitude(record, _amplProc.pickIndex, filteredData.size(), filteredData); if ( _amplProc.isFinished() ) sendMaxAmplitude(record); } }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> bool AmplitudeProcessor::deconvolveData(Response *resp, DoubleArray &data, int numberOfIntegrations) { // Remove linear trend double m,n; Math::Statistics::computeLinearTrend(data.size(), data.typedData(), m, n); Math::Statistics::detrend(data.size(), data.typedData(), m, n); bool ret = resp->deconvolveFFT(data, _stream.fsamp, _config.respTaper, _config.respMinFreq, _config.respMaxFreq, numberOfIntegrations < 0 ? 0 : numberOfIntegrations); if ( !ret ) return false; // If number of integrations are negative, derive data while ( numberOfIntegrations < 0 ) { Math::Filtering::IIRDifferentiate<double> diff; diff.setSamplingFrequency(_stream.fsamp); diff.apply(data.size(), data.typedData()); ++numberOfIntegrations; } return true; }
int Ardb::ZAddLimit(const DBID& db, const Slice& key, DoubleArray& scores, const SliceArray& svs, int setlimit, ValueArray& pops) { ZSetMetaValue meta; GetZSetMetaValue(db, key, meta); if (setlimit <= 0) { setlimit = meta.size + scores.size(); } ZAdd(db, key, scores, svs); GetZSetMetaValue(db, key, meta); if (meta.size > (uint32) setlimit) { ZPop(db, key, false, meta.size - setlimit, pops); } return 0; }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> bool AmplitudeProcessor_Mjma::computeAmplitude( const DoubleArray &data, size_t i1, size_t i2, size_t si1, size_t si2, double offset,AmplitudeIndex *dt, AmplitudeValue *amplitude, double *period, double *snr) { double amax; size_t imax = find_absmax(data.size(), data.typedData(), si1, si2, offset); amax = fabs(data[imax] - offset); dt->index = imax; if ( *_noiseAmplitude == 0. ) *snr = 1000000.0; else *snr = amax / *_noiseAmplitude; if ( *snr < _config.snrMin ) { setStatus(LowSNR, *snr); return false; } *period = -1; amplitude->value = amax; if ( _streamConfig[_usedComponent].gain != 0.0 ) amplitude->value /= _streamConfig[_usedComponent].gain; else { setStatus(MissingGain, 0.0); return false; } // - convert to micrometer amplitude->value *= 1E06; // - estimate peak-to-peak from absmax amplitude amplitude->value *= 2.0; return true; }
TEST(ArrayDeathTest, AddBeyondCapacity) { DoubleArray a; EXPECT_DEATH(a.add(100), "Assertion"); a.reserve(2); a.add(100); a.add(101); EXPECT_DEATH(a.add(102), "Assertion"); a.reserve(4); a.add(102); a.add(103); EXPECT_DEATH(a.add(104), "Assertion"); ASSERT_EQ(4u, a.size()); EXPECT_DOUBLE_EQ(100, a[0]); EXPECT_DOUBLE_EQ(101, a[1]); EXPECT_DOUBLE_EQ(102, a[2]); EXPECT_DOUBLE_EQ(103, a[3]); }
void TraceContours( /* 点 */ const PointArray& pts, /* 边 */ const EdgeArray& ea, /* 三角形 */ const TriangleArray& ta, /* 要追踪的z值 */ const DoubleArray& zValues, /* 所有的等值线上的点都放在一个数组 */ PointArray& cnpts, /* 记录等值线信息 */ ContourArray& cna ) { Contour cnt( pts, ea, ta ); for( int i = 0; i < ( int )zValues.size(); i++ ) { PointArray z_cnpts; IntArray z_cnpos; IntArray dirs; cnt.traceContour( zValues[i], z_cnpts, z_cnpos, dirs ); if( z_cnpos.empty() ) { DT_Contour z_contour = {i, 0, 1, 0}; cna.push_back( z_contour ); } else { for( int j = 0; j < ( int )z_cnpos.size(); j++ ) { DT_Contour z_contour = {i, z_cnpos[j], dirs[j], 0}; cna.push_back( z_contour ); } // 复制计算得到的等值线数据 std::copy( z_cnpts.begin(), z_cnpts.end(), std::back_inserter( cnpts ) ); } } }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> void Processor::process(const Record *rec, const DoubleArray &data) { // First record after reset? if ( !_stream.initialized ) { // Try to setup all internal variables if ( !init(rec) ) return; } // Mismatching sampling frequency: reset else if ( rec->samplingFrequency() != _stream.fsamp ) { SEISCOMP_INFO("%s: mismatching sampling frequency (%f != %f): reset", rec->streamID().c_str(), _stream.fsamp, rec->samplingFrequency()); reset(); // Try to setup all internal variables if ( !init(rec) ) return; } // Record time window is after the current time window -> flush // existing samples and setup the new interval if ( rec->startTime() >= _currentEndTime ) { flush(); setupTimeWindow(rec->startTime()); } Core::Time ts = rec->startTime(); // Process all samples for ( int i = 0; i < data.size(); ++i ) { if ( ts >= _currentEndTime ) { // Flush existing pool flush(); // Step to next time span _currentStartTime = _currentEndTime; _currentEndTime = _currentStartTime + Core::TimeSpan(1,0); } _samplePool.push(data[i]); ts += _dt; } }
double mean(const DoubleArray &v) { return mean(v.size(), (const double*)v.data()); }
double trimmedMean(const DoubleArray &v, double percent) { // XXX deprecated XXX return trimmedMean(v.size(), (const double*)v.data(), percent); }
double fractile(const DoubleArray &v, double x) { return fractile(v.size(), (const double*)v.data(), x); }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> bool AmplitudeProcessor_Md::computeAmplitude(const DoubleArray& data, size_t i1, size_t i2, size_t si1, size_t si2, double offset, AmplitudeIndex* dt, AmplitudeValue* amplitude, double* period, double* snr) { double amax, Imax, ofs_sig, amp_sig; DoubleArrayPtr d; if ( *snr < aFile.SNR_MIN ) SEISCOMP_DEBUG("%s computed SNR is under configured SNR MIN", AMPTAG); if ( _computeAbsMax ) { size_t imax = find_absmax(data.size(), data.typedData(), si1, si2, offset); amax = fabs(data[imax] - offset); dt->index = imax; } else { int lmin, lmax; find_minmax(lmin, lmax, data.size(), data.typedData(), si1, si2, offset); amax = data[lmax] - data[lmin]; dt->index = (lmin + lmax) * 0.5; dt->begin = lmin - dt->index; dt->end = lmax - dt->index; } Imax = dt->index; SEISCOMP_DEBUG("%s Amplitude max: %.2f", AMPTAG, amax); //! searching for Coda second by second through the end of the window //! if snrMin config is not 0 (config file or waveform review window) //! TODO: elevate accuracy by using a nanometers scale (maybe) if ( _config.snrMin != 0 ) { unsigned int i = si1; bool hasEndSignal = false; double calculatedSnr = -1; for (i = (int) Imax; i < i2; i = i + 1 * (int) _stream.fsamp) { int window_end = i + 1 * (int) _stream.fsamp; d = static_cast<DoubleArray*>(data.slice(i, window_end)); //! computes pre-arrival offset ofs_sig = d->median(); //! computes rms after removing offset amp_sig = 2 * d->rms(ofs_sig); if ( amp_sig / *_noiseAmplitude <= _config.snrMin ) { SEISCOMP_DEBUG("%s End of signal found! (%.2f <= %.2f)", AMPTAG, (amp_sig / *_noiseAmplitude), _config.snrMin); hasEndSignal = true; calculatedSnr = amp_sig / *_noiseAmplitude; break; } } if ( !hasEndSignal ) { SEISCOMP_ERROR("%s SNR stayed over configured SNR_MIN! (%.2f > %.2f), " "skipping magnitude calculation for this station", AMPTAG, calculatedSnr, _config.snrMin); return false; } dt->index = i; } else dt->index = Imax; //amplitude->value = 2 * amp_sig; //! actually it would have to be max. peak-to-peak amplitude->value = amp_sig; if ( _streamConfig[_usedComponent].gain != 0.0 ) amplitude->value /= _streamConfig[_usedComponent].gain; else { setStatus(MissingGain, 0.0); return false; } // Convert m/s to nm/s amplitude->value *= 1.E09; *period = dt->index - i1 + (_config.signalBegin * _stream.fsamp); SEISCOMP_DEBUG("%s calculated event amplitude = %.2f", AMPTAG, amplitude->value); SEISCOMP_DEBUG("%s calculated signal end at %.2f ms from P phase", AMPTAG, *period); return true; }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> void AmplitudeProcessor::prepareData(DoubleArray &data) { Sensor *sensor = _streamConfig[_usedComponent].sensor(); // When using full responses then all information needs to be set up // correctly otherwise an error is set if ( _enableResponses ) { if ( !sensor ) { setStatus(MissingResponse, 1); return; } if ( !sensor->response() ) { setStatus(MissingResponse, 2); return; } // If the unit cannot be converted into the internal // enum (what basically means "unknown") then the deconvolution // cannot be correctly. We do not want to assume a unit here // to prevent computation errors in case of bad configuration. SignalUnit unit; if ( !unit.fromString(sensor->unit().c_str()) ) { // Invalid unit string setStatus(IncompatibleUnit, 2); return; } int intSteps = 0; switch ( unit ) { case Meter: intSteps = -1; break; case MeterPerSecond: break; case MeterPerSecondSquared: intSteps = 1; break; default: setStatus(IncompatibleUnit, 1); return; } if ( _responseApplied ) return; _responseApplied = true; if ( !deconvolveData(sensor->response(), _data, intSteps) ) { setStatus(DeconvolutionFailed, 0); return; } } else { // If the sensor is known then check the unit and skip // non velocity streams. Otherwise simply use the data // to be compatible to the old version. This will be // changed in the future and checked more strictly. if ( sensor ) { SignalUnit unit; if ( !unit.fromString(sensor->unit().c_str()) ) { // Invalid unit string setStatus(IncompatibleUnit, 4); return; } switch ( unit ) { case Meter: if ( _enableUpdates ) { // Updates with differentiation are not yet supported. setStatus(IncompatibleUnit, 5); return; } // Derive to m/s { Math::Filtering::IIRDifferentiate<double> diff; diff.setSamplingFrequency(_stream.fsamp); diff.apply(data.size(), data.typedData()); } break; case MeterPerSecond: break; default: setStatus(IncompatibleUnit, 3); return; } } } }
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> void Detector::calculateMaxAmplitude(const Record *record, size_t i0, size_t i1, const DoubleArray &filteredData) { size_t i = i0; while ( i < i1 && _amplProc.processedSamples < _amplProc.neededSamples && i < (size_t)filteredData.size() ) { double amp = fabs(filteredData[i]); if ( !_amplProc.amplitude || amp > *_amplProc.amplitude ) { _amplProc.amplitude = amp; _amplProc.index = _amplProc.processedSamples; } ++i; ++_amplProc.processedSamples; } }