Example #1
0
void Subdivision::InsertSite(const Point2d& x)
// Inserts a new point into a subdivision representing a Delaunay
// triangulation, and fixes the affected edges so that the result
// is still a Delaunay triangulation. This is based on the
// pseudocode from Guibas and Stolfi (1985) p.120, with slight
// modifications and a bug fix.
{
	Edge* e = Locate(x);
	if ((x == e->Org2d()) || (x == e->Dest2d()))  // point is already in
	    return;
	else if (OnEdge(x, e)) {
		e = e->Oprev();
		DeleteEdge(e->Onext());
	}

	// Connect the new point to the vertices of the containing
	// triangle (or quadrilateral, if the new point fell on an
	// existing edge.)
	Edge* base = MakeEdge();
	base->EndPoints(e->Org(), new Point2d(x));
	Splice(base, e);
	startingEdge = base;
	do {
		base = Connect(e, base->Sym());
		e = base->Oprev();
	} while (e->Lnext() != startingEdge);

	// Examine suspect edges to ensure that the Delaunay condition
	// is satisfied.
	do {
		Edge* t = e->Oprev();
		if (RightOf(t->Dest2d(), e) &&
			InCircle(e->Org2d(), t->Dest2d(), e->Dest2d(), x)) {
				Swap(e);
				e = e->Oprev();
		}
		else if (e->Onext() == startingEdge)  // no more suspect edges
			return;
		else  // pop a suspect edge
		    e = e->Onext()->Lprev();
	} while (TRUE);
}
Example #2
0
Edge* Subdivision::Locate(const Point2d& x)
// Returns an edge e, s.t. either x is on e, or e is an edge of
// a triangle containing x. The search starts from startingEdge
// and proceeds in the general direction of x. Based on the
// pseudocode in Guibas and Stolfi (1985) p.121.
{
	Edge* e = startingEdge;

	while (TRUE) {
		if (x == e->Org2d() || x == e->Dest2d())
		    return e;
		else if (RightOf(x, e))
			 e = e->Sym();
		else if (!RightOf(x, e->Onext()))
			 e = e->Onext();
		else if (!RightOf(x, e->Dprev()))
			 e = e->Dprev();
		else
		    return e;
	}
}