Example #1
0
bool CacheTileHandler::handleTile(const TileKey& key, const TileVisitor& tv)
{        
    ImageLayer* imageLayer = dynamic_cast< ImageLayer* >( _layer.get() );
    ElevationLayer* elevationLayer = dynamic_cast< ElevationLayer* >( _layer.get() );    

    // Just call createImage or createHeightField on the layer and the it will be cached!
    if (imageLayer)
    {                
        GeoImage image = imageLayer->createImage( key );
        if (image.valid())
        {                
            return true;
        }            
    }
    else if (elevationLayer )
    {
        GeoHeightField hf = elevationLayer->createHeightField(key, 0L);
        if (hf.valid())
        {                
            return true;
        }            
    }

    // If we didn't produce a result but the key isn't within range then we should continue to 
    // traverse the children b/c a min level was set.
    if (!_layer->isKeyInLegalRange(key))
    {
        return true;
    }

    return false;        
}   
Config
EarthFileSerializer2::serialize( MapNode* input ) const
{
    Config mapConf("map");
    mapConf.set("version", "2");

    if ( !input || !input->getMap() )
        return mapConf;

    Map* map = input->getMap();
    MapFrame mapf( map, Map::ENTIRE_MODEL );

    // the map and node options:
    Config optionsConf = map->getInitialMapOptions().getConfig();
    optionsConf.merge( input->getMapNodeOptions().getConfig() );
    mapConf.add( "options", optionsConf );

    // the layers
    for( ImageLayerVector::const_iterator i = mapf.imageLayers().begin(); i != mapf.imageLayers().end(); ++i )
    {
        ImageLayer* layer = i->get();
        //Config layerConf = layer->getInitialOptions().getConfig();
        Config layerConf = layer->getImageLayerOptions().getConfig();
        layerConf.set("name", layer->getName());
        layerConf.set("driver", layer->getInitialOptions().driver()->getDriver());        
        mapConf.add( "image", layerConf );
    }

    for( ElevationLayerVector::const_iterator i = mapf.elevationLayers().begin(); i != mapf.elevationLayers().end(); ++i )
    {
        ElevationLayer* layer = i->get();
        //Config layerConf = layer->getInitialOptions().getConfig();
        Config layerConf = layer->getElevationLayerOptions().getConfig();
        layerConf.set("name", layer->getName());
        layerConf.set("driver", layer->getInitialOptions().driver()->getDriver());        
        mapConf.add( "elevation", layerConf );
    }

    for( ModelLayerVector::const_iterator i = mapf.modelLayers().begin(); i != mapf.modelLayers().end(); ++i )
    {
        ModelLayer* layer = i->get();
        Config layerConf = layer->getModelLayerOptions().getConfig();
        layerConf.set("name", layer->getName());
        layerConf.set("driver", layer->getModelLayerOptions().driver()->getDriver());
        mapConf.add( "model", layerConf );
    }

    Config ext = input->externalConfig();
    if ( !ext.empty() )
    {
        ext.key() = "external";
        mapConf.add( ext );
    }

    return mapConf;
}
Example #3
0
bool CacheTileHandler::handleTile( const TileKey& key )
{        
    ImageLayer* imageLayer = dynamic_cast< ImageLayer* >( _layer.get() );
    ElevationLayer* elevationLayer = dynamic_cast< ElevationLayer* >( _layer.get() );    

    // Just call createImage or createHeightField on the layer and the it will be cached!
    if (imageLayer)
    {                
        GeoImage image = imageLayer->createImage( key );
        if (image.valid())
        {                
            return true;
        }            
    }
    else if (elevationLayer )
    {
        GeoHeightField hf = elevationLayer->createHeightField( key );
        if (hf.valid())
        {                
            return true;
        }            
    }
    return false;        
}   
void
StreamingTerrainNode::updateTaskServiceThreads( const MapFrame& mapf )
{
    //Get the maximum elevation weight
    float elevationWeight = 0.0f;
    for (ElevationLayerVector::const_iterator itr = mapf.elevationLayers().begin(); itr != mapf.elevationLayers().end(); ++itr)
    {
        ElevationLayer* layer = itr->get();
        float w = layer->getElevationLayerOptions().loadingWeight().value();
        if (w > elevationWeight) elevationWeight = w;
    }

    float totalImageWeight = 0.0f;
    for (ImageLayerVector::const_iterator itr = mapf.imageLayers().begin(); itr != mapf.imageLayers().end(); ++itr)
    {
        totalImageWeight += itr->get()->getImageLayerOptions().loadingWeight().value();
    }

    float totalWeight = elevationWeight + totalImageWeight;

    if (elevationWeight > 0.0f)
    {
        //Determine how many threads each layer gets
        int numElevationThreads = (int)osg::round((float)_numLoadingThreads * (elevationWeight / totalWeight ));
        OE_INFO << LC << "Elevation Threads = " << numElevationThreads << std::endl;
        getElevationTaskService()->setNumThreads( numElevationThreads );
    }

    for (ImageLayerVector::const_iterator itr = mapf.imageLayers().begin(); itr != mapf.imageLayers().end(); ++itr)
    {
        const TerrainLayerOptions& opt = itr->get()->getImageLayerOptions();
        int imageThreads = (int)osg::round((float)_numLoadingThreads * (opt.loadingWeight().value() / totalWeight ));
        OE_INFO << LC << "Image Threads for " << itr->get()->getName() << " = " << imageThreads << std::endl;
        getImageryTaskService( itr->get()->getUID() )->setNumThreads( imageThreads );
    }
}
/** Packages an image layer as a TMS folder. */
int
makeTMS( osg::ArgumentParser& args )
{
    osgDB::Registry::instance()->getReaderWriterForExtension("png");
    osgDB::Registry::instance()->getReaderWriterForExtension("jpg");
    osgDB::Registry::instance()->getReaderWriterForExtension("tiff");

    //Read the min level
    unsigned int minLevel = 0;
    while (args.read("--min-level", minLevel));

    //Read the max level
    unsigned int maxLevel = 5;
    while (args.read("--max-level", maxLevel));
    

    std::vector< Bounds > bounds;
    // restrict packaging to user-specified bounds.    
    double xmin=DBL_MAX, ymin=DBL_MAX, xmax=DBL_MIN, ymax=DBL_MIN;
    while (args.read("--bounds", xmin, ymin, xmax, ymax ))
    {        
        Bounds b;
        b.xMin() = xmin, b.yMin() = ymin, b.xMax() = xmax, b.yMax() = ymax;
        bounds.push_back( b );
    }    

    std::string tileList;
    while (args.read( "--tiles", tileList ) );

    bool verbose = args.read("--verbose");

    unsigned int batchSize = 0;
    args.read("--batchsize", batchSize);

    // Read the concurrency level
    unsigned int concurrency = 0;
    args.read("-c", concurrency);
    args.read("--concurrency", concurrency);

    bool writeXML = true;

    // load up the map
    osg::ref_ptr<MapNode> mapNode = MapNode::load( args );
    if( !mapNode.valid() )
        return usage( "Failed to load a valid .earth file" );


    // Read in an index shapefile
    std::string index;
    while (args.read("--index", index))
    {        
        //Open the feature source
        OGRFeatureOptions featureOpt;
        featureOpt.url() = index;        

        osg::ref_ptr< FeatureSource > features = FeatureSourceFactory::create( featureOpt );
        features->initialize();
        features->getFeatureProfile();

        osg::ref_ptr< FeatureCursor > cursor = features->createFeatureCursor();
        while (cursor.valid() && cursor->hasMore())
        {
            osg::ref_ptr< Feature > feature = cursor->nextFeature();
            osgEarth::Bounds featureBounds = feature->getGeometry()->getBounds();
            GeoExtent ext( feature->getSRS(), featureBounds );
            ext = ext.transform( mapNode->getMapSRS() );
            bounds.push_back( ext.bounds() );            
        }
    }

    // see if the user wants to override the type extension (imagery only)
    std::string extension;
    args.read( "--ext", extension );

    // find a .earth file on the command line
    std::string earthFile = findArgumentWithExtension( args, ".earth" );
    
    // folder to which to write the TMS archive.
    std::string rootFolder;
    if( !args.read( "--out", rootFolder ) )
        rootFolder = Stringify() << earthFile << ".tms_repo";

    // whether to overwrite existing tile files
    //TODO:  Support
    bool overwrite = false;
    if( args.read( "--overwrite" ) )
        overwrite = true;

    // write out an earth file
    std::string outEarth;
    args.read( "--out-earth", outEarth );

    std::string dbOptions;
    args.read( "--db-options", dbOptions );
    std::string::size_type n = 0;
    while( (n = dbOptions.find( '"', n )) != dbOptions.npos )
    {
        dbOptions.erase( n, 1 );
    }

    osg::ref_ptr<osgDB::Options> options = new osgDB::Options( dbOptions );

    // whether to keep 'empty' tiles    
    bool keepEmpties = args.read( "--keep-empties" );

    //TODO:  Single color
    bool continueSingleColor = args.read( "--continue-single-color" );

    // elevation pixel depth
    unsigned elevationPixelDepth = 32;
    args.read( "--elevation-pixel-depth", elevationPixelDepth );
    
    // create a folder for the output
    osgDB::makeDirectory( rootFolder );
    if( !osgDB::fileExists( rootFolder ) )
        return usage( "Failed to create root output folder" );

    int imageLayerIndex = -1;
    args.read("--image", imageLayerIndex);

    int elevationLayerIndex = -1;
    args.read("--elevation", elevationLayerIndex);
    
    Map* map = mapNode->getMap();


    osg::ref_ptr< TileVisitor > visitor;

    // If we are given a task file, load it up and create a new TileKeyListVisitor
    if (!tileList.empty())
    {        
        TaskList tasks( mapNode->getMap()->getProfile() );
        tasks.load( tileList );

        TileKeyListVisitor* v = new TileKeyListVisitor();
        v->setKeys( tasks.getKeys() );
        visitor = v;     
        // This process is a lowly worker, and shouldn't write out the XML file.
        writeXML = false;
    }

    // If we dont' have a visitor create one.
    if (!visitor.valid())
    {
        if (args.read("--mt"))
        {
            // Create a multithreaded visitor
            MultithreadedTileVisitor* v = new MultithreadedTileVisitor();
            if (concurrency > 0)
            {
                v->setNumThreads(concurrency);
            }
            visitor = v;            
        }
        else if (args.read("--mp"))
        {
            // Create a multiprocess visitor
            MultiprocessTileVisitor* v = new MultiprocessTileVisitor();
            if (concurrency > 0)
            {
                v->setNumProcesses(concurrency);
                OE_NOTICE << "Set num processes " << concurrency << std::endl;
            }

            if (batchSize > 0)
            {            
                v->setBatchSize(batchSize);
            }


            // Try to find the earth file
            std::string earthFile;
            for(int pos=1;pos<args.argc();++pos)
            {
                if (!args.isOption(pos))
                {
                    earthFile  = args[ pos ];
                    break;
                }
            }

            v->setEarthFile( earthFile );

            visitor = v;            
        }
        else
        {
            // Create a single thread visitor
            visitor = new TileVisitor();            
        }        
    }

    osg::ref_ptr< ProgressCallback > progress = new ConsoleProgressCallback();

    if (verbose)
    {
        visitor->setProgressCallback( progress );
    }

    visitor->setMinLevel( minLevel );
    visitor->setMaxLevel( maxLevel );        


    for (unsigned int i = 0; i < bounds.size(); i++)
    {
        GeoExtent extent(mapNode->getMapSRS(), bounds[i]);
        OE_DEBUG << "Adding extent " << extent.toString() << std::endl;                
        visitor->addExtent( extent );
    }    


    // Setup a TMSPackager with all the options.
    TMSPackager packager;
    packager.setExtension(extension);
    packager.setVisitor(visitor);
    packager.setDestination(rootFolder);    
    packager.setElevationPixelDepth(elevationPixelDepth);
    packager.setWriteOptions(options);    
    packager.setOverwrite(overwrite);
    packager.setKeepEmpties(keepEmpties);


    // new map for an output earth file if necessary.
    osg::ref_ptr<Map> outMap = 0L;
    if( !outEarth.empty() )
    {
        // copy the options from the source map first
        outMap = new Map( map->getInitialMapOptions() );
    }

    std::string outEarthFile = osgDB::concatPaths( rootFolder, osgDB::getSimpleFileName( outEarth ) );
    

    // Package an individual image layer
    if (imageLayerIndex >= 0)
    {        
        ImageLayer* layer = map->getImageLayerAt(imageLayerIndex);
        if (layer)
        {
            packager.run(layer, map);
            if (writeXML)
            {
                packager.writeXML(layer, map);
            }
        }
        else
        {
            std::cout << "Failed to find an image layer at index " << imageLayerIndex << std::endl;
            return 1;
        }
    }
    // Package an individual elevation layer
    else if (elevationLayerIndex >= 0)
    {        
        ElevationLayer* layer = map->getElevationLayerAt(elevationLayerIndex);
        if (layer)
        {
            packager.run(layer, map);
            if (writeXML)
            {
                packager.writeXML(layer, map );
            }
        }
        else
        {
            std::cout << "Failed to find an elevation layer at index " << elevationLayerIndex << std::endl;
            return 1;
        }
    }
    else
    {        
        // Package all the ImageLayer's
        for (unsigned int i = 0; i < map->getNumImageLayers(); i++)
        {            
            ImageLayer* layer = map->getImageLayerAt(i);        
            OE_NOTICE << "Packaging " << layer->getName() << std::endl;
            osg::Timer_t start = osg::Timer::instance()->tick();
            packager.run(layer, map);
            osg::Timer_t end = osg::Timer::instance()->tick();
            if (verbose)
            {
                OE_NOTICE << "Completed seeding layer " << layer->getName() << " in " << prettyPrintTime( osg::Timer::instance()->delta_s( start, end ) ) << std::endl;
            }                

            if (writeXML)
            {
                packager.writeXML(layer, map);
            }

            // save to the output map if requested:
            if( outMap.valid() )
            {
                std::string layerFolder = toLegalFileName( packager.getLayerName() );

                // new TMS driver info:
                TMSOptions tms;
                tms.url() = URI(
                    osgDB::concatPaths( layerFolder, "tms.xml" ),
                    outEarthFile );

                ImageLayerOptions layerOptions( packager.getLayerName(), tms );
                layerOptions.mergeConfig( layer->getInitialOptions().getConfig( true ) );
                layerOptions.cachePolicy() = CachePolicy::NO_CACHE;

                outMap->addImageLayer( new ImageLayer( layerOptions ) );
            }
        }    

        // Package all the ElevationLayer's
        for (unsigned int i = 0; i < map->getNumElevationLayers(); i++)
        {            
            ElevationLayer* layer = map->getElevationLayerAt(i);        
            OE_NOTICE << "Packaging " << layer->getName() << std::endl;
            osg::Timer_t start = osg::Timer::instance()->tick();
            packager.run(layer, map);
            osg::Timer_t end = osg::Timer::instance()->tick();
            if (verbose)
            {
                OE_NOTICE << "Completed seeding layer " << layer->getName() << " in " << prettyPrintTime( osg::Timer::instance()->delta_s( start, end ) ) << std::endl;
            }      
            if (writeXML)
            {
                packager.writeXML(layer, map);
            }

            // save to the output map if requested:
            if( outMap.valid() )
            {
                std::string layerFolder = toLegalFileName( packager.getLayerName() );

                // new TMS driver info:
                TMSOptions tms;
                tms.url() = URI(
                    osgDB::concatPaths( layerFolder, "tms.xml" ),
                    outEarthFile );

                ElevationLayerOptions layerOptions( packager.getLayerName(), tms );
                layerOptions.mergeConfig( layer->getInitialOptions().getConfig( true ) );
                layerOptions.cachePolicy() = CachePolicy::NO_CACHE;

                outMap->addElevationLayer( new ElevationLayer( layerOptions ) );
            }
        }

    }

    // Write out an earth file if it was requested
    // Finally, write an earth file if requested:
    if( outMap.valid() )
    {
        MapNodeOptions outNodeOptions = mapNode->getMapNodeOptions();
        osg::ref_ptr<MapNode> outMapNode = new MapNode( outMap.get(), outNodeOptions );
        if( !osgDB::writeNodeFile( *outMapNode.get(), outEarthFile ) )
        {
            OE_WARN << LC << "Error writing earth file to \"" << outEarthFile << "\"" << std::endl;
        }
        else if( verbose )
        {
            OE_NOTICE << LC << "Wrote earth file to \"" << outEarthFile << "\"" << std::endl;
        }
    }

    return 0;
}
Example #6
0
void CacheSeed::seed( Map* map )
{
    if ( !map->getCache() )
    {
        OE_WARN << LC << "Warning: No cache defined; aborting." << std::endl;
        return;
    }

    std::vector<TileKey> keys;
    map->getProfile()->getRootKeys(keys);

    //Add the map's entire extent if we don't have one specified.
    if (_extents.empty())
    {
        addExtent( map->getProfile()->getExtent() );
    }

    bool hasCaches = false;
    int src_min_level = INT_MAX;
    unsigned int src_max_level = 0;

    MapFrame mapf( map, Map::TERRAIN_LAYERS, "CacheSeed::seed" );

    //Assumes the the TileSource will perform the caching for us when we call createImage
    for( ImageLayerVector::const_iterator i = mapf.imageLayers().begin(); i != mapf.imageLayers().end(); i++ )
    {
        ImageLayer* layer = i->get();
        TileSource* src   = layer->getTileSource();

        const ImageLayerOptions& opt = layer->getImageLayerOptions();

        if ( layer->isCacheOnly() )
        {
            OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" is set to cache-only; skipping." << std::endl;
        }
        else if ( !src )
        {
            OE_WARN << "Warning: Layer \"" << layer->getName() << "\" could not create TileSource; skipping." << std::endl;
        }
        //else if ( src->getCachePolicyHint(0L) == CachePolicy::NO_CACHE )
        //{
        //    OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" does not support seeding; skipping." << std::endl;
        //}
        else if ( !layer->getCache() )
        {
            OE_WARN << LC << "Notice: Layer \"" << layer->getName() << "\" has no cache defined; skipping." << std::endl;
        }
        else
        {
            hasCaches = true;

            if (opt.minLevel().isSet() && (int)opt.minLevel().get() < src_min_level)
                src_min_level = opt.minLevel().get();
            if (opt.maxLevel().isSet() && opt.maxLevel().get() > src_max_level)
                src_max_level = opt.maxLevel().get();
        }
    }

    for( ElevationLayerVector::const_iterator i = mapf.elevationLayers().begin(); i != mapf.elevationLayers().end(); i++ )
    {
        ElevationLayer* layer = i->get();
        TileSource*     src   = layer->getTileSource();
        const ElevationLayerOptions& opt = layer->getElevationLayerOptions();

        if ( layer->isCacheOnly() )
        {
            OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" is set to cache-only; skipping." << std::endl;
        }
        else if (!src)
        {
            OE_WARN << "Warning: Layer \"" << layer->getName() << "\" could not create TileSource; skipping." << std::endl;
        }
        //else if ( src->getCachePolicyHint(0L) == CachePolicy::NO_CACHE )
        //{
        //    OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" does not support seeding; skipping." << std::endl;
        //}
        else if ( !layer->getCache() )
        {
            OE_WARN << LC << "Notice: Layer \"" << layer->getName() << "\" has no cache defined; skipping." << std::endl;
        }
        else
        {
            hasCaches = true;

            if (opt.minLevel().isSet() && (int)opt.minLevel().get() < src_min_level)
                src_min_level = opt.minLevel().get();
            if (opt.maxLevel().isSet() && opt.maxLevel().get() > src_max_level)
                src_max_level = opt.maxLevel().get();
        }
    }

    if ( !hasCaches )
    {
        OE_WARN << LC << "There are either no caches defined in the map, or no sources to cache; aborting." << std::endl;
        return;
    }

    if ( src_max_level > 0 && src_max_level < _maxLevel )
    {
        _maxLevel = src_max_level;
    }

    OE_NOTICE << LC << "Maximum cache level will be " << _maxLevel << std::endl;

    osg::Timer_t startTime = osg::Timer::instance()->tick();
    //Estimate the number of tiles
    _total = 0;    

    for (unsigned int level = _minLevel; level <= _maxLevel; level++)
    {
        double coverageRatio = 0.0;

        if (_extents.empty())
        {
            unsigned int wide, high;
            map->getProfile()->getNumTiles( level, wide, high );
            _total += (wide * high);
        }
        else
        {
            for (std::vector< GeoExtent >::const_iterator itr = _extents.begin(); itr != _extents.end(); itr++)
            {
                const GeoExtent& extent = *itr;
                double boundsArea = extent.area();

                TileKey ll = map->getProfile()->createTileKey(extent.xMin(), extent.yMin(), level);
                TileKey ur = map->getProfile()->createTileKey(extent.xMax(), extent.yMax(), level);

                if (!ll.valid() || !ur.valid()) continue;
                
                int tilesWide = ur.getTileX() - ll.getTileX() + 1;
                int tilesHigh = ll.getTileY() - ur.getTileY() + 1;
                int tilesAtLevel = tilesWide * tilesHigh;
                //OE_NOTICE << "Tiles at level " << level << "=" << tilesAtLevel << std::endl;

                /*
                bool hasData = false;
                
                for (ImageLayerVector::const_iterator itr = mapf.imageLayers().begin(); itr != mapf.imageLayers().end(); itr++)
                {
                    TileSource* src = itr->get()->getTileSource();
                    if (src)
                    {
                        if (src->hasDataAtLOD( level ))
                        {
                            //Compute the percent coverage of this dataset on the current extent
                            if (src->getDataExtents().size() > 0)
                            {
                                double cov = 0.0;
                                for (unsigned int j = 0; j < src->getDataExtents().size(); j++)
                                {
                                    GeoExtent b = src->getDataExtents()[j].transform( extent.getSRS());
                                    GeoExtent intersection = b.intersectionSameSRS( extent );
                                    if (intersection.isValid())
                                    {
                                        double coverage = intersection.area() / boundsArea;
                                        cov += coverage; //Assumes the extents aren't overlapping                            
                                    }
                                }
                                if (coverageRatio < cov) coverageRatio = cov;
                            }
                            else
                            {
                                //We have no way of knowing how much coverage we have
                                coverageRatio = 1.0;
                            }
                            hasData = true;
                            break;
                        }
                    }
                }

                for (ElevationLayerVector::const_iterator itr = mapf.elevationLayers().begin(); itr != mapf.elevationLayers().end(); itr++)
                {
                    TileSource* src = itr->get()->getTileSource();
                    if (src)
                    {
                        if (src->hasDataAtLOD( level ))
                        {
                            //Compute the percent coverage of this dataset on the current extent
                            if (src->getDataExtents().size() > 0)
                            {
                                double cov = 0.0;
                                for (unsigned int j = 0; j < src->getDataExtents().size(); j++)
                                {
                                    GeoExtent b = src->getDataExtents()[j].transform( extent.getSRS());
                                    GeoExtent intersection = b.intersectionSameSRS( extent );
                                    if (intersection.isValid())
                                    {
                                        double coverage = intersection.area() / boundsArea;
                                        cov += coverage; //Assumes the extents aren't overlapping                            
                                    }
                                }
                                if (coverageRatio < cov) coverageRatio = cov;
                            }
                            else
                            {
                                //We have no way of knowing how much coverage we have
                                coverageRatio = 1.0;
                            }
                            hasData = true;
                            break;
                        }
                    }
                }

                //Adjust the coverage ratio by a fudge factor to try to keep it from being too small,
                //tiles are either processed or not and the ratio is exact so will cover tiles partially
                //and potentially be too small
                double adjust = 4.0;
                coverageRatio = osg::clampBetween(coverageRatio * adjust, 0.0, 1.0);                

                //OE_NOTICE << level <<  " CoverageRatio = " << coverageRatio << std::endl;

                if (hasData)
                {
                    _total += (int)ceil(coverageRatio * (double)tilesAtLevel );
                }
                */
                _total += tilesAtLevel;
            }
        }
    }

    osg::Timer_t endTime = osg::Timer::instance()->tick();
    //OE_NOTICE << "Counted tiles in " << osg::Timer::instance()->delta_s(startTime, endTime) << " s" << std::endl;

    OE_INFO << "Processing ~" << _total << " tiles" << std::endl;

    for (unsigned int i = 0; i < keys.size(); ++i)
    {
        processKey( mapf, keys[i] );
    }

    _total = _completed;

    if ( _progress.valid()) _progress->reportProgress(_completed, _total, 0, 1, "Finished");
}
Example #7
0
bool
ElevationLayerVector::populateHeightField(osg::HeightField*      hf,
                                          const TileKey&         key,
                                          const Profile*         haeProfile,
                                          ElevationInterpolation interpolation,
                                          ProgressCallback*      progress ) const
{
    // heightfield must already exist.
    if ( !hf )
        return false;

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLOD(), key.getTileX(), key.getTileY(), haeProfile );
    }
    
    // Collect the valid layers for this tile.
    LayerAndKeyVector contenders;
    LayerAndKeyVector offsets;

    // Track the number of layers that would return fallback data.
    unsigned numFallbackLayers = 0;

    // Check them in reverse order since the highest priority is last.
    for(ElevationLayerVector::const_reverse_iterator i = this->rbegin(); i != this->rend(); ++i)
    {
        ElevationLayer* layer = i->get();

        if ( layer->getEnabled() && layer->getVisible() )
        {
            // calculate the resolution-mapped key (adjusted for tile resolution differential).            
            TileKey mappedKey = keyToUse.mapResolution(
                hf->getNumColumns(),
                layer->getTileSize() );

            bool useLayer = true;
            TileKey bestKey( mappedKey );

            // Is there a tilesource? If not we are cache-only and cannot reject the layer.
            if ( layer->getTileSource() )
            {
                // Check whether the non-mapped key is valid according to the user's min/max level settings:
                if ( !layer->isKeyInRange(key) )
                {
                    useLayer = false;
                }
                

                // Find the "best available" mapped key from the tile source:
                else 
                {
                    if ( layer->getTileSource()->getBestAvailableTileKey(mappedKey, bestKey) )
                    {
                        // If the bestKey is not the mappedKey, this layer is providing
                        // fallback data (data at a lower resolution than requested)
                        if ( mappedKey != bestKey )
                        {
                            numFallbackLayers++;
                        }
                    }
                    else
                    {
                        useLayer = false;
                    }
                }
            }

            if ( useLayer )
            {
                if ( layer->isOffset() )
                {
                    offsets.push_back( std::make_pair(layer, bestKey) );
                }
                else
                {
                    contenders.push_back( std::make_pair(layer, bestKey) );
                }
            }
        }
    }

    // nothing? bail out.
    if ( contenders.empty() && offsets.empty() )
    {
        return false;
    }

    // if everything is fallback data, bail out.
    if ( contenders.size() + offsets.size() == numFallbackLayers )
    {
        return false;
    }
    
    // Sample the layers into our target.
    unsigned numColumns = hf->getNumColumns();
    unsigned numRows    = hf->getNumRows();    
    double   xmin       = key.getExtent().xMin();
    double   ymin       = key.getExtent().yMin();
    double   dx         = key.getExtent().width() / (double)(numColumns-1);
    double   dy         = key.getExtent().height() / (double)(numRows-1);

    // If the incoming heightfield requests a positive border width, 
    // we need to adjust the extents so that we request data outside the
    // extent of the tile key:
    unsigned border = hf->getBorderWidth();
    if (border > 0u)
    {
        dx = key.getExtent().width() / (double)(numColumns - (border*2+1));
        dy = key.getExtent().height() / (double)(numRows - (border*2+1));
        xmin -= dx * (double)border;
        ymin -= dy * (double)border;
    }
    
    // We will load the actual heightfields on demand. We might not need them all.
#if 0
    GeoHeightFieldVector heightFields(contenders.size());
    GeoHeightFieldVector offsetFields(offsets.size());
    std::vector<bool>    heightFallback(contenders.size(), false);
    std::vector<bool>    heightFailed(contenders.size(), false);
    std::vector<bool>    offsetFailed(offsets.size(), false);
#else
    GeoHeightFieldVector heightFields[9];
    GeoHeightFieldVector offsetFields[9]; //(offsets.size());
    std::vector<bool>    heightFallback[9]; //(contenders.size(), false);
    std::vector<bool>    heightFailed[9]; //(contenders.size(), false);
    std::vector<bool>    offsetFailed[9]; //(offsets.size(), false);

    for (int n = 0; n < 9; ++n)
    {
        heightFields[n].resize(contenders.size());
        offsetFields[n].resize(offsets.size());
        heightFallback[n].assign(9, false);
        heightFailed[n].assign(9, false);
        offsetFailed[n].assign(9, false);
    }
#endif

    // The maximum number of heightfields to keep in this local cache
    unsigned int maxHeightFields = 50;
    unsigned numHeightFieldsInCache = 0;

    const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

    bool realData = false;

    unsigned int total = numColumns * numRows;
    unsigned int completed = 0;
    int nodataCount = 0;

    for (unsigned c = 0; c < numColumns; ++c)
    {
        double x = xmin + (dx * (double)c);
        for (unsigned r = 0; r < numRows; ++r)
        {
            double y = ymin + (dy * (double)r);

            // Collect elevations from each layer as necessary.
            bool resolved = false;

            for(int i=0; i<contenders.size() && !resolved; ++i)
            {
                ElevationLayer* layer = contenders[i].first.get();                
                TileKey contenderKey = contenders[i].second;

                // If there is a border, the edge points may not fall within the key extents 
                // and we may need to fetch a neighboring key.

                int n = 4; // index 4 is the center/default tile

                if (border > 0u && !contenderKey.getExtent().contains(x, y))
                {
                    int dTx = x < contenderKey.getExtent().xMin() ? -1 : x > contenderKey.getExtent().xMax() ? +1 : 0;
                    int dTy = y < contenderKey.getExtent().yMin() ? +1 : y > contenderKey.getExtent().yMax() ? -1 : 0;
                    contenderKey = contenderKey.createNeighborKey(dTx, dTy);
                    n = (dTy+1)*3 + (dTx+1);
                }

                if ( heightFailed[n][i] )
                    continue;

                TileKey actualKey = contenderKey;

                GeoHeightField& layerHF = heightFields[n][i];

                if (!layerHF.valid())
                {
                    // We couldn't get the heightfield from the cache, so try to create it.
                    // We also fallback on parent layers to make sure that we have data at the location even if it's fallback.
                    while (!layerHF.valid() && actualKey.valid())
                    {
                        layerHF = layer->createHeightField(actualKey, progress);
                        if (!layerHF.valid())
                        {
                            actualKey = actualKey.createParentKey();
                        }
                    }

                    // Mark this layer as fallback if necessary.
                    if (layerHF.valid())
                    {
                        heightFallback[n][i] = (actualKey != contenderKey); // actualKey != contenders[i].second;
                        numHeightFieldsInCache++;
                    }
                    else
                    {
                        heightFailed[n][i] = true;
                        continue;
                    }
                }

                if (layerHF.valid())
                {
                    bool isFallback = heightFallback[n][i];

                    // We only have real data if this is not a fallback heightfield.
                    if (!isFallback)
                    {
                        realData = true;
                    }

                    float elevation;
                    if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation))
                    {
                        if ( elevation != NO_DATA_VALUE )
                        {
                            resolved = true;                    
                            hf->setHeight(c, r, elevation);
                        }
                        else
                        {
                            ++nodataCount;
                        }
                    }
                }


                // Clear the heightfield cache if we have too many heightfields in the cache.
                if (numHeightFieldsInCache >= maxHeightFields)
                {
                    //OE_NOTICE << "Clearing cache" << std::endl;
                    for (unsigned int j = 0; j < 9; ++j)
                    {
                        for (unsigned int k = 0; k < heightFields[j].size(); k++)
                        {
                            heightFields[j][k] = GeoHeightField::INVALID;
                            heightFallback[j][k] = false;
                        }
                    }
                    numHeightFieldsInCache = 0;
                }
            }

            for(int i=offsets.size()-1; i>=0; --i)
            {
                TileKey contenderKey = offsets[i].second;

                // If there is a border, the edge points may not fall within the key extents 
                // and we may need to fetch a neighboring key.

                int n = 4; // index 4 is the center/default tile

                if (border > 0u && !contenderKey.getExtent().contains(x, y))
                {
                    int dTx = x < contenderKey.getExtent().xMin() ? -1 : x > contenderKey.getExtent().xMax() ? +1 : 0;
                    int dTy = y < contenderKey.getExtent().yMin() ? +1 : x > contenderKey.getExtent().yMax() ? -1 : 0;
                    contenderKey = contenderKey.createNeighborKey(dTx, dTy);
                    n = (dTy+1)*3 + (dTx+1);
                }
                
                if ( offsetFailed[n][i] == true )
                    continue;

                GeoHeightField& layerHF = offsetFields[n][i];
                if ( !layerHF.valid() )
                {
                    ElevationLayer* offset = offsets[i].first.get();

                    layerHF = offset->createHeightField(contenderKey, progress);
                    if ( !layerHF.valid() )
                    {
                        offsetFailed[n][i] = true;
                        continue;
                    }
                }

                // If we actually got a layer then we have real data
                realData = true;

                float elevation = 0.0f;
                if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                    elevation != NO_DATA_VALUE)
                {                    
                    hf->getHeight(c, r) += elevation;
                }
            }
        }
    }

    // Return whether or not we actually read any real data
    return realData;
}
Example #8
0
void CacheSeed::seed( Map* map )
{
    // We must do this to avoid an error message in OpenSceneGraph b/c the findWrapper method doesn't appear to be threadsafe.
    // This really isn't a big deal b/c this only effects data that is already cached.
    osgDB::ObjectWrapper* wrapper = osgDB::Registry::instance()->getObjectWrapperManager()->findWrapper( "osg::Image" );

    osg::Timer_t startTime = osg::Timer::instance()->tick();
    if ( !map->getCache() )
    {
        OE_WARN << LC << "Warning: No cache defined; aborting." << std::endl;
        return;
    }

    std::vector<TileKey> keys;
    map->getProfile()->getRootKeys(keys);

    //Add the map's entire extent if we don't have one specified.
    if (_extents.empty())
    {
        addExtent( map->getProfile()->getExtent() );
    }

    bool hasCaches = false;
    int src_min_level = INT_MAX;
    unsigned int src_max_level = 0;

    MapFrame mapf( map, Map::TERRAIN_LAYERS, "CacheSeed::seed" );

    //Assumes the the TileSource will perform the caching for us when we call createImage
    for( ImageLayerVector::const_iterator i = mapf.imageLayers().begin(); i != mapf.imageLayers().end(); i++ )
    {
        ImageLayer* layer = i->get();
        TileSource* src   = layer->getTileSource();

        const ImageLayerOptions& opt = layer->getImageLayerOptions();

        if ( layer->isCacheOnly() )
        {
            OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" is set to cache-only; skipping." << std::endl;
        }
        else if ( !src )
        {
            OE_WARN << "Warning: Layer \"" << layer->getName() << "\" could not create TileSource; skipping." << std::endl;
        }
        //else if ( src->getCachePolicyHint(0L) == CachePolicy::NO_CACHE )
        //{
        //    OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" does not support seeding; skipping." << std::endl;
        //}
        else if ( !layer->getCache() )
        {
            OE_WARN << LC << "Notice: Layer \"" << layer->getName() << "\" has no cache defined; skipping." << std::endl;
        }
        else
        {
            hasCaches = true;

            if (opt.minLevel().isSet() && (int)opt.minLevel().get() < src_min_level)
                src_min_level = opt.minLevel().get();
            if (opt.maxLevel().isSet() && opt.maxLevel().get() > src_max_level)
                src_max_level = opt.maxLevel().get();
        }
    }

    for( ElevationLayerVector::const_iterator i = mapf.elevationLayers().begin(); i != mapf.elevationLayers().end(); i++ )
    {
        ElevationLayer* layer = i->get();
        TileSource*     src   = layer->getTileSource();
        const ElevationLayerOptions& opt = layer->getElevationLayerOptions();

        if ( layer->isCacheOnly() )
        {
            OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" is set to cache-only; skipping." << std::endl;
        }
        else if (!src)
        {
            OE_WARN << "Warning: Layer \"" << layer->getName() << "\" could not create TileSource; skipping." << std::endl;
        }
        //else if ( src->getCachePolicyHint(0L) == CachePolicy::NO_CACHE )
        //{
        //    OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" does not support seeding; skipping." << std::endl;
        //}
        else if ( !layer->getCache() )
        {
            OE_WARN << LC << "Notice: Layer \"" << layer->getName() << "\" has no cache defined; skipping." << std::endl;
        }
        else
        {
            hasCaches = true;

            if (opt.minLevel().isSet() && (int)opt.minLevel().get() < src_min_level)
                src_min_level = opt.minLevel().get();
            if (opt.maxLevel().isSet() && opt.maxLevel().get() > src_max_level)
                src_max_level = opt.maxLevel().get();
        }
    }

    if ( !hasCaches )
    {
        OE_WARN << LC << "There are either no caches defined in the map, or no sources to cache; aborting." << std::endl;
        return;
    }

    if ( src_max_level > 0 && src_max_level < _maxLevel )
    {
        _maxLevel = src_max_level;
    }

    OE_NOTICE << LC << "Maximum cache level will be " << _maxLevel << std::endl;

    //Estimate the number of tiles
    _total = 0;    
    CacheEstimator est;
    est.setMinLevel( _minLevel );
    est.setMaxLevel( _maxLevel );
    est.setProfile( map->getProfile() ); 
    for (unsigned int i = 0; i < _extents.size(); i++)
    {                
        est.addExtent( _extents[ i ] );
    } 
    _total = est.getNumTiles();

    OE_INFO << "Processing ~" << _total << " tiles" << std::endl;


    // Initialize the operations queue
    _queue = new osg::OperationQueue;

    osg::Timer_t endTime = osg::Timer::instance()->tick();

    // Start the threads
    std::vector< osg::ref_ptr< osg::OperationsThread > > threads;
    for (unsigned int i = 0; i < _numThreads; i++)
    {        
        osg::OperationsThread* thread = new osg::OperationsThread();
        thread->setOperationQueue(_queue.get());
        thread->start();
        threads.push_back( thread );
    }

    OE_NOTICE << "Startup time " << osg::Timer::instance()->delta_s( startTime, endTime ) << std::endl;

    
    // Add the root keys to the queue
    for (unsigned int i = 0; i < keys.size(); ++i)
    {
        //processKey( mapf, keys[i] );
        _queue.get()->add( new CacheTileOperation( mapf, *this, keys[i]) );
    }    

    bool done = false;
    while (!done)
    {
        OpenThreads::Thread::microSleep(500000); // sleep for half a second
        done = true;
        if (_queue->getNumOperationsInQueue() > 0)
        {
            done = false;
            continue;
        }
        else
        {
            // Make sure no threads are currently working on an operation, which actually might add MORE operations since we are doing a quadtree traversal
            for (unsigned int i = 0; i < threads.size(); i++)
            {
                if (threads[i]->getCurrentOperation())
                {
                    done = false;
                    continue;
                }
            }
        }
    }    

    _total = _completed;

    if ( _progress.valid()) _progress->reportProgress(_completed, _total, 0, 1, "Finished");
}
Example #9
0
void CacheSeed::seed( Map* map )
{
    if ( !map->getCache() )
    {
        OE_WARN << LC << "Warning: No cache defined; aborting." << std::endl;
        return;
    }

    std::vector<TileKey> keys;
    map->getProfile()->getRootKeys(keys);

    //Add the map's entire extent if we don't have one specified.
    if (_extents.empty())
    {
        addExtent( map->getProfile()->getExtent() );
    }

    bool hasCaches = false;
    int src_min_level = INT_MAX;
    unsigned int src_max_level = 0;

    MapFrame mapf( map, Map::TERRAIN_LAYERS, "CacheSeed::seed" );

    //Assumes the the TileSource will perform the caching for us when we call createImage
    for( ImageLayerVector::const_iterator i = mapf.imageLayers().begin(); i != mapf.imageLayers().end(); i++ )
    {
        ImageLayer* layer = i->get();
        TileSource* src   = layer->getTileSource();

        const ImageLayerOptions& opt = layer->getImageLayerOptions();

        if ( layer->isCacheOnly() )
        {
            OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" is set to cache-only; skipping." << std::endl;
        }
        else if ( !src )
        {
            OE_WARN << "Warning: Layer \"" << layer->getName() << "\" could not create TileSource; skipping." << std::endl;
        }
        //else if ( src->getCachePolicyHint(0L) == CachePolicy::NO_CACHE )
        //{
        //    OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" does not support seeding; skipping." << std::endl;
        //}
        else if ( !layer->getCache() )
        {
            OE_WARN << LC << "Notice: Layer \"" << layer->getName() << "\" has no cache defined; skipping." << std::endl;
        }
        else
        {
            hasCaches = true;

            if (opt.minLevel().isSet() && (int)opt.minLevel().get() < src_min_level)
                src_min_level = opt.minLevel().get();
            if (opt.maxLevel().isSet() && opt.maxLevel().get() > src_max_level)
                src_max_level = opt.maxLevel().get();
        }
    }

    for( ElevationLayerVector::const_iterator i = mapf.elevationLayers().begin(); i != mapf.elevationLayers().end(); i++ )
    {
        ElevationLayer* layer = i->get();
        TileSource*     src   = layer->getTileSource();
        const ElevationLayerOptions& opt = layer->getElevationLayerOptions();

        if ( layer->isCacheOnly() )
        {
            OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" is set to cache-only; skipping." << std::endl;
        }
        else if (!src)
        {
            OE_WARN << "Warning: Layer \"" << layer->getName() << "\" could not create TileSource; skipping." << std::endl;
        }
        //else if ( src->getCachePolicyHint(0L) == CachePolicy::NO_CACHE )
        //{
        //    OE_WARN << LC << "Warning: Layer \"" << layer->getName() << "\" does not support seeding; skipping." << std::endl;
        //}
        else if ( !layer->getCache() )
        {
            OE_WARN << LC << "Notice: Layer \"" << layer->getName() << "\" has no cache defined; skipping." << std::endl;
        }
        else
        {
            hasCaches = true;

            if (opt.minLevel().isSet() && (int)opt.minLevel().get() < src_min_level)
                src_min_level = opt.minLevel().get();
            if (opt.maxLevel().isSet() && opt.maxLevel().get() > src_max_level)
                src_max_level = opt.maxLevel().get();
        }
    }

    if ( !hasCaches )
    {
        OE_WARN << LC << "There are either no caches defined in the map, or no sources to cache; aborting." << std::endl;
        return;
    }

    if ( src_max_level > 0 && src_max_level < _maxLevel )
    {
        _maxLevel = src_max_level;
    }

    OE_NOTICE << LC << "Maximum cache level will be " << _maxLevel << std::endl;

    //Estimate the number of tiles
    _total = 0;    
    CacheEstimator est;
    est.setMinLevel( _minLevel );
    est.setMaxLevel( _maxLevel );
    est.setProfile( map->getProfile() ); 
    for (unsigned int i = 0; i < _extents.size(); i++)
    {                
        est.addExtent( _extents[ i ] );
    } 
    _total = est.getNumTiles();

    OE_INFO << "Processing ~" << _total << " tiles" << std::endl;

    for (unsigned int i = 0; i < keys.size(); ++i)
    {
        processKey( mapf, keys[i] );
    }

    _total = _completed;

    if ( _progress.valid()) _progress->reportProgress(_completed, _total, 0, 1, "Finished");
}
Example #10
0
Config
EarthFileSerializer2::serialize(const MapNode* input, const std::string& referrer) const
{
    Config mapConf("map");
    mapConf.set("version", "2");

    if ( !input || !input->getMap() )
        return mapConf; 

    const Map* map = input->getMap();
    MapFrame mapf( map, Map::ENTIRE_MODEL );

    // the map and node options:
    Config optionsConf = map->getInitialMapOptions().getConfig();
    optionsConf.merge( input->getMapNodeOptions().getConfig() );
    mapConf.add( "options", optionsConf );

    // the layers
    for( ImageLayerVector::const_iterator i = mapf.imageLayers().begin(); i != mapf.imageLayers().end(); ++i )
    {
        ImageLayer* layer = i->get();
        //Config layerConf = layer->getInitialOptions().getConfig();
        Config layerConf = layer->getImageLayerOptions().getConfig();
        layerConf.set("name", layer->getName());
        layerConf.set("driver", layer->getInitialOptions().driver()->getDriver());        
        mapConf.add( "image", layerConf );
    }

    for( ElevationLayerVector::const_iterator i = mapf.elevationLayers().begin(); i != mapf.elevationLayers().end(); ++i )
    {
        ElevationLayer* layer = i->get();
        //Config layerConf = layer->getInitialOptions().getConfig();
        Config layerConf = layer->getElevationLayerOptions().getConfig();
        layerConf.set("name", layer->getName());
        layerConf.set("driver", layer->getInitialOptions().driver()->getDriver());        
        mapConf.add( "elevation", layerConf );
    }

    for( ModelLayerVector::const_iterator i = mapf.modelLayers().begin(); i != mapf.modelLayers().end(); ++i )
    {
        ModelLayer* layer = i->get();
        Config layerConf = layer->getModelLayerOptions().getConfig();
        layerConf.set("name", layer->getName());
        layerConf.set("driver", layer->getModelLayerOptions().driver()->getDriver());
        mapConf.add( "model", layerConf );
    }

    Config ext = input->externalConfig();
    if ( !ext.empty() )
    {
        ext.key() = "extensions";
        mapConf.add( ext );
    }

#if 1 // removed until it can be debugged.
    // Re-write pathnames in the Config so they are relative to the new referrer.
    if ( _rewritePaths && !referrer.empty() )
    {
        RewritePaths rewritePaths( referrer );
        rewritePaths.setRewriteAbsolutePaths( _rewriteAbsolutePaths );
        rewritePaths.apply( mapConf );
    }
#endif

    return mapConf;
}
Example #11
0
/** Packages an image layer as a TMS folder. */
int
makeTMS( osg::ArgumentParser& args )
{
    // see if the user wants to override the type extension (imagery only)
    std::string extension = "png";
    args.read( "--ext", extension );

    // verbosity?
    bool verbose = !args.read( "--quiet" );

    // find a .earth file on the command line
    std::string earthFile = findArgumentWithExtension(args, ".earth");
    if ( earthFile.empty() )
        return usage( "Missing required .earth file" );

    // folder to which to write the TMS archive.
    std::string rootFolder;
    if ( !args.read( "--out", rootFolder ) )
        rootFolder = Stringify() << earthFile << ".tms_repo";

    // max level to which to generate
    unsigned maxLevel = ~0;
    args.read( "--max-level", maxLevel );

    // load up the map
    osg::ref_ptr<MapNode> mapNode = MapNode::load( args );
    if ( !mapNode.valid() )
        return usage( "Failed to load a valid .earth file" );

    // create a folder for the output
    osgDB::makeDirectory(rootFolder);
    if ( !osgDB::fileExists(rootFolder) )
        return usage("Failed to create root output folder" );

    Map* map = mapNode->getMap();

    // fire up a packager:
    TMSPackager packager( map->getProfile() );
    packager.setVerbose( verbose );
    if ( maxLevel != ~0 )
        packager.setMaxLevel( maxLevel );
    

    // package any image layers that are enabled:
    ImageLayerVector imageLayers;
    map->getImageLayers( imageLayers );

    unsigned counter = 0;
    
    for( ImageLayerVector::iterator i = imageLayers.begin(); i != imageLayers.end(); ++i, ++counter )
    {
        ImageLayer* layer = i->get();
        if ( layer->getImageLayerOptions().enabled() == true )
        {
            std::string layerFolder = toLegalFileName( layer->getName() );
            if ( layerFolder.empty() )
                layerFolder = Stringify() << "image_layer_" << counter;

            if ( verbose )
            {
                OE_NOTICE << LC << "Packaging image layer \"" << layerFolder << "\"" << std::endl;
            }

            std::string layerRoot = osgDB::concatPaths( rootFolder, layerFolder );
            TMSPackager::Result r = packager.package( layer, layerRoot, extension );
            if ( !r.ok )
            {
                OE_WARN << LC << r.message << std::endl;
            }
        }
        else if ( verbose )
        {
            OE_NOTICE << LC << "Skipping disabled layer \"" << layer->getName() << "\"" << std::endl;
        }
    }

    // package any elevation layers that are enabled:
    counter = 0;
    ElevationLayerVector elevationLayers;
    map->getElevationLayers( elevationLayers );

    for( ElevationLayerVector::iterator i = elevationLayers.begin(); i != elevationLayers.end(); ++i, ++counter )
    {
        ElevationLayer* layer = i->get();
        if ( layer->getElevationLayerOptions().enabled() == true )
        {
            std::string layerFolder = toLegalFileName( layer->getName() );
            if ( layerFolder.empty() )
                layerFolder = Stringify() << "elevation_layer_" << counter;

            if ( verbose )
            {
                OE_NOTICE << LC << "Packaging elevation layer \"" << layerFolder << "\"" << std::endl;
            }

            std::string layerRoot = osgDB::concatPaths( rootFolder, layerFolder );
            packager.package( layer, layerRoot );
        }
        else if ( verbose )
        {
            OE_NOTICE << LC << "Skipping disabled layer \"" << layer->getName() << "\"" << std::endl;
        }
    }

    return 0;
}
Example #12
0
bool
ElevationLayerVector::populateHeightField(osg::HeightField*      hf,
                                          const TileKey&         key,
                                          const Profile*         haeProfile,
                                          ElevationInterpolation interpolation,
                                          ProgressCallback*      progress ) const
{
    //osg::Timer_t startTime = osg::Timer::instance()->tick();
    // heightfield must already exist.
    if ( !hf )
        return false;

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLOD(), key.getTileX(), key.getTileY(), haeProfile );
    }
    
    // Collect the valid layers for this tile.
    LayerAndKeyVector contenders;
    LayerAndKeyVector offsets;

    // Track the number of layers that would return fallback data.
    unsigned numFallbackLayers = 0;

    // Check them in reverse order since the highest priority is last.
    for(ElevationLayerVector::const_reverse_iterator i = this->rbegin(); i != this->rend(); ++i)
    {
        ElevationLayer* layer = i->get();

        if ( layer->getEnabled() && layer->getVisible() )
        {
            // calculate the resolution-mapped key (adjusted for tile resolution differential).            
            TileKey mappedKey = keyToUse.mapResolution(
                hf->getNumColumns(),
                layer->getTileSize() );

            bool useLayer = true;
            TileKey bestKey( mappedKey );

            // Is there a tilesource? If not we are cache-only and cannot reject the layer.
            if ( layer->getTileSource() )
            {
                // Check whether the non-mapped key is valid according to the user's min/max level settings:
                if ( !layer->isKeyInRange(key) )
                {
                    useLayer = false;
                }
                

                // Find the "best available" mapped key from the tile source:
                else 
                {
                    if ( layer->getTileSource()->getBestAvailableTileKey(mappedKey, bestKey) )
                    {
                        // If the bestKey is not the mappedKey, this layer is providing
                        // fallback data (data at a lower resolution than requested)
                        if ( mappedKey != bestKey )
                        {
                            numFallbackLayers++;
                        }
                    }
                    else
                    {
                        useLayer = false;
                    }
                }
            }

            if ( useLayer )
            {
                if ( layer->isOffset() )
                {
                    offsets.push_back( std::make_pair(layer, bestKey) );
                }
                else
                {
                    contenders.push_back( std::make_pair(layer, bestKey) );
                }
            }
        }
    }

    // nothing? bail out.
    if ( contenders.empty() && offsets.empty() )
    {
        return false;
    }

    // if everything is fallback data, bail out.
    if ( contenders.size() + offsets.size() == numFallbackLayers )
    {
        return false;
    }
    
    // Sample the layers into our target.
    unsigned numColumns = hf->getNumColumns();
    unsigned numRows    = hf->getNumRows();    
    double   xmin       = key.getExtent().xMin();
    double   ymin       = key.getExtent().yMin();
    double   dx         = key.getExtent().width() / (double)(numColumns-1);
    double   dy         = key.getExtent().height() / (double)(numRows-1);
    
    // We will load the actual heightfields on demand. We might not need them all.
    GeoHeightFieldVector heightFields(contenders.size());
    GeoHeightFieldVector offsetFields(offsets.size());
    std::vector<bool>    heightFailed(contenders.size(), false);
    std::vector<bool>    offsetFailed(offsets.size(), false);

    // The maximum number of heightfields to keep in this local cache
    unsigned int maxHeightFields = 50;
    unsigned numHeightFieldsInCache = 0;

    //double fallBackTime = 0;

    const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

    bool realData = false;

    //unsigned int numFallback = 0;


    unsigned int total = numColumns * numRows;
    unsigned int completed = 0;

    for (unsigned c = 0; c < numColumns; ++c)
    {
        double x = xmin + (dx * (double)c);
        for (unsigned r = 0; r < numRows; ++r)
        {
            double y = ymin + (dy * (double)r);

            // Collect elevations from each layer as necessary.
            bool resolved = false;

            for(int i=0; i<contenders.size() && !resolved; ++i)
            {
                if ( heightFailed[i] )
                    continue;

                ElevationLayer* layer = contenders[i].first.get();

                GeoHeightField& layerHF = heightFields[i];
                if ( !layerHF.valid() )
                {
                    layerHF = layer->createHeightField(contenders[i].second, progress);
                    
                    if ( !layerHF.valid() )
                    {
                        // This layer potentially has data or it wouldn't have ended up in the contendors list, so try falling back on the parent
                        TileKey parentKey = contenders[i].second.createParentKey();
                        while (!layerHF.valid() && parentKey.valid())
                        {
                            //numFallback++;
                            //osg::Timer_t fbStartTime = osg::Timer::instance()->tick();
                            GeoHeightField parentHF = layer->createHeightField(parentKey, progress);
                            //osg::Timer_t fbEndTime = osg::Timer::instance()->tick();

                            // Only penalize time wasted actually falling back.
                            //if (!parentHF.valid())
                            // {
                            //    fallBackTime += osg::Timer::instance()->delta_m(fbStartTime, fbEndTime);
                            //}

                            if (parentHF.valid())
                            {
                                layerHF = parentHF;
                                break;
                            }
                            else
                            {
                                parentKey = parentKey.createParentKey();
                            }

                        }

                        if (!layerHF.valid())
                        {
                            heightFailed[i] = true;
                            continue;
                        }
                    }
                    else
                    {
                        numHeightFieldsInCache++;
                    }
                }

                // If we actually got a layer then we have real data
                realData = true;

                float elevation;
                if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                    elevation != NO_DATA_VALUE)
                {
                    resolved = true;                    
                    hf->setHeight(c, r, elevation);
                }


                // Clear the heightfield cache if we have too many heightfields in the cache.
                if (numHeightFieldsInCache >= maxHeightFields)
                {
                    //OE_NOTICE << "Clearing cache" << std::endl;
                    for (unsigned int k = 0; k < heightFields.size(); k++)
                    {
                        heightFields[k] = GeoHeightField::INVALID;
                    }
                    numHeightFieldsInCache = 0;
                }
            }

            for(int i=offsets.size()-1; i>=0; --i)
            {
                if ( offsetFailed[i] )
                    continue;

                GeoHeightField& layerHF = offsetFields[i];
                if ( !layerHF.valid() )
                {
                    ElevationLayer* offset = offsets[i].first.get();

                    layerHF = offset->createHeightField(offsets[i].second, progress);
                    if ( !layerHF.valid() )
                    {
                        offsetFailed[i] = true;
                        continue;
                    }
                }

                // If we actually got a layer then we have real data
                realData = true;

                float elevation = 0.0f;
                if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                    elevation != NO_DATA_VALUE)
                {                    
                    hf->getHeight(c, r) += elevation;
                }
            }

            completed++;
            //OE_NOTICE << "Completed " << completed << " of " << total << std::endl;
        }
    }   

    //osg::Timer_t endTime = osg::Timer::instance()->tick();
    //double totalTime = osg::Timer::instance()->delta_m(startTime, endTime);
   // double fallbackPercentage = fallBackTime / totalTime;
    //if (fallBackTime > 0)
    //{
    //    OE_NOTICE << "populateHeightField took " << totalTime << "ms fallbacktime=" << fallBackTime << "ms count=" << numFallback << " percentage=" << fallbackPercentage << std::endl;
    //}
    //else
    //{
    //    OE_NOTICE << "populateHeightField took " << totalTime << "ms" << std::endl;
    //}

    // Return whether or not we actually read any real data
    return realData;
}
Example #13
0
void
Map::calculateProfile()
{
    if ( !_profile.valid() )
    {
        osg::ref_ptr<const Profile> userProfile;
        if ( _mapOptions.profile().isSet() )
        {
            userProfile = Profile::create( _mapOptions.profile().value() );
        }

        if ( _mapOptions.coordSysType() == MapOptions::CSTYPE_GEOCENTRIC )
        {
            if ( userProfile.valid() )
            {
                if ( userProfile->isOK() && userProfile->getSRS()->isGeographic() )
                {
                    _profile = userProfile.get();
                }
                else
                {
                    OE_WARN << LC 
                        << "Map is geocentric, but the configured profile does not "
                        << "have a geographic SRS. Falling back on default.."
                        << std::endl;
                }
            }

            if ( !_profile.valid() )
            {
                // by default, set a geocentric map to use global-geodetic WGS84.
                _profile = osgEarth::Registry::instance()->getGlobalGeodeticProfile();
            }
        }

        else if ( _mapOptions.coordSysType() == MapOptions::CSTYPE_GEOCENTRIC_CUBE )
        {
            //If the map type is a Geocentric Cube, set the profile to the cube profile.
            _profile = osgEarth::Registry::instance()->getCubeProfile();
        }

        else // CSTYPE_PROJECTED
        {
            if ( userProfile.valid() )
            {
                _profile = userProfile.get();
            }
        }

        // At this point, if we don't have a profile we need to search tile sources until we find one.
        if ( !_profile.valid() )
        {
            Threading::ScopedReadLock lock( _mapDataMutex );

            for( ImageLayerVector::iterator i = _imageLayers.begin(); i != _imageLayers.end() && !_profile.valid(); i++ )
            {
                ImageLayer* layer = i->get();
                if ( layer->getTileSource() )
                {
                    _profile = layer->getTileSource()->getProfile();
                }
            }

            for( ElevationLayerVector::iterator i = _elevationLayers.begin(); i != _elevationLayers.end() && !_profile.valid(); i++ )
            {
                ElevationLayer* layer = i->get();
                if ( layer->getTileSource() )
                {
                    _profile = layer->getTileSource()->getProfile();
                }
            }
        }

        // finally, fire an event if the profile has been set.
        if ( _profile.valid() )
        {
            OE_INFO << LC << "Map profile is: " << _profile->toString() << std::endl;

            for( MapCallbackList::iterator i = _mapCallbacks.begin(); i != _mapCallbacks.end(); i++ )
            {
                i->get()->onMapInfoEstablished( MapInfo(this) );
            }
        }

        else
        {
            OE_WARN << LC << "Warning, not yet able to establish a map profile!" << std::endl;
        }
    }

    if ( _profile.valid() )
    {
        // tell all the loaded layers what the profile is, as a hint
        {
            Threading::ScopedWriteLock lock( _mapDataMutex );

            for( ImageLayerVector::iterator i = _imageLayers.begin(); i != _imageLayers.end(); i++ )
            {
                ImageLayer* layer = i->get();
                layer->setTargetProfileHint( _profile.get() );
            }

            for( ElevationLayerVector::iterator i = _elevationLayers.begin(); i != _elevationLayers.end(); i++ )
            {
                ElevationLayer* layer = i->get();
                layer->setTargetProfileHint( _profile.get() );
            }
        }
    }
}
Example #14
0
bool
MapFrame::isCached( const osgEarth::TileKey& key ) const
{
    const Profile* mapProfile = getProfile();

    //Check the imagery layers
    for( ImageLayerVector::const_iterator i = imageLayers().begin(); i != imageLayers().end(); i++ )
    {
        ImageLayer* layer = i->get();
        osg::ref_ptr< Cache > cache = layer->getCache();

        if ( !cache.valid() || !layer->getProfile() ) 
            return false;

        std::vector< TileKey > keys;

        if ( mapProfile->isEquivalentTo( layer->getProfile() ) )
        {
            keys.push_back( key );
        }
        else
        {
            layer->getProfile()->getIntersectingTiles( key, keys );
        }

        for (unsigned int j = 0; j < keys.size(); ++j)
        {
            if ( layer->isKeyValid( keys[j] ) )
            {
                if ( !cache->isCached( keys[j], layer->getCacheSpec() ) )
                {
                    return false;
                }
            }
        }
    }

    for( ElevationLayerVector::const_iterator i = elevationLayers().begin(); i != elevationLayers().end(); ++i )
    {
        ElevationLayer* layer = i->get();
        osg::ref_ptr< Cache > cache = layer->getCache();

        if ( !cache.valid() || !layer->getProfile() )
            return false;

        std::vector<TileKey> keys;

        if ( mapProfile->isEquivalentTo( layer->getProfile() ) )
        {
            keys.push_back( key );
        }
        else
        {
            layer->getProfile()->getIntersectingTiles( key, keys );
        }

        for (unsigned int j = 0; j < keys.size(); ++j)
        {
            if ( layer->isKeyValid( keys[j] ) )
            {
                if ( !cache->isCached( keys[j], layer->getCacheSpec() ) )
                {
                    return false;
                }
            }
        }
    }
    return true;
}
bool
ElevationLayerVector::populateHeightFieldAndNormalMap(osg::HeightField*      hf,
                                                      NormalMap*             normalMap,
                                                      const TileKey&         key,
                                                      const Profile*         haeProfile,
                                                      ElevationInterpolation interpolation,
                                                      ProgressCallback*      progress ) const
{
    // heightfield must already exist.
    if ( !hf )
        return false;

    METRIC_SCOPED("ElevationLayer.populateHeightField");

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLOD(), key.getTileX(), key.getTileY(), haeProfile );
    }
    
    // Collect the valid layers for this tile.
    LayerDataVector contenders;
    LayerDataVector offsets;

#ifdef ANALYZE
    struct LayerAnalysis {
        LayerAnalysis() : samples(0), used(false), failed(false), fallback(false), actualKeyValid(true) { }
        int samples; bool used; bool failed; bool fallback; bool actualKeyValid; std::string message;
    };
    std::map<ElevationLayer*, LayerAnalysis> layerAnalysis;
#endif

    // Track the number of layers that would return fallback data.
    unsigned numFallbackLayers = 0;

    // Check them in reverse order since the highest priority is last.
    for (int i = size()-1; i>=0; --i)
    //for(ElevationLayerVector::const_reverse_iterator i = this->rbegin(); i != this->rend(); ++i)
    {
        ElevationLayer* layer = (*this)[i].get(); //i->get();

        if ( layer->getEnabled() && layer->getVisible() )
        {
            // calculate the resolution-mapped key (adjusted for tile resolution differential).            
            TileKey mappedKey = keyToUse.mapResolution(
                hf->getNumColumns(),
                layer->getTileSize() );

            bool useLayer = true;
            TileKey bestKey( mappedKey );

            // Check whether the non-mapped key is valid according to the user's min/max level settings:
            if ( !layer->isKeyInLegalRange(key) )
            {
                useLayer = false;
            }
                
            // Find the "best available" mapped key from the tile source:
            else 
            {
                bestKey = layer->getBestAvailableTileKey(mappedKey);
                if (bestKey.valid())
                {
                    // If the bestKey is not the mappedKey, this layer is providing
                    // fallback data (data at a lower resolution than requested)
                    if ( mappedKey != bestKey )
                    {
                        numFallbackLayers++;
                    }
                }
                else
                {
                    useLayer = false;
                }
            }

            if ( useLayer )
            {
                if ( layer->isOffset() )
                {
                    offsets.push_back(LayerData());
                    LayerData& ld = offsets.back();
                    ld.layer = layer;
                    ld.key = bestKey;
                    ld.index = i;
                }
                else
                {
                    contenders.push_back(LayerData());
                    LayerData& ld = contenders.back();
                    ld.layer = layer;
                    ld.key = bestKey;
                    ld.index = i;
                }

#ifdef ANALYZE
                layerAnalysis[layer].used = true;
#endif
            }
        }
    }

    // nothing? bail out.
    if ( contenders.empty() && offsets.empty() )
    {
        return false;
    }

    // if everything is fallback data, bail out.
    if ( contenders.size() + offsets.size() == numFallbackLayers )
    {
        return false;
    }
    
    // Sample the layers into our target.
    unsigned numColumns = hf->getNumColumns();
    unsigned numRows    = hf->getNumRows();    
    double   xmin       = key.getExtent().xMin();
    double   ymin       = key.getExtent().yMin();
    double   dx         = key.getExtent().width() / (double)(numColumns-1);
    double   dy         = key.getExtent().height() / (double)(numRows-1);
   
    // We will load the actual heightfields on demand. We might not need them all.
    GeoHeightFieldVector heightFields(contenders.size());
    GeoHeightFieldVector offsetFields(offsets.size());
    std::vector<bool>    heightFallback(contenders.size(), false);
    std::vector<bool>    heightFailed(contenders.size(), false);
    std::vector<bool>    offsetFailed(offsets.size(), false);

    // The maximum number of heightfields to keep in this local cache
    const unsigned maxHeightFields = 50;
    unsigned numHeightFieldsInCache = 0;

    const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

    bool realData = false;

    unsigned int total = numColumns * numRows;

    // query resolution interval (x, y) of each sample.
    osg::ref_ptr<osg::ShortArray> deltaLOD = new osg::ShortArray(total);
    
    int nodataCount = 0;

    TileKey scratchKey; // Storage if a new key needs to be constructed

    bool requiresResample = true;

    // If we only have a single contender layer, and the tile is the same size as the requested 
    // heightfield then we just use it directly and avoid having to resample it
    if (contenders.size() == 1 && offsets.empty())
    {
        ElevationLayer* layer = contenders[0].layer.get();
        TileKey& contenderKey = contenders[0].key;

        GeoHeightField layerHF = layer->createHeightField(contenderKey, 0);
        if (layerHF.valid())
        {
            if (layerHF.getHeightField()->getNumColumns() == hf->getNumColumns() &&
                layerHF.getHeightField()->getNumRows() == hf->getNumRows())
            {
                requiresResample = false;
                memcpy(hf->getFloatArray()->asVector().data(),
                    layerHF.getHeightField()->getFloatArray()->asVector().data(),
                    sizeof(float) * hf->getFloatArray()->size()
                );
                deltaLOD->resize(hf->getFloatArray()->size(), 0);
                realData = true;
            }
        }
    }

    // If we need to mosaic multiple layers or resample it to a new output tilesize go through a resampling loop.
    if (requiresResample)
    {
        for (unsigned c = 0; c < numColumns; ++c)
        {
            double x = xmin + (dx * (double)c);

            // periodically check for cancelation
            if (progress && progress->isCanceled())
            {
                return false;
            }

            for (unsigned r = 0; r < numRows; ++r)
            {
                double y = ymin + (dy * (double)r);

                // Collect elevations from each layer as necessary.
                int resolvedIndex = -1;

                osg::Vec3 normal_sum(0, 0, 0);

                for (int i = 0; i < contenders.size() && resolvedIndex < 0; ++i)
                {
                    ElevationLayer* layer = contenders[i].layer.get();
                    TileKey& contenderKey = contenders[i].key;
                    int index = contenders[i].index;

                    if (heightFailed[i])
                        continue;

                    TileKey* actualKey = &contenderKey;

                    GeoHeightField& layerHF = heightFields[i];

                    if (!layerHF.valid())
                    {
                        // We couldn't get the heightfield from the cache, so try to create it.
                        // We also fallback on parent layers to make sure that we have data at the location even if it's fallback.
                        while (!layerHF.valid() && actualKey->valid() && layer->isKeyInLegalRange(*actualKey))
                        {
                            layerHF = layer->createHeightField(*actualKey, progress);
                            if (!layerHF.valid())
                            {
                                if (actualKey != &scratchKey)
                                {
                                    scratchKey = *actualKey;
                                    actualKey = &scratchKey;
                                }
                                *actualKey = actualKey->createParentKey();
                            }
                        }

                        // Mark this layer as fallback if necessary.
                        if (layerHF.valid())
                        {
                            heightFallback[i] = (*actualKey != contenderKey); // actualKey != contenders[i].second;
                            numHeightFieldsInCache++;
                        }
                        else
                        {
                            heightFailed[i] = true;
#ifdef ANALYZE
                            layerAnalysis[layer].failed = true;
                            layerAnalysis[layer].actualKeyValid = actualKey->valid();
                            if (progress) layerAnalysis[layer].message = progress->message();
#endif
                            continue;
                        }
                    }

                    if (layerHF.valid())
                    {
                        bool isFallback = heightFallback[i];
#ifdef ANALYZE
                        layerAnalysis[layer].fallback = isFallback;
#endif

                        // We only have real data if this is not a fallback heightfield.
                        if (!isFallback)
                        {
                            realData = true;
                        }

                        float elevation;
                        if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation))
                        {
                            if (elevation != NO_DATA_VALUE)
                            {
                                // remember the index so we can only apply offset layers that
                                // sit on TOP of this layer.
                                resolvedIndex = index;

                                hf->setHeight(c, r, elevation);

#ifdef ANALYZE
                                layerAnalysis[layer].samples++;
#endif

                                if (deltaLOD)
                                {
                                    (*deltaLOD)[r*numColumns + c] = key.getLOD() - actualKey->getLOD();
                                }
                            }
                            else
                            {
                                ++nodataCount;
                            }
                        }
                    }


                    // Clear the heightfield cache if we have too many heightfields in the cache.
                    if (numHeightFieldsInCache >= maxHeightFields)
                    {
                        //OE_NOTICE << "Clearing cache" << std::endl;
                        for (unsigned int k = 0; k < heightFields.size(); k++)
                        {
                            heightFields[k] = GeoHeightField::INVALID;
                            heightFallback[k] = false;
                        }
                        numHeightFieldsInCache = 0;
                    }
                }

                for (int i = offsets.size() - 1; i >= 0; --i)
                {
                    // Only apply an offset layer if it sits on top of the resolved layer
                    // (or if there was no resolved layer).
                    if (resolvedIndex >= 0 && offsets[i].index < resolvedIndex)
                        continue;

                    TileKey &contenderKey = offsets[i].key;

                    if (offsetFailed[i] == true)
                        continue;

                    GeoHeightField& layerHF = offsetFields[i];
                    if (!layerHF.valid())
                    {
                        ElevationLayer* offset = offsets[i].layer.get();

                        layerHF = offset->createHeightField(contenderKey, progress);
                        if (!layerHF.valid())
                        {
                            offsetFailed[i] = true;
                            continue;
                        }
                    }

                    // If we actually got a layer then we have real data
                    realData = true;

                    float elevation = 0.0f;
                    if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                        elevation != NO_DATA_VALUE)
                    {
                        hf->getHeight(c, r) += elevation;

                        // Update the resolution tracker to account for the offset. Sadly this
                        // will wipe out the resolution of the actual data, and might result in 
                        // normal faceting. See the comments on "createNormalMap" for more info
                        if (deltaLOD)
                        {
                            (*deltaLOD)[r*numColumns + c] = key.getLOD() - contenderKey.getLOD();
                        }
                    }
                }
            }
        }
    }

    if (normalMap)
    {
        // periodically check for cancelation
        if (progress && progress->isCanceled())
        {
            return false;
        }

        createNormalMap(key.getExtent(), hf, deltaLOD.get(), normalMap);
    }

#ifdef ANALYZE
    {
        static Threading::Mutex m;
        Threading::ScopedMutexLock lock(m);
        std::cout << key.str() << ": ";
        for (std::map<ElevationLayer*, LayerAnalysis>::const_iterator i = layerAnalysis.begin();
            i != layerAnalysis.end(); ++i)
        {
            std::cout << i->first->getName() 
                << " used=" << i->second.used
                << " failed=" << i->second.failed
                << " akv=" << i->second.actualKeyValid
                << " fallback=" << i->second.fallback
                << " samples=" << i->second.samples
                << " msg=" << i->second.message
                << "; ";
        }
        std::cout << std::endl;
    }
#endif

    if (progress && progress->isCanceled())
    {
        return false;
    }

    // Return whether or not we actually read any real data
    return realData;
}
Example #16
0
void GlobePlugin::layersChanged()
{
  if ( mIsGlobeRunning )
  {
    QgsDebugMsg( "layersChanged: Globe Running, executing" );
    osg::ref_ptr<Map> map = mMapNode->getMap();

    if ( map->getNumImageLayers() > 1 || map->getNumElevationLayers() > 1 )
    {
      viewer.getDatabasePager()->clear();
    }

    // Remove elevation layers
    ElevationLayerVector list;
    map->getElevationLayers( list );
    for ( ElevationLayerVector::iterator i = list.begin(); i != list.end(); i++ )
    {
      map->removeElevationLayer( *i );
    }

    // Add elevation layers
    QSettings settings;
    QString cacheDirectory = settings.value( "cache/directory", QgsApplication::qgisSettingsDirPath() + "cache" ).toString();
    QTableWidget* table = mSettingsDialog.elevationDatasources();
    for ( int i = 0; i < table->rowCount(); ++i )
    {
      QString type = table->item( i, 0 )->text();
      bool cache = table->item( i, 1 )->checkState();
      QString uri = table->item( i, 2 )->text();
      ElevationLayer* layer = 0;

      if ( "Raster" == type )
      {
        GDALOptions options;
        options.url() = uri.toStdString();
        layer = new osgEarth::ElevationLayer( uri.toStdString(), options );
      }
      else if ( "Worldwind" == type )
      {
        WorldWindOptions options;
        options.elevationCachePath() = cacheDirectory.toStdString() + "/globe/worldwind_srtm";
        layer = new osgEarth::ElevationLayer( "WorldWind bil", options );
        TerrainEngineNode* terrainEngineNode = mMapNode->getTerrainEngine();
        terrainEngineNode->setVerticalScale( 2 );
        terrainEngineNode->setElevationSamplingRatio( 0.25 );
      }
      else if ( "TMS" == type )
      {
        TMSOptions options;
        options.url() = uri.toStdString();
        layer = new osgEarth::ElevationLayer( uri.toStdString(), options );
      }
      map->addElevationLayer( layer );

      if ( !cache || type == "Worldwind" ) layer->setCache( 0 ); //no tms cache for worldwind (use worldwind_cache)
    }

    //remove QGIS layer
    if ( mQgisMapLayer )
    {
      QgsDebugMsg( "removeMapLayer" );
      map->removeImageLayer( mQgisMapLayer );
    }

    //add QGIS layer
    QgsDebugMsg( "addMapLayer" );
    mTileSource = new QgsOsgEarthTileSource( mQGisIface );
    mTileSource->initialize( "", 0 );
    ImageLayerOptions options( "QGIS" );
    mQgisMapLayer = new ImageLayer( options, mTileSource );
    map->addImageLayer( mQgisMapLayer );
    mQgisMapLayer->setCache( 0 ); //disable caching
  }
  else
  {
    QgsDebugMsg( "layersChanged: Globe NOT running, skipping" );
    return;
  }
}
Example #17
0
bool
ElevationLayerVector::populateHeightField(osg::HeightField*      hf,
                                          const TileKey&         key,
                                          const Profile*         haeProfile,
                                          ElevationInterpolation interpolation,
                                          ProgressCallback*      progress ) const
{
    // heightfield must already exist.
    if ( !hf )
        return false;

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLOD(), key.getTileX(), key.getTileY(), haeProfile );
    }
    
    // Collect the valid layers for this tile.
    ElevationLayerVector contenders;
    ElevationLayerVector offsets;
    for(ElevationLayerVector::const_reverse_iterator i = this->rbegin(); i != this->rend(); ++i)
    {
        ElevationLayer* layer = i->get();

        if ( layer->getEnabled() && layer->getVisible() )
        {
            // calculate the resolution-mapped key (adjusted for tile resolution differential).            
            TileKey mappedKey = 
                keyToUse.mapResolution(hf->getNumColumns(), layer->getTileSize());

            // Note: isKeyInRange tests the key, but haData tests the mapped key.
            // I think that's right!
            if ((layer->getTileSource() == 0L) || 
                (layer->isKeyInRange(key) && layer->getTileSource()->hasData(mappedKey)))
            {
                if (layer->isOffset())
                    offsets.push_back(layer);
                else
                    contenders.push_back(layer);
            }
        }
    }

    // nothing? bail out.
    if ( contenders.empty() && offsets.empty() )
    {
        return false;
    }

    
    // Sample the layers into our target.
    unsigned numColumns = hf->getNumColumns();
    unsigned numRows    = hf->getNumRows();    
    double   xmin       = key.getExtent().xMin();
    double   ymin       = key.getExtent().yMin();
    double   dx         = key.getExtent().width() / (double)(numColumns-1);
    double   dy         = key.getExtent().height() / (double)(numRows-1);
    
    // We will load the actual heightfields on demand. We might not need them all.
    GeoHeightFieldVector heightFields(contenders.size());
    GeoHeightFieldVector offsetFields(offsets.size());
    std::vector<bool>    heightFailed (contenders.size(), false);
    std::vector<bool>    offsetFailed(offsets.size(), false);

    const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

    bool realData = false;

    for (unsigned c = 0; c < numColumns; ++c)
    {
        double x = xmin + (dx * (double)c);
        for (unsigned r = 0; r < numRows; ++r)
        {
            double y = ymin + (dy * (double)r);

            // Collect elevations from each layer as necessary.
            bool resolved = false;

            for(int i=0; i<contenders.size() && !resolved; ++i)
            {
                if ( heightFailed[i] )
                    continue;

                GeoHeightField& layerHF = heightFields[i];
                if ( !layerHF.valid() )
                {
                    TileKey mappedKey = 
                        keyToUse.mapResolution(hf->getNumColumns(), contenders[i]->getTileSize());

                    layerHF = contenders[i]->createHeightField(mappedKey, progress);
                    if ( !layerHF.valid() )
                    {
                        heightFailed[i] = true;
                        continue;
                    }
                }

                // If we actually got a layer then we have real data
                realData = true;

                float elevation;
                if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                    elevation != NO_DATA_VALUE)
                {
                    resolved = true;                    
                    hf->setHeight(c, r, elevation);
                }
            }

            for(int i=offsets.size()-1; i>=0; --i)
            {
                if ( offsetFailed[i] )
                    continue;

                GeoHeightField& layerHF = offsetFields[i];
                if ( !layerHF.valid() )
                {
                    TileKey mappedKey = 
                        keyToUse.mapResolution(hf->getNumColumns(), offsets[i]->getTileSize());

                    layerHF = offsets[i]->createHeightField(mappedKey, progress);
                    if ( !layerHF.valid() )
                    {
                        offsetFailed[i] = true;
                        continue;
                    }
                }

                // If we actually got a layer then we have real data
                realData = true;

                float elevation = 0.0f;
                if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                    elevation != NO_DATA_VALUE)
                {                    
                    hf->getHeight(c, r) += elevation;
                }
            }
        }
    }   

    // Return whether or not we actually read any real data
    return realData;
}
Example #18
0
void
Map::calculateProfile()
{
    if ( !_profile.valid() )
    {
        osg::ref_ptr<const Profile> userProfile;
        if ( _mapOptions.profile().isSet() )
        {
            userProfile = Profile::create( _mapOptions.profile().value() );
        }

        if ( _mapOptions.coordSysType() == MapOptions::CSTYPE_GEOCENTRIC )
        {
            if ( userProfile.valid() )
            {
                if ( userProfile->isOK() && userProfile->getSRS()->isGeographic() )
                {
                    _profile = userProfile.get();
                }
                else
                {
                    OE_WARN << LC 
                        << "Map is geocentric, but the configured profile SRS ("
                        << userProfile->getSRS()->getName() << ") is not geographic; "
                        << "it will be ignored."
                        << std::endl;
                }
            }

            if ( !_profile.valid() )
            {
                // by default, set a geocentric map to use global-geodetic WGS84.
                _profile = osgEarth::Registry::instance()->getGlobalGeodeticProfile();
            }
        }

        else if ( _mapOptions.coordSysType() == MapOptions::CSTYPE_GEOCENTRIC_CUBE )
        {
            //If the map type is a Geocentric Cube, set the profile to the cube profile.
            _profile = osgEarth::Registry::instance()->getCubeProfile();
        }

        else // CSTYPE_PROJECTED
        {
            if ( userProfile.valid() )
            {
                _profile = userProfile.get();
            }
        }

        // At this point, if we don't have a profile we need to search tile sources until we find one.
        if ( !_profile.valid() )
        {
            Threading::ScopedReadLock lock( _mapDataMutex );

            for( ImageLayerVector::iterator i = _imageLayers.begin(); i != _imageLayers.end() && !_profile.valid(); i++ )
            {
                ImageLayer* layer = i->get();
                if ( layer->getTileSource() )
                {
                    _profile = layer->getTileSource()->getProfile();
                }
            }

            for( ElevationLayerVector::iterator i = _elevationLayers.begin(); i != _elevationLayers.end() && !_profile.valid(); i++ )
            {
                ElevationLayer* layer = i->get();
                if ( layer->getTileSource() )
                {
                    _profile = layer->getTileSource()->getProfile();
                }
            }
        }

        // convert the profile to Plate Carre if necessary.
        if (_profile.valid() &&
            _profile->getSRS()->isGeographic() && 
            getMapOptions().coordSysType() == MapOptions::CSTYPE_PROJECTED )
        {
            OE_INFO << LC << "Projected display with geographic SRS; activating Plate Carre mode" << std::endl;
            _profile = _profile->overrideSRS( _profile->getSRS()->createPlateCarreGeographicSRS() );
        }

        // finally, fire an event if the profile has been set.
        if ( _profile.valid() )
        {
            OE_INFO << LC << "Map profile is: " << _profile->toString() << std::endl;

            for( MapCallbackList::iterator i = _mapCallbacks.begin(); i != _mapCallbacks.end(); i++ )
            {
                i->get()->onMapInfoEstablished( MapInfo(this) );
            }
        }

        else
        {
            OE_WARN << LC << "Warning, not yet able to establish a map profile!" << std::endl;
        }
    }

    if ( _profile.valid() )
    {
        // tell all the loaded layers what the profile is, as a hint
        {
            Threading::ScopedWriteLock lock( _mapDataMutex );

            for( ImageLayerVector::iterator i = _imageLayers.begin(); i != _imageLayers.end(); i++ )
            {
                ImageLayer* layer = i->get();
                if ( layer->getEnabled() == true )
                {
                    layer->setTargetProfileHint( _profile.get() );
                }
            }

            for( ElevationLayerVector::iterator i = _elevationLayers.begin(); i != _elevationLayers.end(); i++ )
            {
                ElevationLayer* layer = i->get();
                if ( layer->getEnabled() )
                {
                    layer->setTargetProfileHint( _profile.get() );
                }
            }
        }

        // create a "proxy" profile to use when querying elevation layers with a vertical datum
        if ( _profile->getSRS()->getVerticalDatum() != 0L )
        {
            ProfileOptions po = _profile->toProfileOptions();
            po.vsrsString().unset();
            _profileNoVDatum = Profile::create(po);
        }
        else
        {
            _profileNoVDatum = _profile;
        }
    }
}
Example #19
0
bool
ElevationLayerVector::createHeightField(const TileKey&                  key,
                                        bool                            fallback,
                                        const Profile*                  haeProfile,
                                        ElevationInterpolation          interpolation,
                                        ElevationSamplePolicy           samplePolicy,
                                        osg::ref_ptr<osg::HeightField>& out_result,
                                        bool*                           out_isFallback,
                                        ProgressCallback*               progress )  const
{        
    unsigned lowestLOD = key.getLevelOfDetail();
    bool hfInitialized = false;

    //Get a HeightField for each of the enabled layers
    GeoHeightFieldVector heightFields;

    //The number of fallback heightfields we have
    int numFallbacks = 0;

    //Default to being fallback data.
    if ( out_isFallback )
    {
        *out_isFallback = true;
    }

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLevelOfDetail(), key.getTileX(), key.getTileY(), haeProfile );
    }

    // Generate a heightfield for each elevation layer.

    unsigned defElevSize = 8;

    for( ElevationLayerVector::const_iterator i = this->begin(); i != this->end(); i++ )
    {
        ElevationLayer* layer = i->get();
        if ( layer->getVisible() )
        {
            GeoHeightField geoHF = layer->createHeightField( keyToUse, progress );

            // if "fallback" is set, try to fall back on lower LODs.
            if ( !geoHF.valid() && fallback )
            {
                TileKey hf_key = keyToUse.createParentKey();

                while ( hf_key.valid() && !geoHF.valid() )
                {
                    geoHF = layer->createHeightField( hf_key, progress );
                    if ( !geoHF.valid() )
                        hf_key = hf_key.createParentKey();
                }

                if ( geoHF.valid() )
                {
                    if ( hf_key.getLevelOfDetail() < lowestLOD )
                        lowestLOD = hf_key.getLevelOfDetail();

                    //This HeightField is fallback data, so increment the count.
                    numFallbacks++;
                }
            }

            if ( geoHF.valid() )
            {
                heightFields.push_back( geoHF );
            }
        }
    }

    //If any of the layers produced valid data then it's not considered a fallback
    if ( out_isFallback )
    {
        *out_isFallback = (numFallbacks == heightFields.size());
        //OE_NOTICE << "Num fallbacks=" << numFallbacks << " numHeightFields=" << heightFields.size() << " is fallback " << *out_isFallback << std::endl;
    }   

    if ( heightFields.size() == 0 )
    {            
        //If we got no heightfields but were requested to fallback, create an empty heightfield.
        if ( fallback )
        {
            out_result = HeightFieldUtils::createReferenceHeightField( keyToUse.getExtent(), defElevSize, defElevSize );                
            return true;
        }
        else
        {
            //We weren't requested to fallback so just return.
            return false;
        }
    }

    else if (heightFields.size() == 1)
    {
        if ( lowestLOD == key.getLevelOfDetail() )
        {
            //If we only have on heightfield, just return it.
            out_result = heightFields[0].takeHeightField();
        }
        else
        {
            GeoHeightField geoHF = heightFields[0].createSubSample( key.getExtent(), interpolation);
            out_result = geoHF.takeHeightField();
            hfInitialized = true;
        }
    }

    else
    {
        //If we have multiple heightfields, we need to composite them together.
        unsigned int width = 0;
        unsigned int height = 0;

        for (GeoHeightFieldVector::const_iterator i = heightFields.begin(); i < heightFields.end(); ++i)
        {
            if (i->getHeightField()->getNumColumns() > width) 
                width = i->getHeightField()->getNumColumns();
            if (i->getHeightField()->getNumRows() > height) 
                height = i->getHeightField()->getNumRows();
        }
        out_result = new osg::HeightField();
        out_result->allocate( width, height );

        //Go ahead and set up the heightfield so we don't have to worry about it later
        double minx, miny, maxx, maxy;
        key.getExtent().getBounds(minx, miny, maxx, maxy);
        double dx = (maxx - minx)/(double)(out_result->getNumColumns()-1);
        double dy = (maxy - miny)/(double)(out_result->getNumRows()-1);

        const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

        //Create the new heightfield by sampling all of them.
        for (unsigned int c = 0; c < width; ++c)
        {
            double x = minx + (dx * (double)c);
            for (unsigned r = 0; r < height; ++r)
            {
                double y = miny + (dy * (double)r);

                //Collect elevations from all of the layers. Iterate BACKWARDS because the last layer
                // is the highest priority.
                std::vector<float> elevations;
                for( GeoHeightFieldVector::reverse_iterator itr = heightFields.rbegin(); itr != heightFields.rend(); ++itr )
                {
                    const GeoHeightField& geoHF = *itr;

                    float elevation = 0.0f;
                    if ( geoHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) )
                    {
                        if (elevation != NO_DATA_VALUE)
                        {
                            elevations.push_back(elevation);
                        }
                    }
                }

                float elevation = NO_DATA_VALUE;

                //The list of elevations only contains valid values
                if (elevations.size() > 0)
                {
                    if (samplePolicy == SAMPLE_FIRST_VALID)
                    {
                        elevation = elevations[0];
                    }
                    else if (samplePolicy == SAMPLE_HIGHEST)
                    {
                        elevation = -FLT_MAX;
                        for (unsigned int i = 0; i < elevations.size(); ++i)
                        {
                            if (elevation < elevations[i]) elevation = elevations[i];
                        }
                    }
                    else if (samplePolicy == SAMPLE_LOWEST)
                    {
                        elevation = FLT_MAX;
                        for (unsigned i = 0; i < elevations.size(); ++i)
                        {
                            if (elevation > elevations[i]) elevation = elevations[i];
                        }
                    }
                    else if (samplePolicy == SAMPLE_AVERAGE)
                    {
                        elevation = 0.0;
                        for (unsigned i = 0; i < elevations.size(); ++i)
                        {
                            elevation += elevations[i];
                        }
                        elevation /= (float)elevations.size();
                    }
                }
                out_result->setHeight(c, r, elevation);
            }
        }
    }

    // Replace any NoData areas with the reference value. This is zero for HAE datums,
    // and some geoid height for orthometric datums.
    if (out_result.valid())
    {
        const Geoid*         geoid = 0L;
        const VerticalDatum* vdatum = key.getProfile()->getSRS()->getVerticalDatum();

        if ( haeProfile && vdatum )
        {
            geoid = vdatum->getGeoid();
        }

        HeightFieldUtils::resolveInvalidHeights(
            out_result.get(),
            key.getExtent(),
            NO_DATA_VALUE,
            geoid );

        //ReplaceInvalidDataOperator o;
        //o.setValidDataOperator(new osgTerrain::NoDataValue(NO_DATA_VALUE));
        //o( out_result.get() );
    }

    //Initialize the HF values for osgTerrain
    if (out_result.valid() && !hfInitialized )
    {   
        //Go ahead and set up the heightfield so we don't have to worry about it later
        double minx, miny, maxx, maxy;
        key.getExtent().getBounds(minx, miny, maxx, maxy);
        out_result->setOrigin( osg::Vec3d( minx, miny, 0.0 ) );
        double dx = (maxx - minx)/(double)(out_result->getNumColumns()-1);
        double dy = (maxy - miny)/(double)(out_result->getNumRows()-1);
        out_result->setXInterval( dx );
        out_result->setYInterval( dy );
        out_result->setBorderWidth( 0 );
    }

    return out_result.valid();
}
Example #20
0
/**
 * Command-line tool that copies the contents of one TileSource
 * to another. All arguments are Config name/value pairs, so you need
 * to look in the header file for each driver's Options structure for
 * options :)
 *
 * Example: copy a GDAL file to an MBTiles repo:
 *
 *   osgearth_conv
 *      --in driver gdal
 *      --in url world.tif
 *      --out driver mbtiles
 *      --out filename world.db
 *
 * The "in" properties come from the GDALOptions getConfig method. The
 * "out" properties come from the MBTilesOptions getConfig method.
 *
 * Other arguments:
 *
 *      --elevation           : convert as elevation data (instead of image data)
 *      --profile [profile]   : reproject to the target profile, e.g. "wgs84"
 *      --min-level [int]     : min level of detail to copy
 *      --max-level [int]     : max level of detail to copy
 *      --threads [n]         : threads to use (may crash. Careful.)
 *
 *      --extents [minLat] [minLong] [maxLat] [maxLong] : Lat/Long extends to copy (*)
 *
 * Of course, the output driver must support writing (by implementing
 * the ReadWriteTileSource interface).
 */
int
main(int argc, char** argv)
{
    osg::ArgumentParser args(&argc,argv);

    if ( argc == 1 )
        return usage(argv);

    typedef std::map<std::string,std::string> KeyValue;
    std::string key, value;

    // collect input configuration:
    Config inConf;
    while( args.read("--in", key, value) )
        inConf.set(key, value);

    TileSourceOptions inOptions(inConf);
    osg::ref_ptr<TileSource> input = TileSourceFactory::create(inOptions);
    if ( !input.valid() )
    {
        OE_WARN << LC << "Failed to open input" << std::endl;
        return -1;
    }

    TileSource::Status inputStatus = input->open();
    if ( inputStatus.isError() )
    {
        OE_WARN << LC << "Error initializing input" << std::endl;
        return -1;
    }

    // collect output configuration:
    Config outConf;
    while( args.read("--out", key, value) )
        outConf.set(key, value);

    // heightfields?
    bool heightFields = args.read("--heightfield") || args.read("--hf") || args.read("--elevation");
    if ( heightFields )
        OE_INFO << LC << "Converting heightfield tiles" << std::endl;
    else
        OE_INFO << LC << "Converting image tiles" << std::endl;

    // are we changing profiles?
    osg::ref_ptr<const Profile> outputProfile = input->getProfile();
    std::string profileString;
    bool isSameProfile = true;

    if ( args.read("--profile", profileString) )
    {
        outputProfile = Profile::create(profileString);
        if ( !outputProfile.valid() || !outputProfile->isOK() )
        {
            OE_WARN << LC << "Output profile is not recognized" << std::endl;
            return -1;
        }
        isSameProfile = outputProfile->isHorizEquivalentTo(input->getProfile());
    }

    // set the output profile.
    ProfileOptions profileOptions = outputProfile->toProfileOptions();
    outConf.add("profile", profileOptions.getConfig());

    // open the output tile source:
    TileSourceOptions outOptions(outConf);
    osg::ref_ptr<TileSource> output = TileSourceFactory::create(outOptions);
    if ( !output.valid() )
    {
        OE_WARN << LC << "Failed to open output" << std::endl;
        return -1;
    }

    TileSource::Status outputStatus = output->open(TileSource::MODE_WRITE | TileSource::MODE_CREATE);
    if ( outputStatus.isError() )
    {
        OE_WARN << LC << "Error initializing output" << std::endl;
        return -1;
    }

    // Dump out some stuff...
    OE_NOTICE << LC << "FROM:\n"
        << inConf.toJSON(true)
        << std::endl;

    OE_NOTICE << LC << "TO:\n"
        << outConf.toJSON(true)
        << std::endl;

    // create the visitor.
    osg::ref_ptr<TileVisitor> visitor;

    unsigned numThreads = 1;
    if (args.read("--threads", numThreads))
    {
        MultithreadedTileVisitor* mtv = new MultithreadedTileVisitor();
        mtv->setNumThreads( numThreads < 1 ? 1 : numThreads );
        visitor = mtv;
    }
    else
    {
        visitor = new TileVisitor();
    }

    // If the profiles are identical, just use a tile copier.
    if ( isSameProfile )
    {
        OE_NOTICE << LC << "Profiles match - initiating simple tile copy" << std::endl;
        visitor->setTileHandler( new TileSourceToTileSource(input.get(), output.get(), heightFields) );
    }
    else
    {
        OE_NOTICE << LC << "Profiles differ - initiating tile transformation" << std::endl;

        if (heightFields)
        {
            ElevationLayer* layer = new ElevationLayer(ElevationLayerOptions(), input.get());
            if ( !layer->getProfile() || !layer->getProfile()->isOK() )
            {
                OE_WARN << LC << "Input profile is not valid" << std::endl;
                return -1;
            }
            visitor->setTileHandler( new ElevationLayerToTileSource(layer, output.get()) );
        }
        else
        {
            ImageLayer* layer = new ImageLayer(ImageLayerOptions(), input.get());
            if ( !layer->getProfile() || !layer->getProfile()->isOK() )
            {
                OE_WARN << LC << "Input profile is not valid" << std::endl;
                return -1;
            }
            visitor->setTileHandler( new ImageLayerToTileSource(layer, output.get()) );
        }
    }
    
    // Set the level limits:
    unsigned minLevel = ~0;
    bool minLevelSet = args.read("--min-level", minLevel);

    unsigned maxLevel = 0;
    bool maxLevelSet = args.read("--max-level", maxLevel);

    // figure out the max source level:
    if ( !minLevelSet || !maxLevelSet )
    {
        for(DataExtentList::const_iterator i = input->getDataExtents().begin();
            i != input->getDataExtents().end();
            ++i)
        {
            if ( !maxLevelSet && i->maxLevel().isSet() && i->maxLevel().value() > maxLevel )
                maxLevel = i->maxLevel().value();
            if ( !minLevelSet && i->minLevel().isSet() && i->minLevel().value() < minLevel )
                minLevel = i->minLevel().value();
        }
    }
       
    if ( minLevel < ~0 )
    {
        visitor->setMinLevel( minLevel );
    }

    if ( maxLevel > 0 )
    {
        maxLevel = outputProfile->getEquivalentLOD( input->getProfile(), maxLevel );
        visitor->setMaxLevel( maxLevel );
        OE_NOTICE << LC << "Calculated max level = " << maxLevel << std::endl;
    }

    // set the extents:
    double minlat, minlon, maxlat, maxlon;
    while( args.read("--extents", minlat, minlon, maxlat, maxlon) )
    {
        GeoExtent extent(SpatialReference::get("wgs84"), minlon, minlat, maxlon, maxlat);
        visitor->addExtent( extent );
    }

    // Ready!!!
    std::cout << "Working..." << std::endl;

    visitor->setProgressCallback( new ProgressReporter() );

    osg::Timer_t t0 = osg::Timer::instance()->tick();

    visitor->run( outputProfile.get() );

    osg::Timer_t t1 = osg::Timer::instance()->tick();

    std::cout
        << "Time = " 
        << std::fixed
        << std::setprecision(1)
        << osg::Timer::instance()->delta_s(t0, t1)
        << " seconds." << std::endl;

    return 0;
}
int
purge( osg::ArgumentParser& args )
{
    osg::ref_ptr<osg::Node> node = osgDB::readNodeFiles( args );
    if ( !node.valid() )
        return usage( "Failed to read .earth file." );

    MapNode* mapNode = MapNode::findMapNode( node.get() );
    if ( !mapNode )
        return usage( "Input file was not a .earth file" );

    Map* map = mapNode->getMap();

    if ( !map->getCache() )
        return message( "Earth file does not contain a cache." );

    std::vector<Entry> entries;


    ImageLayerVector imageLayers;
    map->getLayers( imageLayers );
    for( ImageLayerVector::const_iterator i = imageLayers.begin(); i != imageLayers.end(); ++i )
    {
        ImageLayer* layer = i->get();

        bool useMFP =
            layer->getProfile() &&
            layer->getProfile()->getSRS()->isSphericalMercator() &&
            mapNode->getMapNodeOptions().getTerrainOptions().enableMercatorFastPath() == true;

        const Profile* cacheProfile = useMFP ? layer->getProfile() : map->getProfile();

        CacheSettings* cacheSettings = layer->getCacheSettings();
        if (cacheSettings)
        {
            CacheBin* bin = cacheSettings->getCacheBin();
            if ( bin )
            {
                entries.push_back(Entry());
                entries.back()._isImage = true;
                entries.back()._name = i->get()->getName();
                entries.back()._bin = bin;
            }
        }
    }

    ElevationLayerVector elevationLayers;
    map->getLayers( elevationLayers );
    for( ElevationLayerVector::const_iterator i = elevationLayers.begin(); i != elevationLayers.end(); ++i )
    {
        ElevationLayer* layer = i->get();

        bool useMFP =
            layer->getProfile() &&
            layer->getProfile()->getSRS()->isSphericalMercator() &&
            mapNode->getMapNodeOptions().getTerrainOptions().enableMercatorFastPath() == true;

        const Profile* cacheProfile = useMFP ? layer->getProfile() : map->getProfile();
        
        CacheSettings* cacheSettings = layer->getCacheSettings();
        if (cacheSettings)
        {
            CacheBin* bin = cacheSettings->getCacheBin();
            if (bin)
            {
                entries.push_back(Entry());
                entries.back()._isImage = false;
                entries.back()._name = i->get()->getName();
                entries.back()._bin = bin;
            }
        }
    }

    if ( entries.size() > 0 )
    {
        std::cout << std::endl;

        for( unsigned i=0; i<entries.size(); ++i )
        {
            std::cout << (i+1) << ") " << entries[i]._name << " (" << (entries[i]._isImage? "image" : "elevation" ) << ")" << std::endl;
        }

        std::cout 
            << std::endl
            << "Enter number of cache to purge, or <enter> to quit: "
            << std::flush;

        std::string input;
        std::getline( std::cin, input );

        if ( !input.empty() )
        {
            unsigned k = as<unsigned>(input, 0L);
            if ( k > 0 && k <= entries.size() )
            {
                Config meta = entries[k-1]._bin->readMetadata();
                if ( !meta.empty() )
                {
                    std::cout
                        << std::endl
                        << "Cache METADATA:" << std::endl
                        << meta.toJSON() 
                        << std::endl << std::endl;
                }

                std::cout
                    << "Are you sure (y/N)? "
                    << std::flush;

                std::getline( std::cin, input );
                if ( input == "y" || input == "Y" )
                {
                    std::cout << "Purging.." << std::flush;
                    entries[k-1]._bin->clear();
                }
                else
                {
                    std::cout << "No action taken." << std::endl;
                }
            }
            else
            {
                std::cout << "Invalid choice." << std::endl;
            }
        }
        else
        {
            std::cout << "No action taken." << std::endl;
        }
    }

    return 0;
}
Example #22
0
/** Packages an image layer as a TMS folder. */
int
makeTMS( osg::ArgumentParser& args )
{
    // see if the user wants to override the type extension (imagery only)
    std::string extension;
    args.read( "--ext", extension );

    // verbosity?
    bool verbose = !args.read( "--quiet" );

    // find a .earth file on the command line
    std::string earthFile = findArgumentWithExtension( args, ".earth" );
    /*   if ( earthFile.empty() )
           return usage( "Missing required .earth file" );
           */
    // folder to which to write the TMS archive.
    std::string rootFolder;
    if( !args.read( "--out", rootFolder ) )
        rootFolder = Stringify() << earthFile << ".tms_repo";

    // whether to overwrite existing tile files
    bool overwrite = false;
    if( args.read( "--overwrite" ) )
        overwrite = true;

    // write out an earth file
    std::string outEarth;
    args.read( "--out-earth", outEarth );

    std::string dbOptions;
    args.read( "--db-options", dbOptions );
    std::string::size_type n = 0;
    while( (n = dbOptions.find( '"', n )) != dbOptions.npos )
    {
        dbOptions.erase( n, 1 );
    }

    osg::ref_ptr<osgDB::Options> options = new osgDB::Options( dbOptions );


    std::vector< Bounds > bounds;
    // restrict packaging to user-specified bounds.    
    double xmin = DBL_MAX, ymin = DBL_MAX, xmax = DBL_MIN, ymax = DBL_MIN;
    while( args.read( "--bounds", xmin, ymin, xmax, ymax ) )
    {
        Bounds b;
        b.xMin() = xmin, b.yMin() = ymin, b.xMax() = xmax, b.yMax() = ymax;
        bounds.push_back( b );
    }

    // max level to which to generate
    unsigned maxLevel = ~0;
    args.read( "--max-level", maxLevel );

    // whether to keep 'empty' tiles
    bool keepEmpties = args.read( "--keep-empties" );

    bool continueSingleColor = args.read( "--continue-single-color" );

    // max level to which to generate
    unsigned elevationPixelDepth = 32;
    args.read( "--elevation-pixel-depth", elevationPixelDepth );

    // load up the map
    osg::ref_ptr<MapNode> mapNode = MapNode::load( args );
    if( !mapNode.valid() )
        return usage( "Failed to load a valid .earth file" );

    // create a folder for the output
    osgDB::makeDirectory( rootFolder );
    if( !osgDB::fileExists( rootFolder ) )
        return usage( "Failed to create root output folder" );

    Map* map = mapNode->getMap();

    // fire up a packager:
    TMSPackager packager( map->getProfile(), options );

    packager.setVerbose( verbose );
    packager.setOverwrite( overwrite );
    packager.setKeepEmptyImageTiles( keepEmpties );
    packager.setSubdivideSingleColorImageTiles( continueSingleColor );
    packager.setElevationPixelDepth( elevationPixelDepth );

    if( maxLevel != ~0 )
        packager.setMaxLevel( maxLevel );

    if( bounds.size() > 0 )
    {
        for( unsigned int i = 0; i < bounds.size(); ++i )
        {
            Bounds b = bounds[i];
            if( b.isValid() )
                packager.addExtent( GeoExtent( map->getProfile()->getSRS(), b ) );
        }
    }


    // new map for an output earth file if necessary.
    osg::ref_ptr<Map> outMap = 0L;
    if( !outEarth.empty() )
    {
        // copy the options from the source map first
        outMap = new Map( map->getInitialMapOptions() );
    }

    // establish the output path of the earth file, if applicable:
    std::string outEarthFile = osgDB::concatPaths( rootFolder, osgDB::getSimpleFileName( outEarth ) );

    // package any image layers that are enabled:
    ImageLayerVector imageLayers;
    map->getImageLayers( imageLayers );

    unsigned counter = 0;

    for( ImageLayerVector::iterator i = imageLayers.begin(); i != imageLayers.end(); ++i, ++counter )
    {
        ImageLayer* layer = i->get();
        if( layer->getImageLayerOptions().enabled() == true )
        {
            std::string layerFolder = toLegalFileName( layer->getName() );
            if( layerFolder.empty() )
                layerFolder = Stringify() << "image_layer_" << counter;

            if( verbose )
            {
                OE_NOTICE << LC << "Packaging image layer \"" << layerFolder << "\"" << std::endl;
            }

            osg::ref_ptr< ConsoleProgressCallback > progress = new ConsoleProgressCallback();
            std::string layerRoot = osgDB::concatPaths( rootFolder, layerFolder );
            TMSPackager::Result r = packager.package( layer, layerRoot, progress, extension );
            if( r.ok )
            {
                // save to the output map if requested:
                if( outMap.valid() )
                {
                    // new TMS driver info:
                    TMSOptions tms;
                    tms.url() = URI(
                        osgDB::concatPaths( layerFolder, "tms.xml" ),
                        outEarthFile );

                    ImageLayerOptions layerOptions( layer->getName(), tms );
                    layerOptions.mergeConfig( layer->getInitialOptions().getConfig( true ) );
                    layerOptions.cachePolicy() = CachePolicy::NO_CACHE;

                    outMap->addImageLayer( new ImageLayer( layerOptions ) );
                }
            }
            else
            {
                OE_WARN << LC << r.message << std::endl;
            }
        }
        else if( verbose )
        {
            OE_NOTICE << LC << "Skipping disabled layer \"" << layer->getName() << "\"" << std::endl;
        }
    }

    // package any elevation layers that are enabled:
    counter = 0;
    ElevationLayerVector elevationLayers;
    map->getElevationLayers( elevationLayers );

    for( ElevationLayerVector::iterator i = elevationLayers.begin(); i != elevationLayers.end(); ++i, ++counter )
    {
        ElevationLayer* layer = i->get();
        if( layer->getElevationLayerOptions().enabled() == true )
        {
            std::string layerFolder = toLegalFileName( layer->getName() );
            if( layerFolder.empty() )
                layerFolder = Stringify() << "elevation_layer_" << counter;

            if( verbose )
            {
                OE_NOTICE << LC << "Packaging elevation layer \"" << layerFolder << "\"" << std::endl;
            }

            std::string layerRoot = osgDB::concatPaths( rootFolder, layerFolder );
            TMSPackager::Result r = packager.package( layer, layerRoot );

            if( r.ok )
            {
                // save to the output map if requested:
                if( outMap.valid() )
                {
                    // new TMS driver info:
                    TMSOptions tms;
                    tms.url() = URI(
                        osgDB::concatPaths( layerFolder, "tms.xml" ),
                        outEarthFile );

                    ElevationLayerOptions layerOptions( layer->getName(), tms );
                    layerOptions.mergeConfig( layer->getInitialOptions().getConfig( true ) );
                    layerOptions.cachePolicy() = CachePolicy::NO_CACHE;

                    outMap->addElevationLayer( new ElevationLayer( layerOptions ) );
                }
            }
            else
            {
                OE_WARN << LC << r.message << std::endl;
            }
        }
        else if( verbose )
        {
            OE_NOTICE << LC << "Skipping disabled layer \"" << layer->getName() << "\"" << std::endl;
        }
    }

    // Finally, write an earth file if requested:
    if( outMap.valid() )
    {
        MapNodeOptions outNodeOptions = mapNode->getMapNodeOptions();
        osg::ref_ptr<MapNode> outMapNode = new MapNode( outMap.get(), outNodeOptions );
        if( !osgDB::writeNodeFile( *outMapNode.get(), outEarthFile ) )
        {
            OE_WARN << LC << "Error writing earth file to \"" << outEarthFile << "\"" << std::endl;
        }
        else if( verbose )
        {
            OE_NOTICE << LC << "Wrote earth file to \"" << outEarthFile << "\"" << std::endl;
        }
    }

    return 0;
}
Example #23
0
/** Packages image and elevation layers as a TMS. */
int TMSExporter::exportTMS(MapNode* mapNode, const std::string& path, std::vector< osgEarth::Bounds >& bounds, const std::string& outEarth, bool overwrite, const std::string& extension)
{
  if ( !mapNode )
  {
    _errorMessage = "Invalid MapNode";
    if (_progress.valid()) _progress->onCompleted();
    return 0;
  }

  // folder to which to write the TMS archive.
  std::string rootFolder = path;

  osg::ref_ptr<osgDB::Options> options = new osgDB::Options(_dbOptions);

  // create a folder for the output
  osgDB::makeDirectory(rootFolder);
  if ( !osgDB::fileExists(rootFolder) )
  {
    _errorMessage = "Failed to create root output folder";
    if (_progress.valid()) _progress->onCompleted();
    return 0;
  }

  Map* map = mapNode->getMap();

  // new map for an output earth file if necessary.
  osg::ref_ptr<Map> outMap = 0L;
  if ( !outEarth.empty() )
  {
      // copy the options from the source map first
      outMap = new Map(map->getInitialMapOptions());
  }

  // establish the output path of the earth file, if applicable:
  std::string outEarthName = osgDB::getSimpleFileName(outEarth);
  if (outEarthName.length() > 0 && osgEarth::toLower(osgDB::getFileExtension(outEarthName)) != "earth")
    outEarthName += ".earth";

  std::string outEarthFile = osgDB::concatPaths(rootFolder, outEarthName);
  

  // semaphore and tasks collection for multithreading
  osgEarth::Threading::MultiEvent semaphore;
  osgEarth::TaskRequestVector tasks;
  int taskCount = 0;


  // package any image layers that are enabled and visible
  ImageLayerVector imageLayers;
  map->getImageLayers( imageLayers );

  unsigned imageCount = 0;
  for( ImageLayerVector::iterator i = imageLayers.begin(); i != imageLayers.end(); ++i, ++imageCount )
  {
      ImageLayer* layer = i->get();

      if ( layer->getEnabled() && layer->getVisible() )
      {
          std::string layerFolder = toLegalFileName( layer->getName() );
          if ( layerFolder.empty() )
              layerFolder = Stringify() << "image_layer_" << imageCount;

          ParallelTask<PackageLayer>* task = new ParallelTask<PackageLayer>( &semaphore );
          task->init(map, layer, options, rootFolder, layerFolder, true, overwrite, _keepEmpties, _maxLevel, extension, bounds);
          task->setProgressCallback(new PackageLayerProgressCallback(this));
          tasks.push_back(task);
          taskCount++;
      }
  }

  // package any elevation layers that are enabled and visible
  ElevationLayerVector elevationLayers;
  map->getElevationLayers( elevationLayers );

  int elevCount = 0;
  for( ElevationLayerVector::iterator i = elevationLayers.begin(); i != elevationLayers.end(); ++i, ++elevCount )
  {
      ElevationLayer* layer = i->get();
      if ( layer->getEnabled() && layer->getVisible() )
      {
          std::string layerFolder = toLegalFileName( layer->getName() );
          if ( layerFolder.empty() )
              layerFolder = Stringify() << "elevation_layer_" << elevCount;

          ParallelTask<PackageLayer>* task = new ParallelTask<PackageLayer>( &semaphore );
          task->init(map, layer, options, rootFolder, layerFolder, true, overwrite, _keepEmpties, _maxLevel, extension, bounds);
          task->setProgressCallback(new PackageLayerProgressCallback(this));
          tasks.push_back(task);
          taskCount++;
      }
  }


  // Run all the tasks in parallel
  _totalTasks = taskCount;
  _completedTasks = 0;

  semaphore.reset( _totalTasks );

  for( TaskRequestVector::iterator i = tasks.begin(); i != tasks.end(); ++i )
        _taskService->add( i->get() );

  // Wait for them to complete
  semaphore.wait();


  // Add successfully packaged layers to the new map object and
  // write out the .earth file (if requested)
  if (outMap.valid())
  {
    for( TaskRequestVector::iterator i = tasks.begin(); i != tasks.end(); ++i )
    {
      PackageLayer* p = dynamic_cast<PackageLayer*>(i->get());
      if (p)
      {
        if (p->_packageResult.ok)
        {
          TMSOptions tms;
          tms.url() = URI(osgDB::concatPaths(p->_layerFolder, "tms.xml"), outEarthFile );

          if (p->_imageLayer.valid())
          {
            ImageLayerOptions layerOptions( p->_imageLayer->getName(), tms );
            layerOptions.mergeConfig( p->_imageLayer->getInitialOptions().getConfig(true) );
            layerOptions.cachePolicy() = CachePolicy::NO_CACHE;

            outMap->addImageLayer( new ImageLayer(layerOptions) );
          }
          else
          {
            ElevationLayerOptions layerOptions( p->_elevationLayer->getName(), tms );
            layerOptions.mergeConfig( p->_elevationLayer->getInitialOptions().getConfig(true) );
            layerOptions.cachePolicy() = CachePolicy::NO_CACHE;

            outMap->addElevationLayer( new ElevationLayer(layerOptions) );
          }
        }
        else
        {
          OE_WARN << LC << p->_packageResult.message << std::endl;
        }
      }
    }
  }

  if ( outMap.valid() )
  {
      MapNodeOptions outNodeOptions = mapNode->getMapNodeOptions();
      osg::ref_ptr<MapNode> outMapNode = new MapNode(outMap.get(), outNodeOptions);
      if ( !osgDB::writeNodeFile(*outMapNode.get(), outEarthFile) )
      {
          OE_WARN << LC << "Error writing earth file to \"" << outEarthFile << "\"" << std::endl;
      }
      else
      {
          OE_NOTICE << LC << "Wrote earth file to \"" << outEarthFile << "\"" << std::endl;
      }
  }


  // Mark the progress callback as completed
  if (_progress.valid()) _progress->onCompleted();

  return elevCount + imageCount;
}