Example #1
0
int main(int argc, char *argv[])
{
  char appName[] = "DelphesPythia8";
  stringstream message;
  TFile *outputFile = 0;
  TStopwatch readStopWatch, procStopWatch;
  ExRootTreeWriter *treeWriter = 0;
  ExRootTreeBranch *branchEvent = 0;
  ExRootConfReader *confReader = 0;
  Delphes *modularDelphes = 0;
  DelphesFactory *factory = 0;
  TObjArray *stableParticleOutputArray = 0, *allParticleOutputArray = 0, *partonOutputArray = 0;
  Long64_t eventCounter, errorCounter;
  Long64_t numberOfEvents, timesAllowErrors;

  Pythia8::Pythia *pythia = 0;

  if(argc != 4)
  {
    cout << " Usage: " << appName << " config_file" << " pythia_card" << " output_file" << endl;
    cout << " config_file - configuration file in Tcl format," << endl;
    cout << " pythia_card - Pythia8 configuration file," << endl;
    cout << " output_file - output file in ROOT format." << endl;
    return 1;
  }

  signal(SIGINT, SignalHandler);

  gROOT->SetBatch();

  int appargc = 1;
  char *appargv[] = {appName};
  TApplication app(appName, &appargc, appargv);

  try
  {
    outputFile = TFile::Open(argv[3], "CREATE");

    if(outputFile == NULL)
    {
      message << "can't create output file " << argv[3];
      throw runtime_error(message.str());
    }

    treeWriter = new ExRootTreeWriter(outputFile, "Delphes");

    branchEvent = treeWriter->NewBranch("Event", HepMCEvent::Class());

    confReader = new ExRootConfReader;
    confReader->ReadFile(argv[1]);

    modularDelphes = new Delphes("Delphes");
    modularDelphes->SetConfReader(confReader);
    modularDelphes->SetTreeWriter(treeWriter);

    factory = modularDelphes->GetFactory();
    allParticleOutputArray = modularDelphes->ExportArray("allParticles");
    stableParticleOutputArray = modularDelphes->ExportArray("stableParticles");
    partonOutputArray = modularDelphes->ExportArray("partons");

    modularDelphes->InitTask();

    // Initialize pythia
    pythia = new Pythia8::Pythia;

    if(pythia == NULL)
    {
      throw runtime_error("can't create Pythia instance");
    }

    // Read in commands from configuration file
    pythia->readFile(argv[2]);

    // Extract settings to be used in the main program
    numberOfEvents = pythia->mode("Main:numberOfEvents");
    timesAllowErrors = pythia->mode("Main:timesAllowErrors");

    pythia->init();

    // ExRootProgressBar progressBar(numberOfEvents - 1);
    ExRootProgressBar progressBar(-1);

    // Loop over all events
    errorCounter = 0;
    treeWriter->Clear();
    modularDelphes->Clear();
    readStopWatch.Start();
    for(eventCounter = 0; eventCounter < numberOfEvents && !interrupted; ++eventCounter)
    {
      if(!pythia->next())
      {
        // If failure because reached end of file then exit event loop
        if (pythia->info.atEndOfFile())
        {
          cerr << "Aborted since reached end of Les Houches Event File" << endl;
          break;
        }

        // First few failures write off as "acceptable" errors, then quit
        if (++errorCounter < timesAllowErrors) continue;
        cerr << "Event generation aborted prematurely, owing to error!" << endl;
        break;
      }

      readStopWatch.Stop();

      procStopWatch.Start();
      ConvertInput(eventCounter, pythia, branchEvent, factory,
        allParticleOutputArray, stableParticleOutputArray, partonOutputArray,
        &readStopWatch, &procStopWatch);
      modularDelphes->ProcessTask();
      procStopWatch.Stop();

      treeWriter->Fill();

      treeWriter->Clear();
      modularDelphes->Clear();

      readStopWatch.Start();
      progressBar.Update(eventCounter, eventCounter);
    }

    progressBar.Update(eventCounter, eventCounter, kTRUE);
    progressBar.Finish();

    pythia->statistics();

    modularDelphes->FinishTask();
    treeWriter->Write();

    cout << "** Exiting..." << endl;

    delete pythia;
    delete modularDelphes;
    delete confReader;
    delete treeWriter;
    delete outputFile;

    return 0;
  }
  catch(runtime_error &e)
  {
    if(treeWriter) delete treeWriter;
    if(outputFile) delete outputFile;
    cerr << "** ERROR: " << e.what() << endl;
    return 1;
  }
}
Example #2
0
Bool_t LHCOConverter::ReadLine(FILE *inputFile)
{
  int rc;

  if(!fgets(fBuffer, kBufferSize, inputFile)) return kFALSE;

  DelphesStream bufferStream(fBuffer);

  rc = bufferStream.ReadInt(fIntParam[0]);

  if(!rc)
  {
    return kTRUE;
  }

  if(fIntParam[0] == 0)
  {
    rc = bufferStream.ReadInt(fEventNumber)
      && bufferStream.ReadInt(fTriggerWord);

    if(!rc)
    {
      cerr << "** ERROR: " << "invalid event format" << endl;
      return kFALSE;
    }

    if(fIsReadyToFill && fTreeWriter)
    {
      fTreeWriter->Fill();
      fTreeWriter->Clear();
    }

    AnalyseEvent(fBranchEvent);
    fIsReadyToFill = kTRUE;
  }
  else
  {
    rc = bufferStream.ReadInt(fIntParam[1])
      && bufferStream.ReadDbl(fDblParam[0])
      && bufferStream.ReadDbl(fDblParam[1])
      && bufferStream.ReadDbl(fDblParam[2])
      && bufferStream.ReadDbl(fDblParam[3])
      && bufferStream.ReadDbl(fDblParam[4])
      && bufferStream.ReadDbl(fDblParam[5])
      && bufferStream.ReadDbl(fDblParam[6]);

    if(!rc)
    {
      cerr << "** ERROR: " << "invalid object format" << endl;
      return kFALSE;
    }

    switch(fIntParam[1])
    {
      case 0: AnalysePhoton(fBranchPhoton); break;
      case 1: AnalyseElectron(fBranchElectron); break;
      case 2: AnalyseMuon(fBranchMuon); break;
      case 3: AnalyseTau(fBranchJet); break;
      case 4: AnalyseJet(fBranchJet); break;
      case 6: AnalyseMissingET(fBranchMissingET); break;
    }
  }

  return kTRUE;
}
Example #3
0
int main(int argc, char *argv[])
{
  char appName[] = "DelphesLHEF";
  stringstream message;
  FILE *inputFile = 0;
  TFile *outputFile = 0;
  TStopwatch readStopWatch, procStopWatch;
  ExRootTreeWriter *treeWriter = 0;
  ExRootTreeBranch *branchEvent = 0, *branchWeight = 0;
  ExRootConfReader *confReader = 0;
  Delphes *modularDelphes = 0;
  DelphesFactory *factory = 0;
  TObjArray *stableParticleOutputArray = 0, *allParticleOutputArray = 0, *partonOutputArray = 0;
  DelphesLHEFReader *reader = 0;
  Int_t i, maxEvents, skipEvents;
  Long64_t length, eventCounter;

  if(argc < 3)
  {
    cout << " Usage: " << appName << " config_file" << " output_file" << " [input_file(s)]" << endl;
    cout << " config_file - configuration file in Tcl format," << endl;
    cout << " output_file - output file in ROOT format," << endl;
    cout << " input_file(s) - input file(s) in LHEF format," << endl;
    cout << " with no input_file, or when input_file is -, read standard input." << endl;
    return 1;
  }

  signal(SIGINT, SignalHandler);

  gROOT->SetBatch();

  int appargc = 1;
  char *appargv[] = {appName};
  TApplication app(appName, &appargc, appargv);

  try
  {
    outputFile = TFile::Open(argv[2], "CREATE");

    if(outputFile == NULL)
    {
      message << "can't create output file " << argv[2];
      throw runtime_error(message.str());
    }

    treeWriter = new ExRootTreeWriter(outputFile, "Delphes");

    branchEvent = treeWriter->NewBranch("Event", LHEFEvent::Class());
    branchWeight = treeWriter->NewBranch("Weight", Weight::Class());

    confReader = new ExRootConfReader;
    confReader->ReadFile(argv[1]);

    maxEvents = confReader->GetInt("::MaxEvents", 0);
    skipEvents = confReader->GetInt("::SkipEvents", 0);

    if(maxEvents < 0)
    {
      throw runtime_error("MaxEvents must be zero or positive");
    }

    if(skipEvents < 0)
    {
      throw runtime_error("SkipEvents must be zero or positive");
    }

    modularDelphes = new Delphes("Delphes");
    modularDelphes->SetConfReader(confReader);
    modularDelphes->SetTreeWriter(treeWriter);

    factory = modularDelphes->GetFactory();
    allParticleOutputArray = modularDelphes->ExportArray("allParticles");
    stableParticleOutputArray = modularDelphes->ExportArray("stableParticles");
    partonOutputArray = modularDelphes->ExportArray("partons");

    reader = new DelphesLHEFReader;

    modularDelphes->InitTask();

    i = 3;
    do
    {
      if(interrupted) break;

      if(i == argc || strncmp(argv[i], "-", 2) == 0)
      {
        cout << "** Reading standard input" << endl;
        inputFile = stdin;
        length = -1;
      }
      else
      {
        cout << "** Reading " << argv[i] << endl;
        inputFile = fopen(argv[i], "r");

        if(inputFile == NULL)
        {
          message << "can't open " << argv[i];
          throw runtime_error(message.str());
        }

        fseek(inputFile, 0L, SEEK_END);
        length = ftello(inputFile);
        fseek(inputFile, 0L, SEEK_SET);

        if(length <= 0)
        {
          fclose(inputFile);
          ++i;
          continue;
        }
      }

      reader->SetInputFile(inputFile);

      ExRootProgressBar progressBar(length);

      // Loop over all objects
      eventCounter = 0;
      treeWriter->Clear();
      modularDelphes->Clear();
      reader->Clear();
      readStopWatch.Start();
      while((maxEvents <= 0 || eventCounter - skipEvents < maxEvents) &&
        reader->ReadBlock(factory, allParticleOutputArray,
        stableParticleOutputArray, partonOutputArray) && !interrupted)
      {
        if(reader->EventReady())
        {
          ++eventCounter;

          readStopWatch.Stop();

          if(eventCounter > skipEvents)
          {
            readStopWatch.Stop();
            procStopWatch.Start();
            modularDelphes->ProcessTask();
            procStopWatch.Stop();

            reader->AnalyzeEvent(branchEvent, eventCounter, &readStopWatch, &procStopWatch);
            reader->AnalyzeWeight(branchWeight);

            treeWriter->Fill();

            treeWriter->Clear();
          }

          modularDelphes->Clear();
          reader->Clear();

          readStopWatch.Start();
        }
        progressBar.Update(ftello(inputFile), eventCounter);
      }

      fseek(inputFile, 0L, SEEK_END);
      progressBar.Update(ftello(inputFile), eventCounter, kTRUE);
      progressBar.Finish();

      if(inputFile != stdin) fclose(inputFile);

      ++i;
    }
    while(i < argc);

    modularDelphes->FinishTask();
    treeWriter->Write();

    cout << "** Exiting..." << endl;

    delete reader;
    delete modularDelphes;
    delete confReader;
    delete treeWriter;
    delete outputFile;

    return 0;
  }
  catch(runtime_error &e)
  {
    if(treeWriter) delete treeWriter;
    if(outputFile) delete outputFile;
    cerr << "** ERROR: " << e.what() << endl;
    return 1;
  }
}
Example #4
0
int main(int argc, char *argv[])
{
  char appName[] = "DelphesCMSFWLite";
  stringstream message;
  TFile *inputFile = 0;
  TFile *outputFile = 0;
  TStopwatch eventStopWatch;
  ExRootTreeWriter *treeWriter = 0;
  ExRootTreeBranch *branchEvent = 0, *branchRwgt = 0;
  ExRootConfReader *confReader = 0;
  Delphes *modularDelphes = 0;
  DelphesFactory *factory = 0;
  TObjArray *allParticleOutputArray = 0, *stableParticleOutputArray = 0, *partonOutputArray = 0;
  Int_t i;
  Long64_t eventCounter, numberOfEvents;

  if(argc < 4)
  {
    cout << " Usage: " << appName << " config_file" << " output_file" << " input_file(s)" << endl;
    cout << " config_file - configuration file in Tcl format," << endl;
    cout << " output_file - output file in ROOT format," << endl;
    cout << " input_file(s) - input file(s) in ROOT format." << endl;
    return 1;
  }

  signal(SIGINT, SignalHandler);

  gROOT->SetBatch();

  int appargc = 1;
  char *appargv[] = {appName};
  TApplication app(appName, &appargc, appargv);

  FWLiteEnabler::enable();
  
  try
  {
    outputFile = TFile::Open(argv[2], "CREATE");

    if(outputFile == NULL)
    {
      message << "can't open " << argv[2] << endl;
      throw runtime_error(message.str());
    }

    treeWriter = new ExRootTreeWriter(outputFile, "Delphes");

    branchEvent = treeWriter->NewBranch("Event", HepMCEvent::Class());
    branchRwgt = treeWriter->NewBranch("Rwgt", Weight::Class());

    confReader = new ExRootConfReader;
    confReader->ReadFile(argv[1]);

    modularDelphes = new Delphes("Delphes");
    modularDelphes->SetConfReader(confReader);
    modularDelphes->SetTreeWriter(treeWriter);

    factory = modularDelphes->GetFactory();
    allParticleOutputArray = modularDelphes->ExportArray("allParticles");
    stableParticleOutputArray = modularDelphes->ExportArray("stableParticles");
    partonOutputArray = modularDelphes->ExportArray("partons");

    modularDelphes->InitTask();

    for(i = 3; i < argc && !interrupted; ++i)
    {
      cout << "** Reading " << argv[i] << endl;

      inputFile = TFile::Open(argv[i]);

      if(inputFile == NULL)
      {
        message << "can't open " << argv[i] << endl;
        throw runtime_error(message.str());
      }

      fwlite::Event event(inputFile);

      numberOfEvents = event.size();

      if(numberOfEvents <= 0) continue;

      // ExRootProgressBar progressBar(numberOfEvents - 1);
      ExRootProgressBar progressBar(-1);

      // Loop over all objects
      eventCounter = 0;
      modularDelphes->Clear();
      treeWriter->Clear();
      for(event.toBegin(); !event.atEnd() && !interrupted; ++event)
      {
        ConvertInput(event, eventCounter, branchEvent, branchRwgt, factory,
          allParticleOutputArray, stableParticleOutputArray, partonOutputArray);
        modularDelphes->ProcessTask();

        treeWriter->Fill();

        modularDelphes->Clear();
        treeWriter->Clear();

        progressBar.Update(eventCounter, eventCounter);
        ++eventCounter;
      }

      progressBar.Update(eventCounter, eventCounter, kTRUE);
      progressBar.Finish();

      inputFile->Close();
    }

    modularDelphes->FinishTask();
    treeWriter->Write();

    cout << "** Exiting..." << endl;

    delete modularDelphes;
    delete confReader;
    delete treeWriter;
    delete outputFile;

    return 0;
  }
  catch(runtime_error &e)
  {
    if(treeWriter) delete treeWriter;
    if(outputFile) delete outputFile;
    cerr << "** ERROR: " << e.what() << endl;
    return 1;
  }
}
int main(int argc, char *argv[])
{
  char appName[] = "ExRootLHEFConverter";

  if(argc != 3)
  {
    cout << " Usage: " << appName << " input_file" << " output_file" << endl;
    cout << " input_file - input file in LHEF format," << endl;
    cout << " output_file - output file in ROOT format." << endl;
    return 1;
  }

  gROOT->SetBatch();

  int appargc = 1;
  char *appargv[] = {appName};
  TApplication app(appName, &appargc, appargv);

  // Open a stream connected to an event file:
  ifstream inputFileStream(argv[1]);

  // Create the Reader object:
  LHEF::Reader *inputReader = new LHEF::Reader(inputFileStream);

  TFile *outputFile = TFile::Open(argv[2], "RECREATE");
  ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputFile, "LHEF");

  // generated event from LHEF
  ExRootTreeBranch *branchEvent = treeWriter->NewBranch("Event", TRootLHEFEvent::Class());

  // generated partons from LHEF
  ExRootTreeBranch *branchParticle = treeWriter->NewBranch("Particle", TRootLHEFParticle::Class());

  cout << "** Calculating number of events to process. Please wait..." << endl;
  Long64_t allEntries = inputReader->getNumberOfEvents();
  cout << "** Input file contains " << allEntries << " events" << endl;

  if(allEntries > 0)
  {
    ExRootProgressBar progressBar(allEntries);
    
    // Loop over all events
    Long64_t entry = 0;
    while(inputReader->readEvent())
    {
      treeWriter->Clear();

      AnalyseEvent(inputReader, branchEvent, entry + 1);
      AnalyseParticles(inputReader, branchParticle);

      treeWriter->Fill();

      progressBar.Update(entry);

      ++entry;
    }

    progressBar.Finish();
  }

  treeWriter->Write();

  cout << "** Exiting..." << endl;

  delete treeWriter;
  delete outputFile;
  delete inputReader;
}