void compute (ConstCloudPtr &input, Cloud &output, int max_window_size, float slope, float max_distance, float initial_distance, float cell_size, float base, bool exponential) { // Estimate TicToc tt; tt.tic (); print_highlight (stderr, "Computing "); std::vector<int> ground; ProgressiveMorphologicalFilter<PointType> pmf; pmf.setInputCloud (input); pmf.setMaxWindowSize (max_window_size); pmf.setSlope (slope); pmf.setMaxDistance (max_distance); pmf.setInitialDistance (initial_distance); pmf.setCellSize (cell_size); pmf.setBase (base); pmf.setExponential (exponential); pmf.extract (ground); PointIndicesPtr idx (new PointIndices); idx->indices = ground; ExtractIndices<PointType> extract; extract.setInputCloud (input); extract.setIndices (idx); extract.setNegative (false); extract.filter (output); print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n"); }
// Subsample cloud for faster matching and processing, while filling in normals. void PointcloudProc::reduceCloud(const PointCloud<PointXYZRGB>& input, PointCloud<PointXYZRGBNormal>& output) const { PointCloud<PointXYZRGB> cloud_nan_filtered, cloud_box_filtered, cloud_voxel_reduced; PointCloud<Normal> normals; PointCloud<PointXYZRGBNormal> cloud_normals; std::vector<int> indices; // Filter out nans. removeNaNFromPointCloud(input, cloud_nan_filtered, indices); indices.clear(); // Filter out everything outside a [200x200x200] box. Eigen::Vector4f min_pt(-100, -100, -100, -100); Eigen::Vector4f max_pt(100, 100, 100, 100); getPointsInBox(cloud_nan_filtered, min_pt, max_pt, indices); ExtractIndices<PointXYZRGB> boxfilter; boxfilter.setInputCloud(boost::make_shared<const PointCloud<PointXYZRGB> >(cloud_nan_filtered)); boxfilter.setIndices (boost::make_shared<vector<int> > (indices)); boxfilter.filter(cloud_box_filtered); // Reduce pointcloud VoxelGrid<PointXYZRGB> voxelfilter; voxelfilter.setInputCloud (boost::make_shared<const PointCloud<PointXYZRGB> > (cloud_box_filtered)); voxelfilter.setLeafSize (0.05, 0.05, 0.05); // voxelfilter.setLeafSize (0.1, 0.1, 0.1); voxelfilter.filter (cloud_voxel_reduced); // Compute normals NormalEstimation<PointXYZRGB, Normal> normalest; normalest.setViewPoint(0, 0, 0); normalest.setSearchMethod (boost::make_shared<search::KdTree<PointXYZRGB> > ()); //normalest.setKSearch (10); normalest.setRadiusSearch (0.25); // normalest.setRadiusSearch (0.4); normalest.setInputCloud(boost::make_shared<const PointCloud<PointXYZRGB> >(cloud_voxel_reduced)); normalest.compute(normals); pcl::concatenateFields (cloud_voxel_reduced, normals, cloud_normals); // Filter based on curvature PassThrough<PointXYZRGBNormal> normalfilter; normalfilter.setFilterFieldName("curvature"); // normalfilter.setFilterLimits(0.0, 0.2); normalfilter.setFilterLimits(0.0, 0.2); normalfilter.setInputCloud(boost::make_shared<const PointCloud<PointXYZRGBNormal> >(cloud_normals)); normalfilter.filter(output); }
void getCylClusters (boost::shared_ptr<PointCloud<T> > sceneCloud, vector<boost::shared_ptr<PointCloud<T> > > &outVector) { typedef typename pcl::search::KdTree<T>::Ptr my_KdTreePtr; typedef typename pcl::PointCloud<T>::Ptr my_PointCloudPtr; NormalEstimation<T, Normal> ne; SACSegmentationFromNormals<T, Normal> seg; my_KdTreePtr tree (new pcl::search::KdTree<T> ()); PointCloud<Normal>::Ptr cloud_normals (new PointCloud<pcl::Normal>); ModelCoefficients::Ptr coefficients_cylinder (new pcl::ModelCoefficients); PointIndices::Ptr inliers_cylinder (new pcl::PointIndices); ExtractIndices<T> extract; // Estimate point normals ne.setSearchMethod (tree); ne.setInputCloud (sceneCloud); ne.setKSearch (50); ne.compute (*cloud_normals); seg.setOptimizeCoefficients (true); seg.setModelType (SACMODEL_CYLINDER); seg.setMethodType (SAC_RANSAC); seg.setNormalDistanceWeight (0.1); seg.setMaxIterations (10000); seg.setDistanceThreshold (0.05); seg.setRadiusLimits (0, 0.1); seg.setInputCloud (sceneCloud); seg.setInputNormals (cloud_normals); // Obtain the cylinder inliers and coefficients seg.segment (*inliers_cylinder, *coefficients_cylinder); cout << " Number of inliers vs total number of points " << inliers_cylinder->indices.size() << " vs " << sceneCloud->size() << endl; // Write the cylinder inliers to disk extract.setInputCloud (sceneCloud); extract.setIndices (inliers_cylinder); extract.setNegative (false); my_PointCloudPtr cloud_cylinder (new PointCloud<T> ()); extract.filter (*cloud_cylinder); outVector.push_back(cloud_cylinder); }
void HoughTransform::findMaxima (Float32 threshold, std::vector <Float32>& maxima_values, std::vector <Indices>& maxima_voter_ids) { Float32 value; Indices voter_ids; Accumulator::ptr accumulator = m_accumulator->copy (); ExtractIndices extractor; PointCloud3D inliers, old_cloud, new_cloud; // Accumulator::ptr accumulator_backup = m_accumulator; // PointCloud3D::const_ptr cloud_backup = m_cloud; HoughTransform::ptr hough = this->copy (); maxima_values.clear (); maxima_voter_ids.clear (); UInt8 i = 0; old_cloud = *m_cloud; while (true) { Indices inliers_indices; Indices max_indices = accumulator->getMaxValue (); PRINT (max_indices[0]); PRINT (max_indices[1]); getInliers (old_cloud, max_indices, inliers_indices); extractor.setInputCloud (old_cloud); extractor.setExtractIndices (inliers_indices); extractor.setNegative (false); extractor.compute (inliers); extractor.setNegative (true); extractor.compute (new_cloud); PRINT (old_cloud.size ()); old_cloud = new_cloud; PRINT (inliers.size ()); PRINT (new_cloud.size ()); hough->m_cloud = &inliers; hough->m_accumulator->reset (); hough->run (); *accumulator -= *hough->m_accumulator; if (++i == 3) break; } *m_accumulator = *accumulator; }
/** Toma nube de puntos con gripper y objeto tomado, y los separa, entregando dos nubes diferentes. La forma de separarlos es considerando al gripper como un paralelepípedo y luego: - Obtener todos los puntos dentro del paralelepípedo - Acumular sus índices - Retornar puntos dentro y fuera. @param cloud_in: Nube con scaneo @param gripper_out: Referencia de nube donde retornar gripper aislado @param object_out: Referencia de nube donde retornar objeto aislado @return: Nada. */ void isolateObject(PointCloud<PointXYZ>::Ptr cloud_in, PointCloud<PointXYZ>::Ptr &gripper_out, PointCloud<PointXYZ>::Ptr &object_out){ // Capturar índices de puntos dentro de paralelepípedo PointIndices::Ptr inliers (new PointIndices()); for (int i=0; i < cloud_in->points.size(); i++){ for (int j=0; j < gripper_boxes.size(); j++){ if (isPointInsideBox(cloud_in->points[i], gripper_boxes[j])){ inliers->indices.push_back(i); break; } } } // Extraer índices de cada figura ExtractIndices<PointXYZ> extractor; extractor.setInputCloud(cloud_in); extractor.setIndices(inliers); extractor.setNegative(false); extractor.filter(*gripper_out); extractor.setNegative(true); extractor.filter(*object_out); }
PointCloud<PointXYZ>::Ptr PCLTools::segmentPlanar(PointCloud<PointXYZ>::Ptr cloud, bool negative) { // Create the segmentation object for the planar model and set all the parameters PointCloud<PointXYZ>::Ptr cloud_f(new PointCloud<PointXYZ>); SACSegmentation<PointXYZ> seg; PointIndices::Ptr inliers(new PointIndices); ModelCoefficients::Ptr coefficients(new ModelCoefficients); PointCloud<PointXYZ>::Ptr cloud_plane(new PointCloud<PointXYZ> ()); seg.setOptimizeCoefficients(true); seg.setModelType(pcl::SACMODEL_PLANE); seg.setMethodType(pcl::SAC_RANSAC); seg.setMaxIterations(100); seg.setDistanceThreshold(0.02); // Segment the largest planar component from the remaining cloud seg.setInputCloud(cloud); seg.segment(*inliers, *coefficients); if (inliers->indices.size () == 0) { cerr << "Could not estimate a planar model for the given dataset." << endl; return cloud_f; } // Extract the planar inliers from the input cloud ExtractIndices<PointXYZ> extract; extract.setInputCloud(cloud); extract.setIndices(inliers); extract.setNegative(false); // Get the points associated with the planar surface extract.filter(*cloud_plane); // Remove the planar inliers, extract the rest extract.setNegative(negative); extract.filter(*cloud_f); return cloud_f; }
void segment (const PointT &picked_point, int picked_idx, PlanarRegion<PointT> ®ion, typename PointCloud<PointT>::Ptr &object) { object.reset (); // Segment out all planes vector<ModelCoefficients> model_coefficients; vector<PointIndices> inlier_indices, boundary_indices; vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > > regions; // Prefer a faster method if the cloud is organized, over RANSAC if (cloud_->isOrganized ()) { print_highlight (stderr, "Estimating normals "); TicToc tt; tt.tic (); // Estimate normals PointCloud<Normal>::Ptr normal_cloud (new PointCloud<Normal>); estimateNormals (cloud_, *normal_cloud); print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%lu", normal_cloud->size ()); print_info (" points]\n"); OrganizedMultiPlaneSegmentation<PointT, Normal, Label> mps; mps.setMinInliers (1000); mps.setAngularThreshold (deg2rad (3.0)); // 3 degrees mps.setDistanceThreshold (0.03); // 2 cm mps.setMaximumCurvature (0.001); // a small curvature mps.setProjectPoints (true); mps.setComparator (plane_comparator_); mps.setInputNormals (normal_cloud); mps.setInputCloud (cloud_); // Use one of the overloaded segmentAndRefine calls to get all the information that we want out PointCloud<Label>::Ptr labels (new PointCloud<Label>); vector<PointIndices> label_indices; mps.segmentAndRefine (regions, model_coefficients, inlier_indices, labels, label_indices, boundary_indices); } else { SACSegmentation<PointT> seg; seg.setOptimizeCoefficients (true); seg.setModelType (SACMODEL_PLANE); seg.setMethodType (SAC_RANSAC); seg.setMaxIterations (10000); seg.setDistanceThreshold (0.005); // Copy XYZ and Normals to a new cloud typename PointCloud<PointT>::Ptr cloud_segmented (new PointCloud<PointT> (*cloud_)); typename PointCloud<PointT>::Ptr cloud_remaining (new PointCloud<PointT>); ModelCoefficients coefficients; ExtractIndices<PointT> extract; PointIndices::Ptr inliers (new PointIndices ()); // Up until 30% of the original cloud is left int i = 1; while (double (cloud_segmented->size ()) > 0.3 * double (cloud_->size ())) { seg.setInputCloud (cloud_segmented); print_highlight (stderr, "Searching for the largest plane (%2.0d) ", i++); TicToc tt; tt.tic (); seg.segment (*inliers, coefficients); print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%lu", inliers->indices.size ()); print_info (" points]\n"); // No datasets could be found anymore if (inliers->indices.empty ()) break; // Save this plane PlanarRegion<PointT> region; region.setCoefficients (coefficients); regions.push_back (region); inlier_indices.push_back (*inliers); model_coefficients.push_back (coefficients); // Extract the outliers extract.setInputCloud (cloud_segmented); extract.setIndices (inliers); extract.setNegative (true); extract.filter (*cloud_remaining); cloud_segmented.swap (cloud_remaining); } } print_highlight ("Number of planar regions detected: %lu for a cloud of %lu points\n", regions.size (), cloud_->size ()); double max_dist = numeric_limits<double>::max (); // Compute the distances from all the planar regions to the picked point, and select the closest region int idx = -1; for (size_t i = 0; i < regions.size (); ++i) { double dist = pointToPlaneDistance (picked_point, regions[i].getCoefficients ()); if (dist < max_dist) { max_dist = dist; idx = static_cast<int> (i); } } // Get the plane that holds the object of interest if (idx != -1) { plane_indices_.reset (new PointIndices (inlier_indices[idx])); if (cloud_->isOrganized ()) { approximatePolygon (regions[idx], region, 0.01f, false, true); print_highlight ("Planar region: %lu points initial, %lu points after refinement.\n", regions[idx].getContour ().size (), region.getContour ().size ()); } else { // Save the current region region = regions[idx]; print_highlight (stderr, "Obtaining the boundary points for the region "); TicToc tt; tt.tic (); // Project the inliers to obtain a better hull typename PointCloud<PointT>::Ptr cloud_projected (new PointCloud<PointT>); ModelCoefficients::Ptr coefficients (new ModelCoefficients (model_coefficients[idx])); ProjectInliers<PointT> proj; proj.setModelType (SACMODEL_PLANE); proj.setInputCloud (cloud_); proj.setIndices (plane_indices_); proj.setModelCoefficients (coefficients); proj.filter (*cloud_projected); // Compute the boundary points as a ConvexHull ConvexHull<PointT> chull; chull.setDimension (2); chull.setInputCloud (cloud_projected); PointCloud<PointT> plane_hull; chull.reconstruct (plane_hull); region.setContour (plane_hull); print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%lu", plane_hull.size ()); print_info (" points]\n"); } } // Segment the object of interest if (plane_indices_ && !plane_indices_->indices.empty ()) { plane_.reset (new PointCloud<PointT>); copyPointCloud (*cloud_, plane_indices_->indices, *plane_); object.reset (new PointCloud<PointT>); segmentObject (picked_idx, cloud_, plane_indices_, *object); } }
/** \brief Given a plane, and the set of inlier indices representing it, * segment out the object of intererest supported by it. * * \param[in] picked_idx the index of a point on the object * \param[in] cloud the full point cloud dataset * \param[in] plane_indices a set of indices representing the plane supporting the object of interest * \param[out] object the segmented resultant object */ void segmentObject (int picked_idx, const typename PointCloud<PointT>::ConstPtr &cloud, const PointIndices::Ptr &plane_indices, PointCloud<PointT> &object) { typename PointCloud<PointT>::Ptr plane_hull (new PointCloud<PointT>); // Compute the convex hull of the plane ConvexHull<PointT> chull; chull.setDimension (2); chull.setInputCloud (cloud); chull.setIndices (plane_indices); chull.reconstruct (*plane_hull); // Remove the plane indices from the data typename PointCloud<PointT>::Ptr plane (new PointCloud<PointT>); ExtractIndices<PointT> extract (true); extract.setInputCloud (cloud); extract.setIndices (plane_indices); extract.setNegative (false); extract.filter (*plane); PointIndices::Ptr indices_but_the_plane (new PointIndices); extract.getRemovedIndices (*indices_but_the_plane); // Extract all clusters above the hull PointIndices::Ptr points_above_plane (new PointIndices); ExtractPolygonalPrismData<PointT> exppd; exppd.setInputCloud (cloud); exppd.setIndices (indices_but_the_plane); exppd.setInputPlanarHull (plane_hull); exppd.setViewPoint (cloud->points[picked_idx].x, cloud->points[picked_idx].y, cloud->points[picked_idx].z); exppd.setHeightLimits (0.001, 0.5); // up to half a meter exppd.segment (*points_above_plane); vector<PointIndices> euclidean_label_indices; // Prefer a faster method if the cloud is organized, over EuclidanClusterExtraction if (cloud_->isOrganized ()) { // Use an organized clustering segmentation to extract the individual clusters typename EuclideanClusterComparator<PointT, Label>::Ptr euclidean_cluster_comparator (new EuclideanClusterComparator<PointT, Label>); euclidean_cluster_comparator->setInputCloud (cloud); euclidean_cluster_comparator->setDistanceThreshold (0.03f, false); // Set the entire scene to false, and the inliers of the objects located on top of the plane to true Label l; l.label = 0; PointCloud<Label>::Ptr scene (new PointCloud<Label> (cloud->width, cloud->height, l)); // Mask the objects that we want to split into clusters for (const int &index : points_above_plane->indices) scene->points[index].label = 1; euclidean_cluster_comparator->setLabels (scene); boost::shared_ptr<std::set<uint32_t> > exclude_labels = boost::make_shared<std::set<uint32_t> > (); exclude_labels->insert (0); euclidean_cluster_comparator->setExcludeLabels (exclude_labels); OrganizedConnectedComponentSegmentation<PointT, Label> euclidean_segmentation (euclidean_cluster_comparator); euclidean_segmentation.setInputCloud (cloud); PointCloud<Label> euclidean_labels; euclidean_segmentation.segment (euclidean_labels, euclidean_label_indices); } else { print_highlight (stderr, "Extracting individual clusters from the points above the reference plane "); TicToc tt; tt.tic (); EuclideanClusterExtraction<PointT> ec; ec.setClusterTolerance (0.02); // 2cm ec.setMinClusterSize (100); ec.setSearchMethod (search_); ec.setInputCloud (cloud); ec.setIndices (points_above_plane); ec.extract (euclidean_label_indices); print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%lu", euclidean_label_indices.size ()); print_info (" clusters]\n"); } // For each cluster found bool cluster_found = false; for (const auto &euclidean_label_index : euclidean_label_indices) { if (cluster_found) break; // Check if the point that we picked belongs to it for (size_t j = 0; j < euclidean_label_index.indices.size (); ++j) { if (picked_idx != euclidean_label_index.indices[j]) continue; copyPointCloud (*cloud, euclidean_label_index.indices, object); cluster_found = true; break; } } }
int main(int argc, char** argv) { sensor_msgs::PointCloud2 cloud_blob, cloud_tmp; sensor_msgs::PointCloud cloud_blob2; pcl::PointCloud<PointT> cloud; ofstream labelfile, featfile; labelfile.open ("labels.txt"); featfile.open ("feats.txt"); // read the pcd file if (pcl::io::loadPCDFile(argv[1], cloud_blob) == -1) { ROS_ERROR("Couldn't read file test_pcd.pcd"); return (-1); } ROS_INFO("Loaded %d data points from test_pcd.pcd with the following fields: %s", (int) (cloud_blob.width * cloud_blob.height), pcl::getFieldsList(cloud_blob).c_str()); // convert to templated message type pcl::fromROSMsg(cloud_blob, cloud); pcl::PointCloud<PointT>::Ptr cloud_ptr(new pcl::PointCloud<PointT > (cloud)); pcl::PointCloud<PointT>::Ptr cloud_filtered(new pcl::PointCloud<PointT > ()); pcl::PointCloud<PointT>::Ptr cloud_seg(new pcl::PointCloud<PointT > ()); //pcl::PointCloud<PointXYZI>::Ptr cloud_seg (new pcl::PointCloud<PointXYZI> ()); pcl::PointIndices::Ptr segment_indices(new pcl::PointIndices()); // get segments // find the max segment number int max_segment_num = 0; for (size_t i = 0; i < cloud.points.size(); ++i) { if (max_segment_num < cloud.points[i].segment) { max_segment_num = (int) cloud.points[i].segment; } } ExtractIndices<PointT> extract; Eigen::Vector4f min_p; Eigen::Vector4f max_p; for (int seg = 1; seg <= max_segment_num; seg++) { vector<float> features; int label; segment_indices->indices.clear(); for (size_t i = 0; i < cloud.points.size(); ++i) { if (cloud.points[i].segment == seg) { segment_indices->indices.push_back(i); label = cloud.points[i].label; } } extract.setInputCloud(cloud_ptr); extract.setIndices(segment_indices); extract.setNegative(false); extract.filter(*cloud_seg); // std::cerr << seg << ". Cloud size after extracting : " << cloud_seg->points.size() << std::endl; if (cloud_seg->points[0].label != 0) { SpectralAnalysis sa(0.05); SpinImageNormal spin_image(0.025, 0.025, 5, 4, false, sa); ShapeSpectral shape_spectral(sa); OrientationNormal o_normal(0, 0, 1, sa); OrientationTangent o_tangent(0, 0, 1, sa); Position position; BoundingBoxSpectral bbox_spectral(1.0, sa); // histogram feats vector<Descriptor3D*> descriptors_3d; descriptors_3d.push_back(&shape_spectral); descriptors_3d.push_back(&o_normal); //descriptors_3d.push_back(&o_tangent); //descriptors_3d.push_back(&position); //descriptors_3d.push_back(&bbox_spectral); pcl::toROSMsg(*cloud_seg, cloud_tmp); sensor_msgs::convertPointCloud2ToPointCloud(cloud_tmp, cloud_blob2); cloud_kdtree::KdTreeANN pt_cloud_kdtree(cloud_blob2); vector<const geometry_msgs::Point32*> interest_pts; if (cloud_seg->points.size() < 200) { interest_pts.resize(cloud_blob2.points.size()); for (size_t i = 0; i < cloud_blob2.points.size(); i++) { interest_pts[i] = &(cloud_blob2.points[i]); } } else { interest_pts.resize(100); map<int, int> in; int count = 0; while (count < 100) { int a = rand() % cloud_blob2.points.size(); if (in.find(a) == in.end()) { in[a] = 1; interest_pts[count] = &(cloud_blob2.points[a]); } count++; } } // vector<vector<float> > descriptor_results; // spin_image.compute(cloud_blob2, pt_cloud_kdtree, interest_pts, descriptor_results); unsigned int nbr_descriptors = descriptors_3d.size(); vector<vector<vector<float> > > all_descriptor_results(nbr_descriptors); vector<vector<vector<float> > > hist_feats(nbr_descriptors); for (unsigned int i = 0; i < nbr_descriptors; i++) { std::cerr << "hist featnum: " << i << "\n" ; descriptors_3d[i]->compute(cloud_blob2, pt_cloud_kdtree, interest_pts, all_descriptor_results[i]); std::cerr << "feature computed" << "\n" ; get_feat_histogram(all_descriptor_results[i], hist_feats[i]); concat_feats(features,hist_feats[i]); } // average feats vector<Descriptor3D*> descriptors_3d_avg; descriptors_3d_avg.push_back(&spin_image); unsigned int nbr_descriptors_avg = descriptors_3d_avg.size(); vector<vector<vector<float> > > all_avg_descriptor_results(nbr_descriptors); vector<vector<float> > avg_feats(nbr_descriptors_avg); for (unsigned int i = 0; i < nbr_descriptors_avg; i++) { std::cerr << "avg featnum: " << i << "\n" ; descriptors_3d_avg[i]->compute(cloud_blob2, pt_cloud_kdtree, interest_pts, all_avg_descriptor_results[i]); get_avg_feats(all_avg_descriptor_results[i], avg_feats[i]); concat_feats(features,avg_feats[i]); } getMinMax(*cloud_ptr, *segment_indices, min_p, max_p); // ROS_INFO("minp : %f,%f,%f\t maxp : %f,%f,%f", min_p[0], min_p[1], min_p[2], max_p[0], max_p[1], max_p[2]); // ROS_INFO("size of all_descriptor_results : %d", all_descriptor_results[1].size()); // add bounding box features features.push_back(max_p[0]- min_p[0]); features.push_back(max_p[1]- min_p[1]); features.push_back(max_p[2]- min_p[2]); // write label to file labelfile << cloud_seg->points[0].label <<"\n"; // write features to file for (vector<float>::iterator it = features.begin(); it < features.end(); it++) { featfile << *it <<"\t"; } featfile <<"\n"; } } // print out the features to a file labelfile.close(); featfile.close(); }
// Returns the points that are above the floor, but not the floor itself CloudT get_object_points(CloudT cloud) { // PHASE 1: DATA CLEANUP //////////////////////////////////////////////////////// // Filter out NaNs from data (this is necessary now) ... PassThrough<PointXYZRGB> nan_remover; nan_remover.setInputCloud(boost::make_shared<PointCloud<PointXYZRGB> >(cloud)); nan_remover.setFilterFieldName("z"); nan_remover.setFilterLimits(0.0, 10.0); nan_remover.filter(cloud); // Filter out statistical outliers StatisticalOutlierRemoval<PointXYZRGB> statistical_filter; statistical_filter.setInputCloud(boost::make_shared<PointCloud<PointXYZRGB> >(cloud)); statistical_filter.setMeanK(50); statistical_filter.setStddevMulThresh(1.0); statistical_filter.filter(cloud); // Downsample to 1cm Voxel Grid pcl::VoxelGrid<PointT> downsampler; downsampler.setInputCloud(boost::make_shared<CloudT>(cloud)); downsampler.setLeafSize(0.005, 0.005, 0.005); downsampler.filter(cloud); ROS_INFO("PointCloud after filtering: %d data points.", cloud.width * cloud.height); // PHASE 2: FIND THE GROUND PLANE ///////////////////////////////////////////////////////// // Step 3: Find the ground plane using RANSAC ModelCoefficients ground_coefficients; PointIndices ground_indices; SACSegmentation<PointXYZRGB> ground_finder; ground_finder.setOptimizeCoefficients(true); ground_finder.setModelType(SACMODEL_PLANE); ground_finder.setMethodType(SAC_RANSAC); ground_finder.setDistanceThreshold(0.015); ground_finder.setInputCloud(boost::make_shared<PointCloud<PointXYZRGB> >(cloud)); ground_finder.segment(ground_indices, ground_coefficients); // PHASE 3: EXTRACT ONLY POINTS ABOVE THE GROUND PLANE ///////////////////////////////////////////////////////// // Step 3a. Extract the ground plane inliers CloudT ground_points; ExtractIndices<PointXYZRGB> extractor; extractor.setInputCloud(boost::make_shared<PointCloud<PointXYZRGB> >(cloud)); extractor.setIndices(boost::make_shared<PointIndices>(ground_indices)); extractor.filter(ground_points); // Step 3b. Extract the ground plane outliers CloudT object_points; ExtractIndices<PointXYZRGB> outlier_extractor; outlier_extractor.setInputCloud(boost::make_shared<PointCloud<PointXYZRGB> >(cloud)); outlier_extractor.setIndices(boost::make_shared<PointIndices>(ground_indices)); outlier_extractor.setNegative(true); outlier_extractor.filter(object_points); // Step 3c. Project the ground inliers PointCloud<PointXYZRGB> cloud_projected; ProjectInliers<PointXYZRGB> proj; proj.setModelType(SACMODEL_PLANE); proj.setInputCloud(boost::make_shared<PointCloud<PointXYZRGB> >(ground_points)); proj.setModelCoefficients(boost::make_shared<ModelCoefficients>(ground_coefficients)); proj.filter(cloud_projected); // Step 3d. Create a Convex Hull representation of the projected inliers PointCloud<PointXYZRGB> ground_hull; ConvexHull2D<PointXYZRGB, PointXYZRGB> chull; chull.setInputCloud(boost::make_shared<PointCloud<PointXYZRGB> >(cloud_projected)); chull.reconstruct(ground_hull); ROS_INFO ("Convex hull has: %d data points.", (int) ground_hull.points.size ()); hull_pub.publish(ground_hull); // Step 3e. Extract only those outliers that lie above the ground plane's convex hull PointIndices object_indices; ExtractPolygonalPrismData<PointT> hull_limiter; hull_limiter.setInputCloud(boost::make_shared<CloudT>(object_points)); hull_limiter.setInputPlanarHull(boost::make_shared<CloudT>(ground_hull)); hull_limiter.setHeightLimits(0, 0.3); hull_limiter.segment(object_indices); ExtractIndices<PointT> object_extractor; object_extractor.setInputCloud(boost::make_shared<CloudT>(object_points)); object_extractor.setIndices(boost::make_shared<PointIndices>(object_indices)); object_extractor.filter(object_points); return object_points; }
/** * This function tries to find all planes in a point cloud by applying * a model-based RANSAC algorithm. * * Heavily inspired by * http://www.pointclouds.org/documentation/tutorials/extract_indices.php */ void filterPlanes( TheiaCloudPtr inCloud, TheiaCloudPtr outPlanes, TheiaCloudPtr outObjects ){ TheiaCloudPtr workingCloudPtr(new TheiaCloud(*inCloud)); size_t origCloudSize = workingCloudPtr->points.size(); size_t minPlanePoints = config.minPercentage * origCloudSize; if(origCloudSize < 3){ ROS_INFO("Input cloud for findPlanes is too small"); ROS_INFO("Check cropping and rescaling parameters"); return; } TheiaCloudPtr allPlanesCloudPtr(new TheiaCloud()); PointIndices::Ptr inliers(new PointIndices()); ModelCoefficients::Ptr coefficients(new ModelCoefficients()); // prepare plane segmentation SACSegmentation<TheiaPoint> seg; seg.setModelType(SACMODEL_PLANE); seg.setMethodType(SAC_RANSAC); seg.setMaxIterations(config.numbIterations); seg.setDistanceThreshold(config.planeDistThresh); seg.setOptimizeCoefficients(config.planeOptimize); // prepare extractor ExtractIndices<TheiaPoint> extract; while(workingCloudPtr->points.size() >= 4){ seg.setInputCloud(workingCloudPtr); seg.segment(*inliers, *coefficients); /** * Stop the search for planes when the found plane * is too small (in terms of points). */ size_t numbInliers = inliers->indices.size(); if(!numbInliers) break; if(numbInliers < minPlanePoints) break; // extract plane points TheiaCloudPtr planeCloudPtr(new TheiaCloud()); extract.setInputCloud(workingCloudPtr); extract.setIndices(inliers); extract.setNegative(false); extract.filter(*planeCloudPtr); *allPlanesCloudPtr += *planeCloudPtr; /** * Remove plane from input cloud */ TheiaCloudPtr remainingCloudPtr(new TheiaCloud()); extract.setNegative(true); extract.filter(*remainingCloudPtr); /** * Continue search * But only use remaining point cloud */ workingCloudPtr->swap(*remainingCloudPtr); } *outPlanes = TheiaCloud(*allPlanesCloudPtr); *outObjects = TheiaCloud(*workingCloudPtr); }
int main(int argc, char** argv) { if (argc < 2) { cout << "Input a PCD file name...\n"; return 0; } PointCloud<PointXYZ>::Ptr cloud(new PointCloud<PointXYZ>), cloud_f(new PointCloud<PointXYZ>); PCDReader reader; reader.read(argv[1], *cloud); cout << "PointCloud before filtering has: " << cloud->points.size() << " data points.\n"; PointCloud<PointXYZ>::Ptr cloud_filtered(new PointCloud<PointXYZ>); VoxelGrid<PointXYZ> vg; vg.setInputCloud(cloud); vg.setLeafSize(0.01f, 0.01f, 0.01f); vg.filter(*cloud_filtered); cout << "PointCloud after filtering has: " << cloud_filtered->points.size() << " data points.\n"; SACSegmentation<PointXYZ> seg; PointIndices::Ptr inliers(new PointIndices); PointCloud<PointXYZ>::Ptr cloud_plane(new PointCloud<PointXYZ>); ModelCoefficients::Ptr coefficients(new ModelCoefficients); seg.setOptimizeCoefficients(true); seg.setModelType(SACMODEL_PLANE); seg.setMethodType(SAC_RANSAC); seg.setMaxIterations(100); seg.setDistanceThreshold(0.02); int i=0, nr_points = (int)cloud_filtered->points.size(); while (cloud_filtered->points.size() > 0.3 * nr_points) { seg.setInputCloud(cloud_filtered); seg.segment(*inliers, *coefficients); if (inliers->indices.size() == 0) { cout << "Coud not estimate a planar model for the given dataset.\n"; break; } ExtractIndices<PointXYZ> extract; extract.setInputCloud(cloud_filtered); extract.setIndices(inliers); extract.setNegative(false); extract.filter(*cloud_plane); cout << "PointCloud representing the planar component has: " << cloud_filtered->points.size() << " data points.\n"; extract.setNegative(true); extract.filter(*cloud_f); cloud_filtered->swap(*cloud_f); } search::KdTree<PointXYZ>::Ptr kdtree(new search::KdTree<PointXYZ>); kdtree->setInputCloud(cloud_filtered); vector<PointIndices> cluster_indices; EuclideanClusterExtraction<PointXYZ> ece; ece.setClusterTolerance(0.02); ece.setMinClusterSize(100); ece.setMaxClusterSize(25000); ece.setSearchMethod(kdtree); ece.setInputCloud(cloud_filtered); ece.extract(cluster_indices); PCDWriter writer; int j = 0; for (vector<PointIndices>::const_iterator it=cluster_indices.begin(); it != cluster_indices.end(); ++it) { PointCloud<PointXYZ>::Ptr cluster_cloud(new PointCloud<PointXYZ>); for (vector<int>::const_iterator pit=it->indices.begin(); pit != it->indices.end(); ++pit) cluster_cloud->points.push_back(cloud_filtered->points[*pit]); cluster_cloud->width = cluster_cloud->points.size(); cluster_cloud->height = 1; cluster_cloud->is_dense = true; cout << "PointCloud representing a cluster has: " << cluster_cloud->points.size() << " data points.\n"; stringstream ss; ss << "cloud_cluster_" << j << ".pcd"; writer.write<PointXYZ>(ss.str(), *cluster_cloud, false); j++; } return 0; }