// Copy constructor. FFTFrame::FFTFrame(const FFTFrame& frame) : m_FFTSize(frame.m_FFTSize) , m_log2FFTSize(frame.m_log2FFTSize) , m_realData(unpackedFFTDataSize(frame.m_FFTSize)) , m_imagData(unpackedFFTDataSize(frame.m_FFTSize)) { m_complexData = WTF::fastNewArray<GstFFTF32Complex>(unpackedFFTDataSize(m_FFTSize)); int fftLength = gst_fft_next_fast_length(m_FFTSize); m_fft = gst_fft_f32_new(fftLength, FALSE); m_inverseFft = gst_fft_f32_new(fftLength, TRUE); // Copy/setup frame data. memcpy(realData(), frame.realData(), sizeof(float) * unpackedFFTDataSize(m_FFTSize)); memcpy(imagData(), frame.imagData(), sizeof(float) * unpackedFFTDataSize(m_FFTSize)); }
// Copy constructor. FFTFrame::FFTFrame(const FFTFrame& frame) : m_FFTSize(frame.m_FFTSize), m_log2FFTSize(frame.m_log2FFTSize), m_realData(frame.m_FFTSize / 2), m_imagData(frame.m_FFTSize / 2), m_forwardContext(nullptr), m_inverseContext(nullptr), m_complexData(frame.m_FFTSize) { m_forwardContext = contextForSize(m_FFTSize, DFT_R2C); m_inverseContext = contextForSize(m_FFTSize, IDFT_C2R); // Copy/setup frame data. unsigned nbytes = sizeof(float) * (m_FFTSize / 2); memcpy(realData(), frame.realData(), nbytes); memcpy(imagData(), frame.imagData(), nbytes); }
// Copy constructor. FFTFrame::FFTFrame(const FFTFrame& frame) : m_FFTSize(frame.m_FFTSize) , m_log2FFTSize(frame.m_log2FFTSize) , m_forwardPlan(0) , m_backwardPlan(0) , m_data(2 * (3 + unpackedFFTWDataSize(fftSize()))) // enough space for real and imaginary data plus 16-byte alignment padding { // See the normal constructor for an explanation of the temporary pointer. float temporary; m_forwardPlan = fftwPlanForSize(m_FFTSize, Forward, &temporary, realData(), imagData()); m_backwardPlan = fftwPlanForSize(m_FFTSize, Backward, realData(), imagData(), &temporary); // Copy/setup frame data. size_t nbytes = sizeof(float) * unpackedFFTWDataSize(fftSize()); memcpy(realData(), frame.realData(), nbytes); memcpy(imagData(), frame.imagData(), nbytes); }
void FFTFrame::interpolateFrequencyComponents(const FFTFrame& frame1, const FFTFrame& frame2, double interp) { // FIXME : with some work, this method could be optimized float* realP = realData(); float* imagP = imagData(); const float* realP1 = frame1.realData(); const float* imagP1 = frame1.imagData(); const float* realP2 = frame2.realData(); const float* imagP2 = frame2.imagData(); m_FFTSize = frame1.fftSize(); m_log2FFTSize = frame1.log2FFTSize(); double s1base = (1.0 - interp); double s2base = interp; double phaseAccum = 0.0; double lastPhase1 = 0.0; double lastPhase2 = 0.0; realP[0] = static_cast<float>(s1base * realP1[0] + s2base * realP2[0]); imagP[0] = static_cast<float>(s1base * imagP1[0] + s2base * imagP2[0]); int n = m_FFTSize / 2; for (int i = 1; i < n; ++i) { Complex c1(realP1[i], imagP1[i]); Complex c2(realP2[i], imagP2[i]); double mag1 = abs(c1); double mag2 = abs(c2); // Interpolate magnitudes in decibels double mag1db = 20.0 * log10(mag1); double mag2db = 20.0 * log10(mag2); double s1 = s1base; double s2 = s2base; double magdbdiff = mag1db - mag2db; // Empirical tweak to retain higher-frequency zeroes double threshold = (i > 16) ? 5.0 : 2.0; if (magdbdiff < -threshold && mag1db < 0.0) { s1 = pow(s1, 0.75); s2 = 1.0 - s1; } else if (magdbdiff > threshold && mag2db < 0.0) { s2 = pow(s2, 0.75); s1 = 1.0 - s2; } // Average magnitude by decibels instead of linearly double magdb = s1 * mag1db + s2 * mag2db; double mag = pow(10.0, 0.05 * magdb); // Now, deal with phase double phase1 = arg(c1); double phase2 = arg(c2); double deltaPhase1 = phase1 - lastPhase1; double deltaPhase2 = phase2 - lastPhase2; lastPhase1 = phase1; lastPhase2 = phase2; // Unwrap phase deltas if (deltaPhase1 > piDouble) deltaPhase1 -= 2.0 * piDouble; if (deltaPhase1 < -piDouble) deltaPhase1 += 2.0 * piDouble; if (deltaPhase2 > piDouble) deltaPhase2 -= 2.0 * piDouble; if (deltaPhase2 < -piDouble) deltaPhase2 += 2.0 * piDouble; // Blend group-delays double deltaPhaseBlend; if (deltaPhase1 - deltaPhase2 > piDouble) deltaPhaseBlend = s1 * deltaPhase1 + s2 * (2.0 * piDouble + deltaPhase2); else if (deltaPhase2 - deltaPhase1 > piDouble) deltaPhaseBlend = s1 * (2.0 * piDouble + deltaPhase1) + s2 * deltaPhase2; else deltaPhaseBlend = s1 * deltaPhase1 + s2 * deltaPhase2; phaseAccum += deltaPhaseBlend; // Unwrap if (phaseAccum > piDouble) phaseAccum -= 2.0 * piDouble; if (phaseAccum < -piDouble) phaseAccum += 2.0 * piDouble; Complex c = std::polar(mag, phaseAccum); realP[i] = static_cast<float>(c.real()); imagP[i] = static_cast<float>(c.imag()); } }