Example #1
0
   static void SuperPixelThreaded( Image& target, const GenericImage<P>& source, const DebayerInstance& instance )
   {
      int target_w = source.Width() >> 1;
      int target_h = source.Height() >> 1;

      target.AllocateData( target_w, target_h, 3, ColorSpace::RGB );

      target.Status().Initialize( "SuperPixel debayering", target_h );

      int numberOfThreads = Thread::NumberOfThreads( target_h, 1 );
      int rowsPerThread = target_h/numberOfThreads;

      AbstractImage::ThreadData data( target, target_h );

      ReferenceArray<SuperPixelThread<P> > threads;
      for ( int i = 0, j = 1; i < numberOfThreads; ++i, ++j )
         threads.Add( new SuperPixelThread<P>( data, target, source, instance,
                                               i*rowsPerThread,
                                               (j < numberOfThreads) ? j*rowsPerThread : target_h ) );

      AbstractImage::RunThreads( threads, data );
      threads.Destroy();

      target.Status() = data.status;
   }
Example #2
0
template <class P1, class P2> static
void ApplyFilter_2( GenericImage<P1>& image, const GenericImage<P2>& sharp,
                    float amount, float threshold, float deringing,
                    float rangeLow, float rangeHigh, pcl_bool disableExtension, int c, pcl_bool highPass )
{
   float rangeWidth = 1 + rangeHigh + rangeLow;
   bool isRange = rangeWidth + 1 != 1;

   StandardStatus callback;
   StatusMonitor monitor;
   monitor.SetCallback( &callback );
   monitor.Initialize( "<end><cbr>Larson-Sekanina filter", image.NumberOfPixels() );

   for ( int x = 0; x < image.Width(); ++x )
      for ( int y = 0; y < image.Height(); ++y, ++monitor )
      {
         double f1, f2;
         P1::FromSample( f1, image.Pixel( x, y, c ) );
         P2::FromSample( f2, sharp.Pixel( x, y ) );
         Apply_PixelValues( f1, f2, threshold, deringing, amount, highPass );

         if ( disableExtension )
            image.Pixel( x, y, c ) = P1::ToSample( f1 );
         else
         {
            if ( isRange )
               f1 = (f1 + rangeLow)/rangeWidth;
            image.Pixel( x, y, c ) = P1::ToSample( pcl::Range( f1, 0.0, 1.0 ) );
         }
      }

   if ( disableExtension )
      Console().WarningLn( "<end><cbr>*** Warning: Dynamic range extension has been disabled - check pixel values!" );
}
Example #3
0
   template <class P> static
   void Rotate180( GenericImage<P>& image )
   {
      size_type N = image.NumberOfPixels();
      int n = image.NumberOfChannels();

      if ( image.Status().IsInitializationEnabled() )
         image.Status().Initialize( "Rotate 180 degrees", n*N );

      for ( int c = 0; c < n; ++c, image.Status() += N )
         for ( int y0 = 0, y1 = image.Height()-1; y0 <= y1; ++y0, --y1 )
         {
            typename P::sample* f0 = image.ScanLine( y0, c );
            typename P::sample* f1 = image.ScanLine( y1, c );

            if ( y0 != y1 )
            {
               int x0 = 0, x1 = image.Width()-1;

               while ( x0 < x1 )
               {
                  pcl::Swap( f0[x0], f1[x1] );
                  pcl::Swap( f0[x1], f1[x0] );
                  ++x0;
                  --x1;
               }

               if ( x0 == x1 )
                  pcl::Swap( f0[x0], f1[x0] );
            }
            else
               for ( typename P::sample* f = f0, * g = f0+image.Width()-1; f < g; )
                  pcl::Swap( *f++, *g-- );
         }
   }
Example #4
0
   static void VNGThreaded( Image& target, const GenericImage<P>& source, const DebayerInstance& instance )
   {
      int target_w = source.Width();
      int target_h = source.Height();

      target.AllocateData( target_w, target_h, 3, ColorSpace::RGB );

      target.Status().Initialize( "VNG debayering", target_h-4 );

      int numberOfThreads = Thread::NumberOfThreads( target_h-4, 1 );
      int rowsPerThread = (target_h - 4)/numberOfThreads;

      AbstractImage::ThreadData data( target, target_h-4 );

      ReferenceArray<VNGThread<P> > threads;
      for ( int i = 0, j = 1; i < numberOfThreads; ++i, ++j )
         threads.Add( new VNGThread<P>( data, target, source, instance,
                                        i*rowsPerThread + 2,
                                        (j < numberOfThreads) ? j*rowsPerThread + 2 : target_h-2 ) );

      AbstractImage::RunThreads( threads, data );
      threads.Destroy();

      // copy top and bottom two rows from the adjecent ones
      for ( int col = 0; col < target_w; col++ )
         for ( int i = 0; i < 3; i++ )
         {
            target.Pixel( col, 0, i ) = target.Pixel( col, 1, i ) = target.Pixel( col, 2, i );
            target.Pixel( col, target_h-1, i ) = target.Pixel( col, target_h-2, i ) = target.Pixel( col, target_h-3, i );
         }

      target.Status() = data.status;
   }
   static void Apply( GenericImage<P>& image, const LocalHistogramEqualizationInstance& instance )
   {
      if ( image.IsColor() )
      {
         Image L;
         image.GetLightness( L );
         L.Status() = image.Status();
         Apply( L, instance );
         image.Status() = L.Status();
         image.SetLightness( L );
         return;
      }

      // create copy of the luminance to evaluate histogram from
      GenericImage<P> imageCopy( image );
      imageCopy.EnsureUnique(); // really not necessary, but we'll be safer if this is done

      size_type N = image.NumberOfPixels();

      int numberOfThreads = Thread::NumberOfThreads( image.Height(), 1 );
      int rowsPerThread = image.Height()/numberOfThreads;

      image.Status().Initialize( "CLAHE", N );

      AbstractImage::ThreadData data( image, N );

      // create processing threads
      ReferenceArray<LocalHistogramEqualizationThread<P> > threads;
      for ( int i = 0, j = 1; i < numberOfThreads; ++i, ++j )
         threads.Add( new LocalHistogramEqualizationThread<P>( data,
                                 instance,
                                 image,
                                 imageCopy,
                                 i*rowsPerThread,
                                 (j < numberOfThreads) ? j*rowsPerThread : image.Height() ) );

      AbstractImage::RunThreads( threads, data );

      threads.Destroy();

      image.Status() = data.status;
   }
Example #6
0
static void ApplyInPlaceFourierTransform( GenericImage<P>& image, FFTDirection::value_type dir, bool parallel, int maxProcessors )
{
   int w = FFTC::OptimizedLength( image.Width() );
   int h = FFTC::OptimizedLength( image.Height() );

   if ( w != image.Width() || h != image.Height() )
   {
      StatusCallback* s = image.GetStatusCallback(); // don't update status here
      image.SetStatusCallback( 0 );
      image.ShiftToCenter( w, h );
      image.SetStatusCallback( s );
   }

   bool statusInitialized = false;
   if ( image.Status().IsInitializationEnabled() )
   {
      image.Status().Initialize( (dir == FFTDirection::Backward) ? "Inverse FFT" : "FFT",
                                 image.NumberOfSelectedChannels()*size_type( w + h ) );
      image.Status().DisableInitialization();
      statusInitialized = true;
   }

   try
   {
      FFTC F( h, w, image.Status() );
      F.EnableParallelProcessing( parallel, maxProcessors );
      for ( int c = image.FirstSelectedChannel(); c <= image.LastSelectedChannel(); ++c )
         F( image[c], image[c], (dir == FFTDirection::Backward) ? PCL_FFT_BACKWARD : PCL_FFT_FORWARD );
      if ( statusInitialized )
         image.Status().EnableInitialization();
   }
   catch ( ... )
   {
      if ( statusInitialized )
         image.Status().EnableInitialization();
      throw;
   }
}
Example #7
0
   template <class P> static
   void Rotate90CW( GenericImage<P>& image )
   {
      image.SetUnique();

      int w = image.Width();
      int h = image.Height();
      int h1 = h - 1;
      int n = image.NumberOfChannels();
      size_type N = image.NumberOfPixels();
      typename GenericImage<P>::color_space cs0 = image.ColorSpace();
      StatusMonitor status = image.Status();

      typename P::sample** f0 = 0;

      try
      {
         if ( image.Status().IsInitializationEnabled() )
            status.Initialize( "Rotate 90 degrees, clockwise", n*N );

         f0 = image.ReleaseData();

         typename GenericImage<P>::sample_array tmp( N );

         for ( int c = 0; c < n; ++c, status += N )
         {
            typename P::sample* f = f0[c];
            typename P::sample* t = tmp.Begin();
            ::memcpy( t, f, N*P::BytesPerSample() );
            for ( int y = 0; y < h; ++y )
               for ( int x = 0, h1y = h1-y; x < w; ++x, ++t )
                  f[x*h + h1y] = *t;
         }

         image.ImportData( f0, h, w, n, cs0 ).Status() = status;
      }
      catch ( ... )
      {
         if ( f0 != 0 )
         {
            for ( int c = 0; c < n; ++c )
               if ( f0[c] != 0 )
                  image.Allocator().Deallocate( f0[c] );
            image.Allocator().Deallocate( f0 );
            image.FreeData();
         }
         throw;
      }
   }
 static void Apply( GenericImage<P>& image, const PhotometricSuperflatInstance& instance )
 {
     
     PolynomialSurface* S;
     
     if ( !File::Exists( instance.starDatabasePath ) )
         throw Error( "No such file: " + instance.starDatabasePath );
     S = new PolynomialSurface( instance.starDatabasePath, image.Width(), image.Height() );
     //S->PrintCatalog();
     S->PrintCatalogSummary();
     S->PlotXYKeyedToRelativeFlux(false);
     String eqn = S->ComputeBestFitModel(instance.fitDegree);
     S->PlotXYKeyedToRelativeFlux(true);
     S->ShowBestFitModelImage();
     delete(S);
 };
Example #9
0
   template <class P> static
   void HorizontalMirror( GenericImage<P>& image )
   {
      size_type N = image.NumberOfPixels();
      int n = image.NumberOfChannels();

      if ( image.Status().IsInitializationEnabled() )
         image.Status().Initialize( "Horizontal mirror", n*N );

      for ( int c = 0; c < n; ++c, image.Status() += N )
         for ( int y = 0; y < image.Height(); ++y )
            for ( typename P::sample* f = image.ScanLine( y, c ),
                                    * g = f + image.Width()-1; f < g; )
            {
               pcl::Swap( *f++, *g-- );
            }
   }
Example #10
0
   template <class P> static
   void VerticalMirror( GenericImage<P>& image )
   {
      size_type N = image.NumberOfPixels();
      int n = image.NumberOfChannels();

      if ( image.Status().IsInitializationEnabled() )
         image.Status().Initialize( "Vertical mirror", n*N );

      for ( int c = 0; c < n; ++c, image.Status() += N )
         for ( int y0 = 0, y1 = image.Height()-1; y0 < y1; ++y0, --y1 )
            for ( typename P::sample* f0 = image.ScanLine( y0, c ),
                                    * f1 = image.ScanLine( y1, c ),
                                    * fw = f0 + image.Width();
                  f0 < fw; )
            {
               pcl::Swap( *f0++, *f1++ );
            }
   }
Example #11
0
static void ApplyInverseRealFourierTransform_2( GenericImage<P>& image, const GenericImage<P1>& dft, bool parallel, int maxProcessors )
{
   if ( dft.IsEmpty() )
   {
      image.FreeData();
      return;
   }

   int w = dft.Width();
   int h = dft.Height();

   image.AllocateData( 2*(w - 1), h, dft.NumberOfChannels(), dft.ColorSpace() );

   bool statusInitialized = false;
   if ( image.Status().IsInitializationEnabled() )
   {
      image.Status().Initialize( "Inverse FFT", image.NumberOfChannels()*size_type( w + h ) );
      image.Status().DisableInitialization();
      statusInitialized = true;
   }

   try
   {
      FFTR F( h, w, image.Status() );
      F.EnableParallelProcessing( parallel, maxProcessors );
      for ( int c = 0; c < image.NumberOfChannels(); ++c )
         F( image[c], dft[c] );
      if ( statusInitialized )
         image.Status().EnableInitialization();
   }
   catch ( ... )
   {
      if ( statusInitialized )
         image.Status().EnableInitialization();
      throw;
   }
}
   template <class P> static
   void Apply( GenericImage<P>& image, const MorphologicalTransformation& transformation )
   {
      if ( image.IsEmptySelection() )
         return;

      image.EnsureUnique();

      int n = transformation.OverlappingDistance();
      if ( n > image.Height() || n > image.Width() )
      {
         image.Zero();
         return;
      }

      /*
       * Dilation requires a reflected structure. We'll unreflect it once the
       * transformation has finished.
       */
      bool didReflect = false;
      if ( transformation.Operator().IsDilation() != transformation.Structure().IsReflected() )
      {
         const_cast<StructuringElement&>( transformation.Structure() ).Reflect();
         didReflect = true;
      }

      int numberOfRows = image.SelectedRectangle().Height();
      int numberOfThreads = transformation.IsParallelProcessingEnabled() ?
               Min( transformation.MaxProcessors(), pcl::Thread::NumberOfThreads( numberOfRows, n ) ) : 1;
      int rowsPerThread = numberOfRows/numberOfThreads;

      size_type N = image.NumberOfSelectedSamples();
      if ( image.Status().IsInitializationEnabled() )
         image.Status().Initialize( "Morphological transformation, " + transformation.Operator().Description(), N );

      ThreadData<P> data( image, transformation, N );

      ReferenceArray<Thread<P> > threads;
      for ( int i = 0, j = 1, y0 = image.SelectedRectangle().y0; i < numberOfThreads; ++i, ++j )
         threads.Add( new Thread<P>( data,
                                     y0 + i*rowsPerThread,
                                     y0 + ((j < numberOfThreads) ? j*rowsPerThread : numberOfRows),
                                     i > 0,
                                     j < numberOfThreads ) );
      try
      {
         AbstractImage::RunThreads( threads, data );
         if ( didReflect )
            const_cast<StructuringElement&>( transformation.Structure() ).Reflect();
      }
      catch ( ... )
      {
         if ( didReflect )
            const_cast<StructuringElement&>( transformation.Structure() ).Reflect();
         throw;
      }

      image.SetStatusCallback( nullptr );

      int c0 = image.SelectedChannel();
      Point p0 = image.SelectedRectangle().LeftTop();

      for ( int i = 0, j = 1; i < numberOfThreads; ++i, ++j )
      {
         if ( i > 0 )
            image.Mov( threads[i].UpperOverlappingRegion(),
                       Point( p0.x, p0.y + i*rowsPerThread ), c0 );
         if ( j < numberOfThreads )
            image.Mov( threads[i].LowerOverlappingRegion(),
                       Point( p0.x, p0.y + j*rowsPerThread - threads[i].LowerOverlappingRegion().Height() ), c0 );
      }

      image.Status() = data.status;

      threads.Destroy();
   }
Example #13
0
static void WriteJP2KImage( const GenericImage<P>& img,
                            const ImageInfo& info, const ImageOptions& options,
                            jas_stream_t* jp2Stream, jas_image_t* jp2Image, int jp2Format,
                            const JPEG2000ImageOptions& jp2Options )
{
   jas_matrix_t* pixels = nullptr;

   try
   {
      pixels = jas_matrix_create( 1, img.Width() );
      if ( pixels == nullptr )
         throw Error( "Memory allocation error writing JPEG2000 image." );

      for ( int c = 0; c < img.NumberOfChannels(); ++c )
      {
         for ( int y = 0; y < img.Height(); ++y )
         {
            const typename P::sample* f = img.ScanLine( y, c );

            if ( options.bitsPerSample == 8 )
            {
               if ( jp2Options.signedSample )
               {
                  int8 v;
                  for ( int x = 0; x < img.Width(); ++x )
                  {
                     P::FromSample( v, *f++ );
                     jas_matrix_set( pixels, 0, x, v );
                  }
               }
               else
               {
                  uint8 v;
                  for ( int x = 0; x < img.Width(); ++x )
                  {
                     P::FromSample( v, *f++ );
                     jas_matrix_set( pixels, 0, x, v );
                  }
               }
            }
            else
            {
               if ( jp2Options.signedSample )
               {
                  int16 v;
                  for ( int x = 0; x < img.Width(); ++x )
                  {
                     P::FromSample( v, *f++ );
                     jas_matrix_set( pixels, 0, x, v );
                  }
               }
               else
               {
                  uint16 v;
                  for ( int x = 0; x < img.Width(); ++x )
                  {
                     P::FromSample( v, *f++ );
                     jas_matrix_set( pixels, 0, x, v );
                  }
               }
            }

            jas_image_writecmpt( jp2Image, c, 0, y, img.Width(), 1, pixels );
         }
      }

      IsoString jp2OptionsStr;

      jp2OptionsStr.AppendFormat( "mode=%s", jp2Options.lossyCompression ? "real" : "int" );

      if ( jp2Options.lossyCompression )
         jp2OptionsStr.AppendFormat( " rate=%g", jp2Options.compressionRate );

      if ( jp2Options.tiledImage )
      {
         jp2OptionsStr.AppendFormat( " tilewidth=%d", Range( jp2Options.tileWidth, 8, img.Width() ) );
         jp2OptionsStr.AppendFormat( " tileheight=%d", Range( jp2Options.tileHeight, 8, img.Height() ) );
      }

      if ( jp2Options.numberOfLayers > 1 )
      {
         jp2OptionsStr.Append( " ilyrrates=" );

         float dr = (jp2Options.lossyCompression ? jp2Options.compressionRate : 1.0F)/jp2Options.numberOfLayers;

         for ( int l = 1; ; )
         {
            jp2OptionsStr.AppendFormat( "%g", l*dr );

            if ( ++l == jp2Options.numberOfLayers )
               break;

            jp2OptionsStr.Append( ',' );
         }

         jp2OptionsStr.Append( " prg=" );

         switch ( jp2Options.progressionOrder )
         {
         default:
         case JPEG2000ProgressionOrder::LRCP: jp2OptionsStr.Append( "lrcp" ); break;
         case JPEG2000ProgressionOrder::RLCP: jp2OptionsStr.Append( "rlcp" ); break;
         case JPEG2000ProgressionOrder::RPCL: jp2OptionsStr.Append( "rpcl" ); break;
         case JPEG2000ProgressionOrder::PCRL: jp2OptionsStr.Append( "pcrl" ); break;
         case JPEG2000ProgressionOrder::CPRL: jp2OptionsStr.Append( "cprl" ); break;
         }
      }

      if ( jas_image_encode( jp2Image, jp2Stream, jp2Format, jp2OptionsStr.Begin() ) < 0 )
         throw Error( "Unable to encode JPEG2000 image." );

      jas_matrix_destroy( pixels ), pixels = nullptr;
   }
   catch ( ... )
   {
      if ( pixels != nullptr )
         jas_matrix_destroy( pixels );
      throw;
   }
}
Example #14
0
   template <class P> static
   void Apply( GenericImage<P>& image, const Translation& translation )
   {
      if ( translation.Delta() == 0.0 )
         return;

      int width = image.Width();
      int height = image.Height();
      if ( width == 0 || height == 0 )
         return;

      image.EnsureUnique();

      typename P::sample* f = nullptr;
      typename P::sample** f0 = nullptr;

      int n = image.NumberOfChannels();
      typename GenericImage<P>::color_space cs0 = image.ColorSpace();

      StatusMonitor status = image.Status();

      int numberOfThreads = translation.IsParallelProcessingEnabled() ?
               Min( translation.MaxProcessors(), pcl::Thread::NumberOfThreads( height, 1 ) ) : 1;
      int rowsPerThread = height/numberOfThreads;

      try
      {
         size_type N = size_type( width )*size_type( height );
         if ( status.IsInitializationEnabled() )
            status.Initialize( String().Format( "Translate dx=%.3lf, dy=%.3lf, ",
                        translation.Delta().x, translation.Delta().y ) + translation.Interpolation().Description(),
                        size_type( n )*N );

         f0 = image.ReleaseData();

         for ( int c = 0; c < n; ++c )
         {
            ThreadData<P> data( translation.Delta(), width, height, status, N );

            data.f = f = image.Allocator().AllocatePixels( size_type( width )*size_type( height ) );
            data.fillValue = (c < translation.FillValues().Length()) ? P::ToSample( translation.FillValues()[c] ) : P::MinSampleValue();

            ReferenceArray<Thread<P> > threads;
            for ( int i = 0, j = 1; i < numberOfThreads; ++i, ++j )
               threads.Add( new Thread<P>( data,
                                           translation.Interpolation().NewInterpolator<P>( f0[c], width, height ),
                                           i*rowsPerThread,
                                           (j < numberOfThreads) ? j*rowsPerThread : height ) );

            AbstractImage::RunThreads( threads, data );

            threads.Destroy();

            image.Allocator().Deallocate( f0[c] );
            f0[c] = f;
            f = nullptr;

            status = data.status;
         }

         image.ImportData( f0, width, height, n, cs0 ).Status() = status;
      }
      catch ( ... )
      {
         if ( f != nullptr )
            image.Allocator().Deallocate( f );
         if ( f0 != nullptr )
         {
            for ( int c = 0; c < n; ++c )
               if ( f0[c] != nullptr )
                  image.Allocator().Deallocate( f0[c] );
            image.Allocator().Deallocate( f0 );
         }
         image.FreeData();
         throw;
      }
   }
Example #15
0
template <class P1, class P2> static
void Convolve_2( const GenericImage<P1>& image, GenericImage<P2>& sharp,
                 pcl_enum interpolation, float dR, float angleD, DPoint center, int c )
{
   PixelInterpolation* P = 0;
   PixelInterpolation::Interpolator<P1>* interpolator = 0;

   try
   {
      switch ( interpolation )
      {
      case LSInterpolation::Bilinear:
         P = new BilinearPixelInterpolation();
         break;
      default:
      case LSInterpolation::Bicubic:
         P = new BicubicPixelInterpolation();
         break;
      case LSInterpolation::BicubicSpline:
         P = new BicubicSplinePixelInterpolation();
         break;
      case LSInterpolation::BicubicBSpline:
         P = new BicubicBSplinePixelInterpolation();
         break;
      }

      interpolator = P->NewInterpolator<P1>( image[c], image.Width(), image.Height() );

      int w = image.Width() - 1;
      int h = image.Height() - 1;

      double fimg, fsharp;
      StatusMonitor monitor;
      monitor.Initialize( "<end><cbr>High-pass Larson-Sekanina filter", image.NumberOfPixels() );

      sharp.Zero();

      float dAlpha = Rad( angleD );
      for ( int x = 0; x < image.Width(); ++x )
         for ( int y = 0; y < image.Height(); ++y, ++monitor )
         {
            // Get the central value
            P1::FromSample( fimg, image.Pixel( x, y, c ) );
            fsharp = fimg+fimg;

            double r, theta;
            ToPolar( x, y, center, r, theta);

            DPoint delta;

            // Positive differential
            ToCartesian( r-dR, theta+dAlpha, center, delta );
            if ( delta.x < 0 )
               delta.x = Abs( delta.x );
            else if ( delta.x > w )
               delta.x = 2*w - delta.x;
            if ( delta.y < 0 )
               delta.y = Abs( delta.y );
            else if ( delta.y > h )
               delta.y = 2*h - delta.y;
            P1::FromSample( fimg, (*interpolator)( delta ) );
            fsharp -= fimg;

            //Negative differential
            ToCartesian( r-dR, theta-dAlpha, center, delta );
            if ( delta.x < 0 )
               delta.x = Abs( delta.x );
            else if ( delta.x > w )
               delta.x = 2*w - delta.x;
            if ( delta.y < 0 )
               delta.y = Abs( delta.y );
            else if ( delta.y > h )
               delta.y = 2*h - delta.y;
            P1::FromSample( fimg, (*interpolator)( delta ) );
            fsharp -= fimg;

            sharp.Pixel( x, y ) = P2::ToSample( fsharp );
         }

      delete interpolator;
      delete P;
   }

   catch ( ... )
   {
      if ( interpolator != 0 )
         delete interpolator;
      if ( P != 0 )
         delete P;
      throw;
   }
}
Example #16
0
static void ReadJPEGImage( GenericImage<P>& img, JPEGReader& reader, JPEGFileData* fileData )
{
   if ( !reader.IsOpen() )
      throw JPEG::InvalidReadOperation( String() );

   JSAMPLE* buffer = nullptr;        // one-row sample array for scanline reading
   typename P::sample** v = nullptr; // pointers to destination scan lines

   try
   {
      // Set parameters for decompression.
      // Most parameters have already been established by Open().
      // We just ensure that we'll get either a grayscale or a RGB color image.
      if ( jpeg_decompressor->out_color_space != JCS_GRAYSCALE )
         jpeg_decompressor->out_color_space = JCS_RGB;

      // Start decompressor.
      ::jpeg_start_decompress( jpeg_decompressor );

      // Allocate pixel data.
      img.AllocateData( jpeg_decompressor->output_width,
                        jpeg_decompressor->output_height,
                        jpeg_decompressor->output_components,
                  (jpeg_decompressor->out_color_space == JCS_GRAYSCALE) ?
                        ColorSpace::Gray : ColorSpace::RGB );

      // Initialize status callback.
      if ( img.Status().IsInitializationEnabled() )
         img.Status().Initialize( String().Format(
                  "Decompressing JPEG: %d channel(s), %dx%d pixels",
                  img.NumberOfChannels(), img.Width(), img.Height() ), img.NumberOfSamples() );

      //
      // Read pixels row by row.
      //

      // JSAMPLEs per row in output buffer.
      int row_stride = img.Width() * img.NumberOfChannels();

      // Make a one-row-high sample array.
      buffer = new JSAMPLE[ row_stride ];

      // JPEG organization is chunky; PCL images are planar.
      v = new typename P::sample*[ img.NumberOfChannels() ];

      while ( jpeg_decompressor->output_scanline < jpeg_decompressor->output_height )
      {
         ::jpeg_read_scanlines( jpeg_decompressor, &buffer, 1 );

         const JSAMPLE* b = buffer;

         for ( int c = 0; c < img.NumberOfChannels(); ++c )
            v[c] = img.ScanLine( jpeg_decompressor->output_scanline-1, c );

         for ( int i = 0; i < img.Width(); ++i )
            for ( int c = 0; c < img.NumberOfChannels(); ++c, ++b )
               *v[c]++ = P::IsFloatSample() ? typename P::sample( *b ) : P::ToSample( *b );

         img.Status() += img.Width()*img.NumberOfChannels();
      }

      // Clean up temporary structures.
      delete [] v, v = nullptr;
      delete [] buffer, buffer = nullptr;

      // Finish decompression.
      ::jpeg_finish_decompress( jpeg_decompressor );

      // ### TODO --> At this point we might check whether any corrupt-data
      // warnings occurred (test whether jerr.pub.num_warnings is nonzero).
   }
   catch ( ... )
   {
      reader.Close();

      if ( buffer != nullptr )
         delete [] buffer;
      if ( v != nullptr )
         delete [] v;

      img.FreeData();

      throw;
   }
}
Example #17
0
   template <class P> inline
   static void Apply( GenericImage<P>& image, const IntegerResample& Z )
   {
      int width = image.Width();
      int w0 = width;
      int height = image.Height();
      int h0 = height;

      Z.GetNewSizes( width, height );

      if ( width == w0 && height == h0 )
         return;

      if ( width == 0 || height == 0 )
      {
         image.FreeData();
         return;
      }

      image.EnsureUnique();

      typename P::sample* f = 0;
      typename P::sample** f0 = 0;

      int n = image.NumberOfChannels();
      size_type N = image.NumberOfPixels();
      typename GenericImage<P>::color_space cs0 = image.ColorSpace();

      StatusMonitor status = image.Status();

      int z = pcl::Abs( Z.ZoomFactor() );
      int z2 = z*z;
      int n2 = z2 >> 1;

      try
      {
         if ( status.IsInitializationEnabled() )
         {
            String info = (Z.ZoomFactor() > 0) ? "Upsampling" : "Downsampling";

            info.AppendFormat( " %d:%d, %dx%d",
               (Z.ZoomFactor() > 0) ? z : 1, (Z.ZoomFactor() > 0) ? 1 : z, width, height );

            if ( Z.ZoomFactor() < 0 )
            {
               info += ", ";
               switch ( Z.DownsampleMode() )
               {
               default:
               case IntegerDownsampleMode::Average: info += "average"; break;
               case IntegerDownsampleMode::Median:  info += "median"; break;
               case IntegerDownsampleMode::Maximum: info += "maximum"; break;
               case IntegerDownsampleMode::Minimum: info += "minimum"; break;
               }
            }

            status.Initialize( info, n*N );
         }

         GenericVector<typename P::sample> fm;
         if ( Z.ZoomFactor() < 0 && Z.DownsampleMode() == IntegerDownsampleMode::Median )
            fm = GenericVector<typename P::sample>( z2 );

         f0 = image.ReleaseData();

         for ( int c = 0; c < n; ++c, status += N )
         {
            f = image.Allocator().AllocatePixels( width, height );

            if ( Z.ZoomFactor() > 0 )
            {
               const typename P::sample* f0c = f0[c];

               for ( int y = 0; y < h0; ++y )
               {
                  int yz = y*z;

                  for ( int x = 0; x < w0; ++x )
                  {
                     int xz = x*z;
                     typename P::sample v = *f0c++;

                     for ( int i = 0; i < z; ++i )
                     {
                        typename P::sample* fi = f + (size_type( yz + i )*width + xz);

                        for ( int j = 0; j < z; ++j )
                           *fi++ = v;
                     }
                  }
               }
            }
            else
            {
               typename P::sample* fz = f;

               for ( int y = 0; y < height; ++y )
               {
                  const typename P::sample* fy = f0[c] + size_type( y )*z*w0;

                  for ( int x = 0; x < width; ++x )
                  {
                     const typename P::sample* fyx = fy + x*z;

                     switch ( Z.DownsampleMode() )
                     {
                     default:
                     case IntegerDownsampleMode::Average:
                        {
                           double s = 0;
                           for ( int i = 0; i < z; ++i, fyx += w0 )
                              for ( int j = 0; j < z; ++j )
                                 s += fyx[j];
                           *fz++ = typename P::sample( P::IsFloatSample() ? s/z2 : Round( s/z2 ) );
                        }
                        break;

                     case IntegerDownsampleMode::Median:
                        {
                           typename P::sample* fmi = *fm;
                           for ( int i = 0; i < z; ++i, fyx += w0 )
                              for ( int j = 0; j < z; ++j )
                                 *fmi++ = fyx[j];

                           *fz++ = (z & 1) ?
                                 *Select( *fm, fm.At( z2 ), n2 ) :
                                 P::FloatToSample( 0.5*(double( *Select( *fm, fm.At( z2 ), n2   ) ) +
                                                        double( *Select( *fm, fm.At( z2 ), n2-1 ) )) );
                        }
                        break;

                     case IntegerDownsampleMode::Maximum:
                        {
                           *fz = P::MinSampleValue();
                           for ( int i = 0; i < z; ++i, fyx += w0 )
                              for ( int j = 0; j < z; ++j )
                                 if ( fyx[j] > *fz )
                                    *fz = fyx[j];
                           ++fz;
                        }
                        break;

                     case IntegerDownsampleMode::Minimum:
                        {
                           *fz = P::MaxSampleValue();
                           for ( int i = 0; i < z; ++i, fyx += w0 )
                              for ( int j = 0; j < z; ++j )
                                 if ( fyx[j] < *fz )
                                    *fz = fyx[j];
                           ++fz;
                        }
                        break;
                     }
                  }
               }
            }

            image.Allocator().Deallocate( f0[c] );
            f0[c] = f;
            f = 0;
         }

         image.ImportData( f0, width, height, n, cs0 ).Status() = status;
      }
      catch ( ... )
      {
         if ( f != 0 )
            image.Allocator().Deallocate( f );
         if ( f0 != 0 )
         {
            for ( int c = 0; c < n; ++c )
               if ( f0[c] != 0 )
                  image.Allocator().Deallocate( f0[c] );
            image.Allocator().Deallocate( f0 );
         }
         image.FreeData();
         throw;
      }
   }
Example #18
0
   template <class P> static
   void Apply( GenericImage<P>& image, const Resample& resample )
   {
      int width = image.Width();
      int w0 = width;
      int height = image.Height();
      int h0 = height;

      resample.GetNewSizes( width, height );

      if ( width == w0 && height == h0 )
         return;

      if ( width <= 0 || height <= 0 )
      {
         image.FreeData();
         return;
      }

      image.EnsureUnique();

      typename P::sample* f = nullptr;
      typename P::sample** f0 = nullptr;

      int n = image.NumberOfChannels();
      typename GenericImage<P>::color_space cs0 = image.ColorSpace();

      double rx = double( w0 )/width;
      double ry = double( h0 )/height;

      StatusMonitor status = image.Status();

      int numberOfThreads = resample.IsParallelProcessingEnabled() ?
               Min( resample.MaxProcessors(), pcl::Thread::NumberOfThreads( height, 1 ) ) : 1;
      int rowsPerThread = height/numberOfThreads;

      try
      {
         size_type N = size_type( width )*size_type( height );
         if ( status.IsInitializationEnabled() )
            status.Initialize( String().Format( "Resampling to %dx%d px, ", width, height )
                                                + resample.Interpolation().Description(), size_type( n )*N );
         f0 = image.ReleaseData();

         for ( int c = 0; c < n; ++c )
         {
            ThreadData<P> data( rx, ry, width, status, N );
            data.f = f = image.Allocator().AllocatePixels( width, height );

            ReferenceArray<Thread<P> > threads;
            for ( int i = 0, j = 1; i < numberOfThreads; ++i, ++j )
               threads.Add( new Thread<P>( data, resample.Interpolation().NewInterpolator<P>( f0[c], w0, h0 ),
                                           i*rowsPerThread,
                                           (j < numberOfThreads) ? j*rowsPerThread : height ) );

            AbstractImage::RunThreads( threads, data );

            threads.Destroy();

            image.Allocator().Deallocate( f0[c] );
            f0[c] = f;
            f = nullptr;

            status = data.status;
         }

         image.ImportData( f0, width, height, n, cs0 ).Status() = status;
      }
      catch ( ... )
      {
         if ( f != nullptr )
            image.Allocator().Deallocate( f );
         if ( f0 != nullptr )
         {
            for ( int c = 0; c < n; ++c )
               if ( f0[c] != nullptr )
                  image.Allocator().Deallocate( f0[c] );
            image.Allocator().Deallocate( f0 );
         }
         image.FreeData();
         throw;
      }
   }