Example #1
0
// perform a check of the nodes of the tree
void
CommandCheck()
{
	GiSTpath path;
	path.MakeRoot();
	gist->CheckNode(path, NULL);
}
Example #2
0
// split this M-tree into a list of trees having height level, which is used in the "splitting" phase of the BulkLoad algorithm
// nCreated is the number of created subtrees,
// level is the split level for the tree,
// children is the list of the parents of each subtree,
// name is the root for the subtrees names
// the return value is the list of splitted subtrees's names
GiSTlist<char *> *
MT::SplitTree (int *nCreated, int level, GiSTlist<MTentry *> *parentEntries, const char *name)
{
	GiSTlist<MTnode *> *oldList = new GiSTlist<MTnode *>;  // upper level nodes
	MTnode *node = new MTnode;  // this is because the first operation on node is a delete
	GiSTpath path;
	path.MakeRoot ();
	oldList->Append((MTnode *) ReadNode(path));  // insert the root
	do {  // build the roots list
		GiSTlist<MTnode *> *newList = new GiSTlist<MTnode *>;  // lower level nodes
		while (!oldList->IsEmpty()) {
			delete node;  // delete the old node created by ReadNode
			node = oldList->RemoveFront();  // retrieve next node to be examined
			path = node->Path();
			for (int i=0; i<node->NumEntries(); i++) {  // append all its children to the new list
				path.MakeChild ((*node)[i].Ptr()->Ptr());
				newList->Append((MTnode *)ReadNode(path));
				path.MakeParent ();
			}
		}
		delete oldList;
		oldList = newList;
	} while (node->Level() > level);  // stop if we're at the split level
	delete node;

	GiSTlist<char *> *newTreeNames = new GiSTlist<char *>;  // this is the results list
	while (!oldList->IsEmpty()) {  // now append each sub-tree to its root
		char newName[50];
		sprintf (newName, "%s.%i", name, ++(*nCreated));
		unlink (newName);  // if this M-tree already exists, delete it

		MT *newTree = new MT;
		newTree->Create(newName);  // create a new M-tree
		path.MakeRoot ();
		MTnode *rootNode = (MTnode *) newTree->ReadNode(path);  // read the root of the new tree

		node = oldList->RemoveFront();
		newTree->Append(rootNode, (MTnode *)node->Copy());  // append the current node to the root of new tree
		parentEntries->Append(node->ParentEntry());  // insert the original parent entry into the list
		newTreeNames->Append(strdup(newName));  // insert the new M-tree name into the list
		delete node;
		delete rootNode;
		delete newTree;
	}
	delete oldList;
	return newTreeNames;
}
Example #3
0
MTcursor::MTcursor (const MT& tree, const MTpred& pred): tree (tree), queue (comparedst), results (compareentry)
{
	GiSTpath path;
	path.MakeRoot ();
	queue.Insert (new MTrecord (path, 0, MAXDOUBLE));

	this->pred = (MTpred *) pred.Copy ();
}
Example #4
0
void 
GiST::Print(ostream& os) const
{
	GiSTpath path;

	path.MakeRoot();
	DumpNode(os, path);
}
Example #5
0
void
MT::CollectStats ()
{
	GiSTpath path;
	path.MakeRoot ();
	GiSTnode *node = ReadNode (path);
	if (!node->IsLeaf()) {
		int maxLevel = node->Level();
		double *radii = new double[maxLevel];
		int *pages = new int[maxLevel];
		for (int i=0; i<maxLevel; i++) {
			pages[i] = 0;
			radii[i] = 0;
		}
		TruePredicate truePredicate;
		GiSTlist<GiSTentry*> list = node->Search(truePredicate);  // retrieve all the entries in this node
		
		double overlap = ((MTnode *)node)->Overlap();
		double totalOverlap = overlap;
		
		delete node;
		while (!list.IsEmpty()) {
			GiSTentry *entry = list.RemoveFront ();
			path.MakeChild (entry->Ptr());
			node = ReadNode (path);

			overlap = ((MTnode *)node)->Overlap();
			totalOverlap += overlap;

			pages[node->Level()]++;
			radii[node->Level()] += ((MTkey *) entry->Key())->MaxRadius();
			GiSTlist<GiSTentry*> newlist;
			if (!node->IsLeaf()) {
				newlist = node->Search(truePredicate);  // recurse to next level
			}
			while (!newlist.IsEmpty()) {
				list.Append (newlist.RemoveFront ());
			}
			path.MakeParent ();
			delete entry;
			delete node;
		}
		// output the results
		cout << "Level:\tPages:\tAverage_Radius:"<<endl;
		int totalPages = 1;  // for the root
		for (int i=maxLevel-1; i>=0; i--) {
			totalPages += pages[i];
			cout << i << ":\t" << pages[i] << "\t" << radii[i]/pages[i] << endl;
		}
		cout << "TotalPages:\t" << totalPages << endl;
		cout << "LeafPages:\t" << pages[0] << endl;
		cout << "TotalOverlap:\t" << (float)totalOverlap << endl;
		delete []radii;
		delete []pages;
	} else {
		delete node;
	}
}
Example #6
0
// print a dump of each node of the tree
void
CommandDump()
{
	GiSTpath path;
	path.MakeRoot();
#ifdef PRINTING_OBJECTS
	gist->DumpNode(std::cout, path);
#endif
}
Example #7
0
GiSTlist<MTentry *>
MT::RangeSearch (const MTquery& query, int *pages)
{
	GiSTpath path;
	path.MakeRoot ();
	MTnode *root = (MTnode *) ReadNode (path);
	GiSTlist<MTentry *> list = root->RangeSearch(query, pages);
	delete root;
	return list;
}
Example #8
0
MTcursor::MTcursor(const MT& tree, const MTpred& query): queue(comparedst), results(compareentry), tree(tree)
{
	GiSTpath path;
	dst *d;

	path.MakeRoot();
	d=new dst(path, 0, MAXDOUBLE);
	this->query=(MTpred *)query.Copy();
	queue.Insert(d);
}
Example #9
0
// return root level+1 (the height of the tree)
// this is used in the "splitting" phase of the BulkLoad algorithm
int
MT::TreeHeight () const
{
	GiSTpath path;
	path.MakeRoot ();
	GiSTnode *root = ReadNode (path);
	int i = root->Level();
	delete root;
	return (i+1);
}
Example #10
0
void CommandDump(const char *table, GiSTpage page)
{
    int i;

    if ((i = GetTable(table)) == NOT_FOUND) {
	cout << "No such table is open.\n";
	return;
    }

    GiSTpath path;
    path.MakeRoot();
    tables[i].gist->DumpNode(cout, path);
}
Example #11
0
void
GiST::ShortenTree()
{
	GiSTpath path;
	// Shorten the tree if necessary (This should only be done if root actually changed!)
	path.MakeRoot();
	GiSTnode *root=ReadNode(path);

	if(!root->IsLeaf()&&root->NumEntries()==1) {
		path.MakeChild((*root)[0]->Ptr());
		GiSTnode *child=ReadNode(path);

		store->Deallocate(path.Page());
		child->SetSibling(0);
		child->Path().MakeRoot();
		WriteNode(child);
		delete child;
	}
	delete root;
}
Example #12
0
int main() 
{
	MXTree *tree = new MXTree;
	tree->Create(MXTreePath.c_str());
	assert(tree->IsOpen());
	tree->Open(MXTreePath.c_str());
	
	time_t time_start, time_end;
	time(&time_start);

	ifstream fin(path.c_str());
	for (int i=0; i<amount; i++) {
		Object *obj = Read(fin);
		tree->Insert(MTentry(MTkey(*obj, 0, 0), i));
		delete obj;
		Progress(i, amount);
	}
	fin.close();

	time(&time_end); 
	cout<<difftime(time_end, time_start)<<endl;

	GiSTpath path;
	path.MakeRoot();
	//tree->DumpNode(cout, path);
	tree->CheckNode(path, NULL);
	tree->CollectStats();
	
	delete tree;
	//unlink(MXTreePath.c_str());
	//unlink(BitMapPath.c_str());

	cout << "Computed dists = " << compdists << endl;
	cout << "IO reads = " << IOread << endl;
	cout << "IO writes = " << IOwrite << endl;
	return 0;
}
Example #13
0
// load this M-tree with n data using the BulkLoad algorithm [CP98]
// data is an array of n entries
// padFactor is the maximum node utilization (use 1)
// name is the name of the tree
void
MT::BulkLoad (MTentry **data, int n, double padFactor, const char *name)
{
	int size = 0;
	if (EntrySize()) {
		size = n * (sizeof(GiSTpage) + EntrySize());  // (only valid if we've fixed size entries)
	} else {
		for (int i=0; i<n; i++) {
			size += sizeof(GiSTlte) + sizeof(GiSTpage) + data[i]->CompressedLength();
		}
	}
	int totSize = size + GIST_PAGE_HEADER_SIZE + sizeof(GiSTlte);

	if (totSize > Store()->PageSize()) {  // we need to split the entries into several sub-trees
		int numEntries = (int)(Store()->PageSize()*padFactor*n) / totSize;
		int s = (int) MAX (MIN (numEntries, ceil(((float)n)/numEntries)), numEntries*MIN_UTIL);  // initial number of samples
		int nSamples, *samples = new int[s], *sizes = NULL, *ns = NULL, iter = 0, MAXITER = s * s;
		GiSTlist<double *> *distm = (GiSTlist<double *> *) calloc (s, sizeof(GiSTlist<double *>));  // relative distances between samples
		int MINSIZE = (int) (Store()->PageSize()*MIN_UTIL), addEntrySize = EntrySize() ? sizeof(GiSTpage) : sizeof(GiSTlte)+sizeof(GiSTpage);
		GiSTlist<int> *lists = NULL;  // set for each sample set
		GiSTlist<double> *dists = NULL;  // set for distance between each sample and its members
		BOOL *bSampled = new BOOL[n];  // is this entry in the samples set?

		// sampling phase
		do {
			iter++;
			if (iter > 1) {  // this is a new sampling phase
				while (!lists[0].IsEmpty()) {
					lists[0].RemoveFront ();
					dists[0].RemoveFront ();
				}
				delete []lists;
				delete []dists;
				delete []sizes;
				delete []ns;
				while (!distm[0].IsEmpty()) {
					delete []distm[0].RemoveFront();  // empty the distance list
				}
				for (int i=1; i<s; i++) {
					distm[i].front = distm[i].rear = NULL;
				}
			}
			if (iter >= MAXITER) {
				cout << "Too many loops in BulkLoad!"<<endl<<"Please select a lower minimum node utilization or a bigger node size."<<endl;
				exit(1);
			}

			for (int i=0; i<n; i++) {
				bSampled[i] = FALSE;
			}
			nSamples = 0;
			// pick s samples to create parents
			while (nSamples < s) {
				int i;
				do {
					i = PickRandom (0, n);
				} while (bSampled[i]);
				bSampled[i] = TRUE;
				samples[nSamples++] = i;
			}

			lists = new GiSTlist<int>[s];
			dists = new GiSTlist<double>[s];
			sizes = new int[s];
			ns = new int[s];
			for (int i=0; i<s; i++) {
				sizes[i] = GIST_PAGE_HEADER_SIZE + sizeof(GiSTlte);
				ns[i] = 1;
				distm[i].Prepend (new double[s]);
			}

			// compute the relative distances between samples
			for (int i=0; i<s; i++) {
				for (int j=0; j<i; j++) {
					distm[j].front->entry[i] = distm[i].front->entry[j] = data[samples[j]]->object().distance(data[samples[i]]->object());
				}
				distm[i].front->entry[i] = 0;
			}

			// assign each entry to its nearest parent
			for (int i=0; i<n; i++) {
				if (bSampled[i]) {
					int j = 0;
					for (; samples[j]!=i; j++);  // find this entry in the samples set and return position in it
					lists[j].Prepend (i);  // insert the entry in the right sample
					dists[j].Prepend (0);  // distance between sample and data[i]
					sizes[j] += addEntrySize + data[i]->CompressedLength();
				} else {  // here we optimize the distance computations (like we do in the insert algorithm)
					double *dist = new double[s];  // distance between this non-sample and samples
					dist[0] = data[samples[0]]->object().distance(data[i]->object());
					int minIndex = 0;
					for (int j=1; j<s; j++) {  // seek the nearest sample
						dist[j] = -MaxDist();
						if (fabs (data[samples[j]]->Key()->distance - data[i]->Key()->distance) >= dist[minIndex]) {  // pruning
							continue;
						}
						BOOL flag = TRUE;
						for (int k=0; k<j && flag; k++) {  // pruning (other samples)
							if (dist[k] < 0) {
								continue;
							} else {
								flag = fabs (dist[k] - distm[j].front->entry[k]) < dist[minIndex];
							}
						}
						if (!flag) {
							continue;
						}
						dist[j] = data[samples[j]]->object().distance(data[i]->object());  // have to compute this distance
						if (dist[j] < dist[minIndex]) {
							minIndex = j;
						}
					}
					lists[minIndex].Append (i);  // insert the entry in the right sample
					dists[minIndex].Append (dist[minIndex]);  // distance between sample and data[i]
					sizes[minIndex] += addEntrySize + data[i]->CompressedLength();
					ns[minIndex]++;
					sizes[minIndex] >= MINSIZE ? delete []dist : distm[minIndex].Append (dist);  // correspond with lists
				}
			}

			// redistribute underfilled parents
			int i;
			while (sizes[i = FindMin (sizes, nSamples)] < MINSIZE) {
				GiSTlist<int> list = lists[i];  // each sample set
				while (!dists[i].IsEmpty()) {  // clear distance between each sample and its members
					dists[i].RemoveFront ();
				}

				// substitute this set with last set
				for (int j=0; j<nSamples; j++) {
					for (GiSTlistnode<double *> *node=distm[j].front; node; node=node->next) {
						node->entry[i] = node->entry[nSamples-1];
					}
				}
				GiSTlist<double *> dlist = distm[i];  // relative distances between sample[i] and other samples, reposition by myself

				distm[i] = distm[nSamples-1];
				lists[i] = lists[nSamples-1];
				dists[i] = dists[nSamples-1];
				samples[i] = samples[nSamples-1];
				sizes[i] = sizes[nSamples-1];
				ns[i] = ns[nSamples-1];
				nSamples--;
				while (!list.IsEmpty()) {  // assign each entry to its nearest parent
					double *dist = dlist.RemoveFront ();  // relative distances between sample[i] (old) and other samples (old)
					int minIndex = -1;
					for (int j=0; j<nSamples && minIndex<0; j++) {  // search for a computed distance
						if (dist[j] > 0) {
							minIndex = j;
						}
					}
					int k = list.RemoveFront ();
					if (minIndex < 0) {  // no distance was computed (i.e. all distances were pruned)
						dist[0] = data[samples[0]]->object().distance(data[k]->object());
						minIndex = 0;
					}
					for (int j=0; j<nSamples; j++) {
						if (j == minIndex) {
							continue;
						}
						if (dist[j] < 0) {  // distance wasn't computed
							if (fabs (data[samples[j]]->Key()->distance - data[k]->Key()->distance) >= dist[minIndex]) {
								continue;  // pruning
							}
							BOOL flag = TRUE;
							for (int i=0; i<j && flag; i++) { // pruning (other samples)
								if (dist[i] < 0) {
									continue;
								} else {
									flag = fabs (dist[i] - distm[j].front->entry[i]) < dist[minIndex];
								}
							}
							if (!flag) {
								continue;
							}
							dist[j] = data[samples[j]]->object().distance(data[k]->object());  // have to compute this distance
						}
						if (dist[j] < dist[minIndex]) {
							minIndex = j;
						}
					}
					lists[minIndex].Append (k);
					dists[minIndex].Append (dist[minIndex]);
					sizes[minIndex] += addEntrySize + data[k]->CompressedLength();
					ns[minIndex]++;
					sizes[minIndex] >= MINSIZE ? delete []dist : distm[minIndex].Append (dist);  // correspond with lists
				}
				assert (dlist.IsEmpty());  // so is the list
			}
		} while (nSamples == 1);  // if there's only one child, repeat the sampling phase
		MTentry ***array = new MTentry **[nSamples];  // array of the entries for each sub-tree
		for (int i=0; i<nSamples; i++) {  // convert the lists into arrays
			array[i] = new MTentry *[ns[i]];
			for (int j=0; j<ns[i]; j++) {
				array[i][j] = (MTentry *) data[lists[i].RemoveFront ()]->Copy();
				array[i][j]->Key()->distance = dists[i].RemoveFront ();
			}
			assert (lists[i].IsEmpty());
			assert (dists[i].IsEmpty());
		}
		delete []lists;
		delete []dists;
		delete []sizes;
		delete []bSampled;
		for (int i=0; i<nSamples; i++) {
			while (!distm[i].IsEmpty()) {
				delete [](distm[i].RemoveFront());
			}
		}
		free (distm);

		// build an M-tree under each parent
		int nInit = nSamples;
		MT *subtree = new MT;
		GiSTlist<char *> subtreeNames;  // list of the subtrees names
		GiSTlist<MTentry *> topEntries;  // list of the parent entries of each subtree
		int nCreated = 0, minHeight = MAXINT;
		char newName[50];
		for (int i=0; i<nInit; i++) {
			sprintf (newName, "%s.%i", name, ++nCreated);
			unlink (newName);
			subtree->Create(newName);  // create the new subtree
			subtree->BulkLoad(array[i], ns[i], padFactor, newName);  // build the subtree

			GiSTpath path;
			path.MakeRoot ();
			MTnode *subtreeRoot = (MTnode *) subtree->ReadNode(path);
			if (subtreeRoot->IsUnderFull(*Store())) {  // if the subtree root node is underfilled, we have to split the tree
				GiSTlist<MTentry *> *parentEntries = new GiSTlist<MTentry *>;
				GiSTlist<char *> *newTreeNames = subtree->SplitTree(&nCreated, subtree->TreeHeight()-1, parentEntries, name);  // split the tree
				nSamples--;
				while (!newTreeNames->IsEmpty()) {  // insert all the new trees in the subtrees list
					subtreeNames.Append (newTreeNames->RemoveFront());
					MTentry *entry = parentEntries->RemoveFront();
					for (int j=0; j<n; j++) {
						if (data[j]->object() == entry->object()) {  // append the parent entry to the list
							topEntries.Append (data[j]);
							break;
						}
					}
					delete entry;
					nSamples++;
				}
				delete newTreeNames;
				delete parentEntries;
				minHeight = MIN (minHeight, subtree->TreeHeight()-1);
			} else {
				subtreeNames.Append (strdup(newName));
				topEntries.Append (data[samples[i]]);
				minHeight = MIN (minHeight, subtree->TreeHeight());
			}
			delete subtreeRoot;
			subtree->Close();
			delete subtree->Store();  // it was created in subtree->Create()
		}
		delete []samples;
		for (int i=0; i<nInit; i++)  {
			for (int j=0; j<ns[i]; j++) {
				delete array[i][j];
			}
			delete []array[i];
		}
		delete []array;
		delete []ns;

		// fix the subtree height
		GiSTlist<char *> subtreeNames2;  // list of the subtrees names
		GiSTlist<MTentry *> topEntries2;  // list of the parent entries of each subtree
		while (!topEntries.IsEmpty()) {  // insert the trees in the list (splitting trees if necessary)
			MTentry *parentEntry = topEntries.RemoveFront ();
			char *tmp = subtreeNames.RemoveFront ();
			strcpy (newName, tmp);
			delete []tmp;
			subtree->Open(newName);
			if (subtree->TreeHeight() > minHeight) {  // we have to split the tree to reduce its height
				nSamples--;
				GiSTlist<MTentry *> *parentEntries = new GiSTlist<MTentry *>;
				GiSTlist<char *> *newTreeNames = subtree->SplitTree(&nCreated, minHeight, parentEntries, name);  // split the tree
				while (!newTreeNames->IsEmpty()) {  // insert all the new trees in the subtrees list
					subtreeNames2.Append (newTreeNames->RemoveFront());
					MTentry *entry = parentEntries->RemoveFront();
					for (int j=0; j<n; j++) {
						if (data[j]->object() == entry->object()) {  // append the parent entry to the parents list
							topEntries2.Append (data[j]);
							break;;
						}
					}
					delete entry;
					nSamples++;
				}
				delete newTreeNames;
				delete parentEntries;
			} else {  // simply insert the tree and its parent entry to the lists
				subtreeNames2.Append (strdup(newName));
				topEntries2.Append (parentEntry);
			}
			subtree->Close();
			delete subtree->Store();  // it was created in tree->Open()
		}

		// build the super tree upon the parents
		MTentry **topEntrArr = new MTentry *[nSamples];  // array of the parent entries for each subtree
		char **subNameArr = new char *[nSamples];  // array of the subtrees names
		for (int i=0; i<nSamples; i++) {  // convert the lists into arrays
			topEntrArr[i] = topEntries2.RemoveFront ();
			subNameArr[i] = subtreeNames2.RemoveFront ();
		}
		assert (topEntries2.IsEmpty());
		assert (subtreeNames2.IsEmpty());
		sprintf (newName, "%s.0", name);
		BulkLoad (topEntrArr, nSamples, padFactor, newName);
		// attach each subtree to the leaves of the super tree
		GiSTpath path;
		path.MakeRoot ();
		MTnode *node = (MTnode *) ReadNode (path);
		GiSTlist<MTnode *> *oldList = new GiSTlist<MTnode *>;  // upper level nodes
		oldList->Append(node);
		int level = node->Level();
		while (level > 0) {  // build the leaves list for super tree
			GiSTlist<MTnode *> *newList = new GiSTlist<MTnode *>;  // lower level nodes
			while (!oldList->IsEmpty()) {
				node = oldList->RemoveFront();
				path = node->Path();
				node->SetLevel(node->Level() + minHeight);  // update level of the upper nodes of the super tree
				WriteNode (node);
				for (int i=0; i<node->NumEntries(); i++) {
					MTentry *entry = (MTentry *) (*node)[i].Ptr();
					path.MakeChild (entry->Ptr());
					newList->Append((MTnode *)ReadNode(path));
					path.MakeParent ();
				}
				delete node;
			}
			delete oldList;
			oldList = newList;
			level--;
		}
		while (!oldList->IsEmpty()) {  // attach each subtree to its leaf
			node = oldList->RemoveFront();  // retrieve next leaf (root of subtree)
			node->SetLevel(minHeight);  // update level of the root of the subtree
			path = node->Path();
			for (int i=0; i<node->NumEntries(); i++) {
				MTentry *entry = (MTentry *) (*node)[i].Ptr();
				path.MakeChild(Store()->Allocate());
				MTnode *newNode = (MTnode *) CreateNode ();
				newNode->Path() = path;
				entry->SetPtr(path.Page());
				path.MakeParent ();
				int j = 0;
				for (; entry->object() != topEntrArr[j]->object(); j++);  // search the position to append
				subtree->Open(subNameArr[j]);
				GiSTpath rootPath;
				rootPath.MakeRoot ();
				Append (newNode, (MTnode *)subtree->ReadNode(rootPath));  // append this subtree to the super tree
				subtree->Close();
				delete subtree->Store();  // it was created in tree->Open()
				delete newNode;
			}
			WriteNode (node);
			delete node;
		}
		subtree->Open(subNameArr[0]);  // in order to destroy the object tree
		delete subtree;
		for (int i=0; i<nSamples; i++) {
			delete []subNameArr[i];
		}
		delete []subNameArr;
		delete []topEntrArr;

		// update radii of the upper nodes of the result M-tree
		path.MakeRoot ();
		node = (MTnode *) ReadNode (path);
		oldList->Append(node);
		level = node->Level();
		while (level >= minHeight) {  // build the list of the nodes which radii should be recomputed
			GiSTlist<MTnode *> *newList = new GiSTlist<MTnode *>;
			while (!oldList->IsEmpty()) {
				node = oldList->RemoveFront();
				path = node->Path();
				for (int i=0; i<node->NumEntries(); i++) {
					path.MakeChild ((*node)[i].Ptr()->Ptr());
					newList->Append((MTnode *)ReadNode(path));
					path.MakeParent ();
				}
				delete node;
			}
			delete oldList;
			oldList = newList;
			level--;
		}
		while (!oldList->IsEmpty()) {  // adjust the radii of the nodes
			MTnode *node = oldList->RemoveFront();
			AdjKeys (node);
			delete node;
		}
		delete oldList;
		for (int i=0; i<=nCreated; i++) {  // delete all temporary subtrees
			sprintf (newName, "%s.%i", name, i);
			unlink (newName);
		}
	} else {  // we can insert all the entries in a single node
		GiSTpath path;
		path.MakeRoot ();
		GiSTnode *node = ReadNode (path);
		for (int i=0; i<n; i++) {
			node->Insert(*(data[i]));
		}
		assert (!node->IsOverFull(*Store()));
		WriteNode (node);
		delete node;
	}
}