Example #1
0
void moveGlobalVariableInitializer(GlobalVariable &OrigGV,
                                   ValueToValueMapTy &VMap,
                                   ValueMaterializer *Materializer,
                                   GlobalVariable *NewGV) {
  assert(OrigGV.hasInitializer() && "Nothing to move");
  if (!NewGV)
    NewGV = cast<GlobalVariable>(VMap[&OrigGV]);
  else
    assert(VMap[&OrigGV] == NewGV &&
           "Incorrect global variable mapping in VMap.");
  assert(NewGV->getParent() != OrigGV.getParent() &&
         "moveGlobalVariable should only be used to move initializers between "
         "modules");

  NewGV->setInitializer(MapValue(OrigGV.getInitializer(), VMap, RF_None,
                                 nullptr, Materializer));
}
Example #2
0
/// Return true if this constant is simple enough for us to understand.  In
/// particular, if it is a cast to anything other than from one pointer type to
/// another pointer type, we punt.  We basically just support direct accesses to
/// globals and GEP's of globals.  This should be kept up to date with
/// CommitValueTo.
static bool isSimpleEnoughPointerToCommit(Constant *C) {
  // Conservatively, avoid aggregate types. This is because we don't
  // want to worry about them partially overlapping other stores.
  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
    return false;

  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    // Do not allow weak/*_odr/linkonce linkage or external globals.
    return GV->hasUniqueInitializer();

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    // Handle a constantexpr gep.
    if (CE->getOpcode() == Instruction::GetElementPtr &&
        isa<GlobalVariable>(CE->getOperand(0)) &&
        cast<GEPOperator>(CE)->isInBounds()) {
      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
      // external globals.
      if (!GV->hasUniqueInitializer())
        return false;

      // The first index must be zero.
      ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
      if (!CI || !CI->isZero()) return false;

      // The remaining indices must be compile-time known integers within the
      // notional bounds of the corresponding static array types.
      if (!CE->isGEPWithNoNotionalOverIndexing())
        return false;

      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);

    // A constantexpr bitcast from a pointer to another pointer is a no-op,
    // and we know how to evaluate it by moving the bitcast from the pointer
    // operand to the value operand.
    } else if (CE->getOpcode() == Instruction::BitCast &&
               isa<GlobalVariable>(CE->getOperand(0))) {
      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
      // external globals.
      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
    }
  }

  return false;
}
Example #3
0
std::string readAnnotate(Function *f) {
  std::string annotation = "";

  // Get annotation variable
  GlobalVariable *glob =
      f->getParent()->getGlobalVariable("llvm.global.annotations");

  if (glob != NULL) {
    // Get the array
    if (ConstantArray *ca = dyn_cast<ConstantArray>(glob->getInitializer())) {
      for (unsigned i = 0; i < ca->getNumOperands(); ++i) {
        // Get the struct
        if (ConstantStruct *structAn =
                dyn_cast<ConstantStruct>(ca->getOperand(i))) {
          if (ConstantExpr *expr =
                  dyn_cast<ConstantExpr>(structAn->getOperand(0))) {
            // If it's a bitcast we can check if the annotation is concerning
            // the current function
            if (expr->getOpcode() == Instruction::BitCast &&
                expr->getOperand(0) == f) {
              ConstantExpr *note = cast<ConstantExpr>(structAn->getOperand(1));
              // If it's a GetElementPtr, that means we found the variable
              // containing the annotations
              if (note->getOpcode() == Instruction::GetElementPtr) {
                if (GlobalVariable *annoteStr =
                        dyn_cast<GlobalVariable>(note->getOperand(0))) {
                  if (ConstantDataSequential *data =
                          dyn_cast<ConstantDataSequential>(
                              annoteStr->getInitializer())) {
                    if (data->isString()) {
                      annotation += data->getAsString().lower() + " ";
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
  return annotation;
}
// doInitialization - Initializes the vector of functions that have been
// annotated with the noinline attribute.
bool SimpleInliner::doInitialization(CallGraph &CG) {
  CA.setTargetData(getAnalysisIfAvailable<TargetData>());

  Module &M = CG.getModule();

  for (Module::iterator I = M.begin(), E = M.end();
       I != E; ++I)
    if (!I->isDeclaration() && I->hasFnAttr(Attribute::NoInline))
      NeverInline.insert(I);

  // Get llvm.noinline
  GlobalVariable *GV = M.getNamedGlobal("llvm.noinline");

  if (GV == 0)
    return false;

  // Don't crash on invalid code
  if (!GV->hasDefinitiveInitializer())
    return false;

  const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());

  if (InitList == 0)
    return false;

  // Iterate over each element and add to the NeverInline set
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {

    // Get Source
    const Constant *Elt = InitList->getOperand(i);

    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Elt))
      if (CE->getOpcode() == Instruction::BitCast)
        Elt = CE->getOperand(0);

    // Insert into set of functions to never inline
    if (const Function *F = dyn_cast<Function>(Elt))
      NeverInline.insert(F);
  }

  return false;
}
Example #5
0
std::string ModuloScheduler::get_legup_label(BasicBlock *bb) {
    std::string label = "";
    for (BasicBlock::iterator instr = bb->begin(), ie = bb->end(); instr != ie;
         ++instr) {
        const CallInst *ci = dyn_cast<CallInst>(instr);
        if (!ci)
            continue;

        Function *calledFunc = ci->getCalledFunction();
        // ignore indirect function invocations
        if (!calledFunc)
            continue;

        if (calledFunc->getName() == "__legup_label") {

            // errs() << "Found label: " << *ci << "\n";
            Value *str = *ci->op_begin();
            // handle getelementptr
            if (const User *U = dyn_cast<User>(str)) {
                if (U->getNumOperands() > 1) {
                    str = U->getOperand(0);
                }
            }
            GlobalVariable *G = dyn_cast<GlobalVariable>(str);
            assert(G);
            Constant *C = G->getInitializer();
            assert(C);
            // TODO: LLVM 3.4 update
            // ConstantArray *CA = dyn_cast<ConstantArray>(C);
            if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
                assert(CA);
                label = arrayToString(CA);
            } else if (ConstantDataArray *CA = dyn_cast<ConstantDataArray>(C)) {
                assert(CA);
                label = CA->getAsCString();
            }
            return label;
        }
    }
    return label;
}
void AssertionSiteInstrumenter::ParseAssertionLocation(
  Location *Loc, CallInst *Call) {

  assert(Call->getCalledFunction()->getName() == INLINE_ASSERTION);

  if (Call->getNumArgOperands() < 4)
    panic("TESLA assertion must have at least 4 arguments");

  // The filename (argument 1) should be a global variable.
  GlobalVariable *NameVar =
    dyn_cast<GlobalVariable>(Call->getOperand(1)->stripPointerCasts());

  ConstantDataArray *A;
  if (!NameVar ||
      !(A = dyn_cast_or_null<ConstantDataArray>(NameVar->getInitializer()))) {
    Call->dump();
    panic("unable to parse filename from TESLA assertion");
  }

  *Loc->mutable_filename() = A->getAsString();


  // The line and counter values should be constant integers.
  ConstantInt *Line = dyn_cast<ConstantInt>(Call->getOperand(2));
  if (!Line) {
    Call->getOperand(2)->dump();
    panic("assertion line must be a constant int");
  }

  Loc->set_line(Line->getLimitedValue(INT_MAX));

  ConstantInt *Count = dyn_cast<ConstantInt>(Call->getOperand(3));
  if (!Count) {
    Call->getOperand(3)->dump();
    panic("assertion count must be a constant int");
  }

  Loc->set_counter(Count->getLimitedValue(INT_MAX));
}
void MemoryInstrumenter::lowerGlobalCtors(Module &M) {
  // Find llvm.global_ctors.
  GlobalVariable *GV = M.getNamedGlobal("llvm.global_ctors");
  if (!GV)
    return;
  assert(!GV->isDeclaration() && !GV->hasLocalLinkage());

  // Should be an array of '{ int, void ()* }' structs.  The first value is
  // the init priority, which must be 65535 if the bitcode is generated using
  // clang.
  if (ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer())) {
    for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
      ConstantStruct *CS =
        dyn_cast<ConstantStruct>(InitList->getOperand(i));
      assert(CS);
      assert(CS->getNumOperands() == 2);

      // Get the priority.
      ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
      assert(Priority);
      // TODO: For now, we assume all priorities must be 65535.
      assert(Priority->equalsInt(65535));

      // Get the constructor function.
      Constant *FP = CS->getOperand(1);
      if (FP->isNullValue())
        break;  // Found a null terminator, exit.

      // Explicitly call the constructor at the main entry.
      CallInst::Create(FP, "", Main->begin()->getFirstNonPHI());
    }
  }

  // Clear the global_ctors array.
  // Use eraseFromParent() instead of removeFromParent().
  GV->eraseFromParent();
}
Example #8
0
void PerfMonitor::addToGlobalConstructors(Function *Fn) {
  const char *Name = "llvm.global_ctors";
  GlobalVariable *GV = M->getGlobalVariable(Name);
  std::vector<Constant *> V;

  if (GV) {
    Constant *Array = GV->getInitializer();
    for (Value *X : Array->operand_values())
      V.push_back(cast<Constant>(X));
    GV->eraseFromParent();
  }

  StructType *ST = StructType::get(Builder.getInt32Ty(), Fn->getType(),
                                   Builder.getInt8PtrTy());

  V.push_back(
      ConstantStruct::get(ST, Builder.getInt32(10), Fn,
                          ConstantPointerNull::get(Builder.getInt8PtrTy())));
  ArrayType *Ty = ArrayType::get(ST, V.size());

  GV = new GlobalVariable(*M, Ty, true, GlobalValue::AppendingLinkage,
                          ConstantArray::get(Ty, V), Name, nullptr,
                          GlobalVariable::NotThreadLocal);
}
Example #9
0
/// Return the value that would be computed by a load from P after the stores
/// reflected by 'memory' have been performed.  If we can't decide, return null.
Constant *Evaluator::ComputeLoadResult(Constant *P) {
  // If this memory location has been recently stored, use the stored value: it
  // is the most up-to-date.
  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
  if (I != MutatedMemory.end()) return I->second;

  // Access it.
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
    if (GV->hasDefinitiveInitializer())
      return GV->getInitializer();
    return nullptr;
  }

  // Handle a constantexpr getelementptr.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
    if (CE->getOpcode() == Instruction::GetElementPtr &&
        isa<GlobalVariable>(CE->getOperand(0))) {
      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
      if (GV->hasDefinitiveInitializer())
        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
    }

  return nullptr;  // don't know how to evaluate.
}
Example #10
0
bool ConstantMerge::runOnModule(Module &M) {
  // Find all the globals that are marked "used".  These cannot be merged.
  SmallPtrSet<const GlobalValue*, 8> UsedGlobals;
  FindUsedValues(M.getGlobalVariable("llvm.used"), UsedGlobals);
  FindUsedValues(M.getGlobalVariable("llvm.compiler.used"), UsedGlobals);
  
  // Map unique constant/section pairs to globals.  We don't want to merge
  // globals in different sections.
  DenseMap<Constant*, GlobalVariable*> CMap;

  // Replacements - This vector contains a list of replacements to perform.
  SmallVector<std::pair<GlobalVariable*, GlobalVariable*>, 32> Replacements;

  bool MadeChange = false;

  // Iterate constant merging while we are still making progress.  Merging two
  // constants together may allow us to merge other constants together if the
  // second level constants have initializers which point to the globals that
  // were just merged.
  while (1) {
    // First pass: identify all globals that can be merged together, filling in
    // the Replacements vector.  We cannot do the replacement in this pass
    // because doing so may cause initializers of other globals to be rewritten,
    // invalidating the Constant* pointers in CMap.
    //
    for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
         GVI != E; ) {
      GlobalVariable *GV = GVI++;
      
      // If this GV is dead, remove it.
      GV->removeDeadConstantUsers();
      if (GV->use_empty() && GV->hasLocalLinkage()) {
        GV->eraseFromParent();
        continue;
      }
      
      // Only process constants with initializers in the default addres space.
      if (!GV->isConstant() ||!GV->hasDefinitiveInitializer() ||
          GV->getType()->getAddressSpace() != 0 || !GV->getSection().empty() ||
          // Don't touch values marked with attribute(used).
          UsedGlobals.count(GV))
        continue;
      
      
      
      Constant *Init = GV->getInitializer();

      // Check to see if the initializer is already known.
      GlobalVariable *&Slot = CMap[Init];

      if (Slot == 0) {    // Nope, add it to the map.
        Slot = GV;
      } else if (GV->hasLocalLinkage()) {    // Yup, this is a duplicate!
        // Make all uses of the duplicate constant use the canonical version.
        Replacements.push_back(std::make_pair(GV, Slot));
      }
    }

    if (Replacements.empty())
      return MadeChange;
    CMap.clear();

    // Now that we have figured out which replacements must be made, do them all
    // now.  This avoid invalidating the pointers in CMap, which are unneeded
    // now.
    for (unsigned i = 0, e = Replacements.size(); i != e; ++i) {
      // Eliminate any uses of the dead global.
      Replacements[i].first->replaceAllUsesWith(Replacements[i].second);

      // Delete the global value from the module.
      Replacements[i].first->eraseFromParent();
    }

    NumMerged += Replacements.size();
    Replacements.clear();
  }
}
Example #11
0
SandboxVector SandboxUtils::findSandboxes(Module& M) {
  FunctionIntMap funcToOverhead;
  FunctionIntMap funcToClearances;
  map<Function*,string> funcToSandboxName;
  map<string,FunctionSet> sandboxNameToEntryPoints;
  StringSet ephemeralSandboxes;

  SandboxVector sandboxes;

  // function-level annotations of sandboxed code
  Regex *sboxPerfRegex = new Regex("perf_overhead_\\(([0-9]{1,2})\\)", true);
  SmallVector<StringRef, 4> matches;
  if (GlobalVariable* lga = M.getNamedGlobal("llvm.global.annotations")) {
    ConstantArray* lgaArray = dyn_cast<ConstantArray>(lga->getInitializer()->stripPointerCasts());
    for (User::op_iterator i=lgaArray->op_begin(), e = lgaArray->op_end(); e!=i; i++) {
      ConstantStruct* lgaArrayElement = dyn_cast<ConstantStruct>(i->get());

      // get the annotation value first
      GlobalVariable* annotationStrVar = dyn_cast<GlobalVariable>(lgaArrayElement->getOperand(1)->stripPointerCasts());
      ConstantDataArray* annotationStrArray = dyn_cast<ConstantDataArray>(annotationStrVar->getInitializer());
      StringRef annotationStrArrayCString = annotationStrArray->getAsCString();
      GlobalValue* annotatedVal = dyn_cast<GlobalValue>(lgaArrayElement->getOperand(0)->stripPointerCasts());
      if (isa<Function>(annotatedVal)) {
        Function* annotatedFunc = dyn_cast<Function>(annotatedVal);
        StringRef sandboxName;
        if (annotationStrArrayCString.startswith(SANDBOX_PERSISTENT) || annotationStrArrayCString.startswith(SANDBOX_EPHEMERAL)) {
          sandboxEntryPoints.insert(annotatedFunc);
          outs() << INDENT_1 << "Found sandbox entrypoint " << annotatedFunc->getName() << "\n";
          outs() << INDENT_2 << "Annotation string: " << annotationStrArrayCString << "\n";
          if (annotationStrArrayCString.startswith(SANDBOX_PERSISTENT)) {
            sandboxName = annotationStrArrayCString.substr(strlen(SANDBOX_PERSISTENT)+1);
          }
          else if (annotationStrArrayCString.startswith(SANDBOX_EPHEMERAL)) {
            sandboxName = annotationStrArrayCString.substr(strlen(SANDBOX_EPHEMERAL)+1);
            ephemeralSandboxes.insert(sandboxName);
          }
          outs() << INDENT_2 << "Sandbox name: " << sandboxName << "\n";
          if (funcToSandboxName.find(annotatedFunc) != funcToSandboxName.end()) {
            outs() << INDENT_1 << "*** Error: Function " << annotatedFunc->getName() << " is already an entrypoint for another sandbox\n";
          }
          else {
            funcToSandboxName[annotatedFunc] = sandboxName;
            sandboxNameToEntryPoints[sandboxName].insert(annotatedFunc);
          }
        }
        else if (sboxPerfRegex->match(annotationStrArrayCString, &matches)) {
          int overhead;
          outs() << INDENT_2 << "Threshold set to " << matches[1].str() <<
                  "%\n";
          matches[1].getAsInteger(0, overhead);
          funcToOverhead[annotatedFunc] = overhead;
        }
        else if (annotationStrArrayCString.startswith(CLEARANCE)) {
          StringRef className = annotationStrArrayCString.substr(strlen(CLEARANCE)+1);
          outs() << INDENT_2 << "Sandbox has clearance for \"" << className << "\"\n";
          ClassifiedUtils::assignBitIdxToClassName(className);
          funcToClearances[annotatedFunc] |= (1 << ClassifiedUtils::getBitIdxFromClassName(className));
        }
      }
    }
  }

  // TODO: sanity check overhead and clearance annotations

  // Combine all annotation information for function-level sandboxes to create Sandbox instances
  for (pair<string,FunctionSet> p : sandboxNameToEntryPoints) {
    string sandboxName = p.first;
    FunctionSet entryPoints = p.second;
    int idx = assignBitIdxToSandboxName(sandboxName);
    int overhead = 0;
    int clearances = 0; 
    bool persistent = find(ephemeralSandboxes.begin(), ephemeralSandboxes.end(), sandboxName) == ephemeralSandboxes.end();

    // set overhead and clearances; any of the entry points could be annotated
    for (Function* entryPoint : entryPoints) {
      if (funcToOverhead.find(entryPoint) != funcToOverhead.end()) {
        overhead = funcToOverhead[entryPoint];
      }
      if (funcToClearances.find(entryPoint) != funcToClearances.end()) {
        clearances = funcToClearances[entryPoint];
      }
    }

		SDEBUG("soaap.util.sandbox", 3, dbgs() << INDENT_2 << "Creating new Sandbox instance for " << sandboxName << "\n");
    sandboxes.push_back(new Sandbox(sandboxName, idx, entryPoints, persistent, M, overhead, clearances));
		SDEBUG("soaap.util.sandbox", 3, dbgs() << INDENT_2 << "Created new Sandbox instance\n");
  }

  /*
  for (map<Function*,string>::iterator I=funcToSandboxName.begin(), E=funcToSandboxName.end(); I!=E; I++) {
    Function* entryPoint = I->first;
    string sandboxName = I->second;
    int idx = assignBitIdxToSandboxName(sandboxName);
    int overhead = funcToOverhead[entryPoint];
    int clearances = funcToClearances[entryPoint];
    bool persistent = find(ephemeralSandboxes.begin(), ephemeralSandboxes.end(), entryPoint) == ephemeralSandboxes.end();
		SDEBUG("soaap.util.sandbox", 3, dbgs() << INDENT_2 << "Creating new Sandbox instance\n");
    sandboxes.push_back(new Sandbox(sandboxName, idx, entryPoint, persistent, M, overhead, clearances));
		SDEBUG("soaap.util.sandbox", 3, dbgs() << INDENT_2 << "Created new Sandbox instance\n");
  }
  */

  // Handle sandboxed code regions, i.e. start_sandboxed_code(N) and end_sandboxed_code(N) blocks 
  if (Function* SboxStart = M.getFunction("llvm.annotation.i32")) {
    for (User* U : SboxStart->users()) {
      if (IntrinsicInst* annotCall = dyn_cast<IntrinsicInst>(U)) {
        GlobalVariable* annotationStrVar = dyn_cast<GlobalVariable>(annotCall->getOperand(1)->stripPointerCasts());
        ConstantDataArray* annotationStrValArray = dyn_cast<ConstantDataArray>(annotationStrVar->getInitializer());
        StringRef annotationStrValCString = annotationStrValArray->getAsCString();
        
        if (annotationStrValCString.startswith(SOAAP_SANDBOX_REGION_START)) {
          StringRef sandboxName = annotationStrValCString.substr(strlen(SOAAP_SANDBOX_REGION_START)+1); //+1 because of _
          SDEBUG("soaap.util.sandbox", 3, dbgs() << INDENT_3 << "Found start of sandboxed code region: "; annotCall->dump(););
          InstVector sandboxedInsts;
          findAllSandboxedInstructions(annotCall, sandboxName, sandboxedInsts);
          int idx = assignBitIdxToSandboxName(sandboxName);
          sandboxes.push_back(new Sandbox(sandboxName, idx, sandboxedInsts, false, M)); //TODO: obtain persistent/ephemeral information in a better way (currently we obtain it from the creation point)
        }
      }
Example #12
0
void SDBuildCHA::buildClouds(Module &M) {
  // this set is used for checking if a parent class is defined or not
  std::set<vtbl_t> build_undefinedVtables;

  for(auto itr = M.getNamedMDList().begin(); itr != M.getNamedMDList().end(); itr++) {
    NamedMDNode* md = itr;

    // check if this is a metadata that we've added
    if(! md->getName().startswith(SD_MD_CLASSINFO))
      continue;

    //sd_print("GOT METADATA: %s\n", md->getName().data());

    std::vector<nmd_t> infoVec = extractMetadata(md);

    for (const nmd_t& info : infoVec) {
      // record the old vtable array
      GlobalVariable* oldVtable = M.getGlobalVariable(info.className, true);

      //sd_print("class %s with %d subtables\n", info.className.c_str(), info.subVTables.size());

      /*
      sd_print("oldvtables: %p, %d, class %s\n",
               oldVtable,
               oldVtable ? oldVtable->hasInitializer() : -1,
               info.className.c_str());
      */

      if (oldVtable && oldVtable->hasInitializer()) {
        ConstantArray* vtable = dyn_cast<ConstantArray>(oldVtable->getInitializer());
        assert(vtable);
        oldVTables[info.className] = vtable;
      } else {
        undefinedVTables.insert(info.className);
      }

      for(unsigned ind = 0; ind < info.subVTables.size(); ind++) {
        const nmd_sub_t* subInfo = & info.subVTables[ind];
        vtbl_t name(info.className, ind);
        /*
        sd_print("SubVtable[%d] Order: %d Parents[%d]: %s [%d-%d] AddrPt: %d\n",
          ind, 
          subInfo->order,
          subInfo->parents.size(),
          "NYI",
          subInfo->start,
          subInfo->end,
          subInfo->addressPoint);
        */

        if (build_undefinedVtables.find(name) != build_undefinedVtables.end()) {
          //sd_print("Removing %s,%d from build_udnefinedVtables\n", name.first.c_str(), name.second);
          build_undefinedVtables.erase(name);
        }

        if (cloudMap.find(name) == cloudMap.end()){
          //sd_print("Inserting %s, %d in cloudMap\n", name.first.c_str(), name.second);
          cloudMap[name] = std::set<vtbl_t>();
        }

        vtbl_set_t parents;
        for (auto it : subInfo->parents) {
          if (it.first != "") {
            vtbl_t &parent = it;
            parents.insert(parent);

            // if the parent class is not defined yet, add it to the
            // undefined vtable set
            if (cloudMap.find(parent) == cloudMap.end()) {
              //sd_print("Inserting %s, %d in cloudMap - undefined parent\n", parent.first.c_str(), parent.second);
              cloudMap[parent] = std::set<vtbl_t>();
              build_undefinedVtables.insert(parent);
            }

            // add the current class to the parent's children set
            cloudMap[parent].insert(name);
          } else {
            assert(ind == 0); // make sure secondary vtables have a direct parent
            // add the class to the root set
            roots.insert(info.className);
          }
        }

        parentMap[info.className].push_back(parents);

        // record the original address points
        addrPtMap[info.className].push_back(subInfo->addressPoint);

        // record the sub-vtable ends
        rangeMap[info.className].push_back(range_t(subInfo->start, subInfo->end));
      }
    }
  }

  if (build_undefinedVtables.size() != 0) {
    sd_print("Build Undefined vtables:\n");
    for (auto n : build_undefinedVtables) {
      sd_print("%s,%d\n", n.first.c_str(), n.second);
    }
  }
  assert(build_undefinedVtables.size() == 0);

  for (auto rootName : roots) {
    vtbl_t root(rootName, 0);
    for (auto child : preorder(root)) {
      if (ancestorMap.find(child) == ancestorMap.end()) {
        ancestorMap[child] = rootName;
      }
    }
  }

  for (auto it : parentMap) {
    const vtbl_name_t &className = it.first;
    const std::vector<vtbl_set_t> &parentSetV = it.second;

    for (int ind = 0; ind < parentSetV.size(); ind++) {
      vtbl_name_t layoutClass = "none";

      // Check that all possible parents are in the same layout cloud
      for (auto ptIt : parentSetV[ind]) {
        if (layoutClass != "none")
          assert(layoutClass == ancestorMap[ptIt] &&
            "All parents of a primitive vtable should have the same root layout.");
        else
          layoutClass = ancestorMap[ptIt];
      }

      // No parents - then our "layout class" is ourselves.
      if (layoutClass == "none")
        layoutClass = className;
      
      // record the class name of the sub-object
      subObjNameMap[className].push_back(layoutClass);
    }
  }
}
Example #13
0
//
// Method: postOrderInline()
//
// Description:
//  This methods does a post order traversal of the call graph and performs
//  bottom-up inlining of the DSGraphs.
//
void
BUDataStructures::postOrderInline (Module & M) {
  // Variables used for Tarjan SCC-finding algorithm.  These are passed into
  // the recursive function used to find SCCs.
  std::vector<const Function*> Stack;
  std::map<const Function*, unsigned> ValMap;
  unsigned NextID = 1;


  // Do post order traversal on the global ctors. Use this information to update
  // the globals graph.
  const char *Name = "llvm.global_ctors";
  GlobalVariable *GV = M.getNamedGlobal(Name);
  if (GV && !(GV->isDeclaration()) && !(GV->hasLocalLinkage())) {
    // Should be an array of '{ int, void ()* }' structs.  The first value is
    // the init priority, which we ignore.
    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
    if (InitList) {
      for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
          if (CS->getNumOperands() != 2)
            break; // Not array of 2-element structs.
          Constant *FP = CS->getOperand(1);
          if (FP->isNullValue())
            break;  // Found a null terminator, exit.

          if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
            if (CE->isCast())
              FP = CE->getOperand(0);
          Function *F = dyn_cast<Function>(FP);
          if (F && !F->isDeclaration() && !ValMap.count(F)) {
            calculateGraphs(F, Stack, NextID, ValMap);
            CloneAuxIntoGlobal(getDSGraph(*F));
          }
        }
      GlobalsGraph->removeTriviallyDeadNodes();
      GlobalsGraph->maskIncompleteMarkers();

      // Mark external globals incomplete.
      GlobalsGraph->markIncompleteNodes(DSGraph::IgnoreGlobals);
      GlobalsGraph->computeExternalFlags(DSGraph::DontMarkFormalsExternal);
      GlobalsGraph->computeIntPtrFlags();

      //
      // Create equivalence classes for aliasing globals so that we only need to
      // record one global per DSNode.
      //
      formGlobalECs();
      // propogte information calculated
      // from the globals graph to the other graphs.
      for (Module::iterator F = M.begin(); F != M.end(); ++F) {
        if (!(F->isDeclaration())){
          DSGraph *Graph  = getDSGraph(*F);
          cloneGlobalsInto(Graph, DSGraph::DontCloneCallNodes |
                           DSGraph::DontCloneAuxCallNodes);
          Graph->buildCallGraph(callgraph, GlobalFunctionList, filterCallees);
          Graph->maskIncompleteMarkers();
          Graph->markIncompleteNodes(DSGraph::MarkFormalArgs |
                                     DSGraph::IgnoreGlobals);
          Graph->computeExternalFlags(DSGraph::DontMarkFormalsExternal);
          Graph->computeIntPtrFlags();
        }
      }
    }
  }

  //
  // Start the post order traversal with the main() function.  If there is no
  // main() function, don't worry; we'll have a separate traversal for inlining
  // graphs for functions not reachable from main().
  //
  Function *MainFunc = M.getFunction ("main");
  if (MainFunc && !MainFunc->isDeclaration()) {
    calculateGraphs(MainFunc, Stack, NextID, ValMap);
    CloneAuxIntoGlobal(getDSGraph(*MainFunc));
  }

  //
  // Calculate the graphs for any functions that are unreachable from main...
  //
  for (Function &F : M)
    if (!F.isDeclaration() && !ValMap.count(&F)) {
      if (MainFunc)
        DEBUG(errs() << debugname << ": Function unreachable from main: "
        << F.getName() << "\n");
      calculateGraphs(&F, Stack, NextID, ValMap);     // Calculate all graphs.
      CloneAuxIntoGlobal(getDSGraph(F));

      // Mark this graph as processed.  Do this by finding all functions
      // in the graph that map to it, and mark them visited.
      // Note that this really should be handled neatly by calculateGraphs
      // itself, not here.  However this catches the worst offenders.
      DSGraph *G = getDSGraph(F);
      for(DSGraph::retnodes_iterator RI = G->retnodes_begin(),
          RE = G->retnodes_end(); RI != RE; ++RI) {
        if (getDSGraph(*RI->first) == G) {
          if (!ValMap.count(RI->first))
            ValMap[RI->first] = ~0U;
          else
            assert(ValMap[RI->first] == ~0U);
        }
      }
    }
  return;
}
Example #14
0
bool GenericToNVVM::runOnModule(Module &M) {
  // Create a clone of each global variable that has the default address space.
  // The clone is created with the global address space  specifier, and the pair
  // of original global variable and its clone is placed in the GVMap for later
  // use.

  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
       I != E;) {
    GlobalVariable *GV = &*I++;
    if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
        !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
        !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
      GlobalVariable *NewGV = new GlobalVariable(
          M, GV->getValueType(), GV->isConstant(),
          GV->getLinkage(),
          GV->hasInitializer() ? GV->getInitializer() : nullptr,
          "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
      NewGV->copyAttributesFrom(GV);
      GVMap[GV] = NewGV;
    }
  }

  // Return immediately, if every global variable has a specific address space
  // specifier.
  if (GVMap.empty()) {
    return false;
  }

  // Walk through the instructions in function defitinions, and replace any use
  // of original global variables in GVMap with a use of the corresponding
  // copies in GVMap.  If necessary, promote constants to instructions.
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    if (I->isDeclaration()) {
      continue;
    }
    IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
    for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
         ++BBI) {
      for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
           ++II) {
        for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
          Value *Operand = II->getOperand(i);
          if (isa<Constant>(Operand)) {
            II->setOperand(
                i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
          }
        }
      }
    }
    ConstantToValueMap.clear();
  }

  // Copy GVMap over to a standard value map.
  ValueToValueMapTy VM;
  for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
    VM[I->first] = I->second;

  // Walk through the metadata section and update the debug information
  // associated with the global variables in the default address space.
  for (NamedMDNode &I : M.named_metadata()) {
    remapNamedMDNode(VM, &I);
  }

  // Walk through the global variable  initializers, and replace any use of
  // original global variables in GVMap with a use of the corresponding copies
  // in GVMap.  The copies need to be bitcast to the original global variable
  // types, as we cannot use cvta in global variable initializers.
  for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
    GlobalVariable *GV = I->first;
    GlobalVariable *NewGV = I->second;

    // Remove GV from the map so that it can be RAUWed.  Note that
    // DenseMap::erase() won't invalidate any iterators but this one.
    auto Next = std::next(I);
    GVMap.erase(I);
    I = Next;

    Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
    // At this point, the remaining uses of GV should be found only in global
    // variable initializers, as other uses have been already been removed
    // while walking through the instructions in function definitions.
    GV->replaceAllUsesWith(BitCastNewGV);
    std::string Name = GV->getName();
    GV->eraseFromParent();
    NewGV->setName(Name);
  }
  assert(GVMap.empty() && "Expected it to be empty by now");

  return true;
}
Example #15
0
DyckVertex* AAAnalyzer::wrapValue(Value * v) {
    // if the vertex of v exists, return it, otherwise create one
    pair < DyckVertex*, bool> retpair = dgraph->retrieveDyckVertex(v);
    if (retpair.second) {
        return retpair.first;
    }
    DyckVertex* vdv = retpair.first;
    // constantTy are handled as below.
    if (isa<ConstantExpr>(v)) {
        // constant expr should be handled like a assignment instruction
        if (isa<GEPOperator>(v)) {
            DyckVertex * got = handle_gep((GEPOperator*) v);
            makeAlias(vdv, got);
        } else if (((ConstantExpr*) v)->isCast()) {
            // errs() << *v << "\n";
            DyckVertex * got = wrapValue(((ConstantExpr*) v)->getOperand(0));
            makeAlias(vdv, got);
        } else {
            unsigned opcode = ((ConstantExpr*) v)->getOpcode();
            switch (opcode) {
                case 23: // BinaryConstantExpr "and"
                case 24: // BinaryConstantExpr "or"
                {
                    // do nothing
                }
                    break;
                default:
                {
                    errs() << "ERROR when handle the following constant expression\n";
                    errs() << *v << "\n";
                    errs() << ((ConstantExpr*) v)->getOpcode() << "\n";
                    errs() << ((ConstantExpr*) v)->getOpcodeName() << "\n";
                    errs().flush();
                    exit(-1);
                }
                    break;
            }
        }
    } else if (isa<ConstantArray>(v)) {
#ifndef ARRAY_SIMPLIFIED
        DyckVertex* ptr = addPtrTo(NULL, vdv, dgraph);
        DyckVertex* current = ptr;

        Constant * vAgg = (Constant*) v;
        int numElmt = vAgg->getNumOperands();
        for (int i = 0; i < numElmt; i++) {
            Value * vi = vAgg->getOperand(i);
            DyckVertex* viptr = addPtrOffset(current, i * dl.getTypeAllocSize(vi->getType()), dgraph);
            addPtrTo(viptr, wrapValue(vi, dgraph, dl), dgraph);
        }
#else
        Constant * vAgg = (Constant*) v;
        int numElmt = vAgg->getNumOperands();
        for (int i = 0; i < numElmt; i++) {
            Value * vi = vAgg->getOperand(i);
            makeAlias(vdv, wrapValue(vi));
        }
#endif
    } else if (isa<ConstantStruct>(v)) {
        //DyckVertex* ptr = addPtrTo(NULL, vdv);
        //DyckVertex* current = ptr;

        Constant * vAgg = (Constant*) v;
        int numElmt = vAgg->getNumOperands();
        for (int i = 0; i < numElmt; i++) {
            Value * vi = vAgg->getOperand(i);
            addField(vdv, -2 - i, wrapValue(vi));
        }
    } else if (isa<GlobalValue>(v)) {
        if (isa<GlobalVariable>(v)) {
            GlobalVariable * global = (GlobalVariable *) v;
            if (global->hasInitializer()) {
                Value * initializer = global->getInitializer();
                if (!isa<UndefValue>(initializer)) {
                    DyckVertex * initVer = wrapValue(initializer);
                    addPtrTo(vdv, initVer);
                }
            }
        } else if (isa<GlobalAlias>(v)) {
            GlobalAlias * global = (GlobalAlias *) v;
            Value * aliasee = global->getAliasee();
            makeAlias(vdv, wrapValue(aliasee));
        } else if (isa<Function>(v)) {
            // do nothing
        } // no else
    } else if (isa<ConstantInt>(v) || isa<ConstantFP>(v) || isa<ConstantPointerNull>(v) || isa<UndefValue>(v)) {
        // do nothing
    } else if (isa<ConstantDataArray>(v) || isa<ConstantAggregateZero>(v)) {
        // do nothing
    } else if (isa<BlockAddress>(v)) {
        // do nothing
    } else if (isa<ConstantDataVector>(v)) {
        errs() << "ERROR when handle the following ConstantDataSequential, ConstantDataVector\n";
        errs() << *v << "\n";
        errs().flush();
        exit(-1);
    } else if (isa<ConstantVector>(v)) {
        errs() << "ERROR when handle the following ConstantVector\n";
        errs() << *v << "\n";
        errs().flush();
        exit(-1);
    } else if (isa<Constant>(v)) {
        errs() << "ERROR when handle the following constant value\n";
        errs() << *v << "\n";
        errs().flush();
        exit(-1);
    }

    return vdv;
}
/// analyzeDestructor - Given the heap.metadata argument to swift_allocObject,
/// take a look a the destructor and try to decide if it has side effects or any
/// other bad effects that can prevent it from being optimized.
static DtorKind analyzeDestructor(Value *P) {
  // If we have a null pointer for the metadata info, the dtor has no side
  // effects.  Actually, the final release would crash.  This is really only
  // useful for writing testcases.
  if (isa<ConstantPointerNull>(P->stripPointerCasts()))
    return DtorKind::NoSideEffects;

  // We have to have a known heap metadata value, reject dynamically computed
  // ones, or places
  GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts());
  if (GV == 0 || GV->mayBeOverridden()) return DtorKind::Unknown;

  ConstantStruct *CS = dyn_cast_or_null<ConstantStruct>(GV->getInitializer());
  if (CS == 0 || CS->getNumOperands() == 0) return DtorKind::Unknown;

  // FIXME: Would like to abstract the dtor slot (#0) out from this to somewhere
  // unified.
  enum { DTorSlotOfHeapMetadata = 0 };
  Function *DtorFn =dyn_cast<Function>(CS->getOperand(DTorSlotOfHeapMetadata));
  if (DtorFn == 0 || DtorFn->mayBeOverridden() || DtorFn->hasExternalLinkage())
    return DtorKind::Unknown;

  // Okay, we have a body, and we can trust it.  If the function is marked
  // readonly, then we know it can't have any interesting side effects, so we
  // don't need to analyze it at all.
  if (DtorFn->onlyReadsMemory())
    return DtorKind::NoSideEffects;

  // The first argument is the object being destroyed.
  assert(DtorFn->arg_size() == 1 && !DtorFn->isVarArg() &&
         "expected a single object argument to destructors");
  Value *ThisObject = &*DtorFn->arg_begin();

  // Scan the body of the function, looking for anything scary.
  for (BasicBlock &BB : *DtorFn) {
    for (Instruction &I : BB) {
      // Note that the destructor may not be in any particular canonical form.
      switch (classifyInstruction(I)) {
      // These instructions should not reach here based on the pass ordering.
      // i.e. LLVMARCOpt -> LLVMContractOpt.
      case RT_RetainN:
      case RT_UnknownRetainN:
      case RT_BridgeRetainN:
      case RT_ReleaseN:
      case RT_UnknownReleaseN:
      case RT_BridgeReleaseN:
        llvm_unreachable("These are only created by LLVMARCContract !");
      case RT_NoMemoryAccessed:
      case RT_AllocObject:
      case RT_FixLifetime:
      case RT_CheckUnowned:
        // Skip over random instructions that don't touch memory in the caller.
        continue;

      case RT_RetainUnowned:
      case RT_BridgeRetain:          // x = swift_bridgeRetain(y)
      case RT_Retain: {      // swift_retain(obj)

        // Ignore retains of the "self" object, no resurrection is possible.
        Value *ThisRetainedObject = cast<CallInst>(I).getArgOperand(0);
        if (ThisRetainedObject->stripPointerCasts() ==
            ThisObject->stripPointerCasts())
          continue;
        // Otherwise, we may be retaining something scary.
        break;
      }

      case RT_Release: {
        // If we get to a release that is provably to this object, then we can
        // ignore it.
        Value *ThisReleasedObject = cast<CallInst>(I).getArgOperand(0);

        if (ThisReleasedObject->stripPointerCasts() ==
            ThisObject->stripPointerCasts())
          continue;
        // Otherwise, we may be retaining something scary.
        break;
      }

      case RT_ObjCRelease:
      case RT_ObjCRetain:
      case RT_UnknownRetain:
      case RT_UnknownRelease:
      case RT_BridgeRelease:
        // Objective-C retain and release can have arbitrary side effects.
        break;

      case RT_Unknown:
        // Ignore all instructions with no side effects.
        if (!I.mayHaveSideEffects()) continue;

        // store, memcpy, memmove *to* the object can be dropped.
        if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
          if (SI->getPointerOperand()->stripInBoundsOffsets() == ThisObject)
            continue;
        }

        if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&I)) {
          if (MI->getDest()->stripInBoundsOffsets() == ThisObject)
            continue;
        }

        // Otherwise, we can't remove the deallocation completely.
        break;
      }

      // Okay, the function has some side effects, if it doesn't capture the
      // object argument, at least that is something.
      return DtorFn->doesNotCapture(0) ? DtorKind::NoEscape : DtorKind::Unknown;
    }
  }

  // If we didn't find any side effects, we win.
  return DtorKind::NoSideEffects;
}
Example #17
0
void ClassHierarchyUtils::processTypeInfo(GlobalVariable* TI, Module& M) {
  if (find(classes.begin(), classes.end(), TI) == classes.end()) {
    SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "Adding class " << TI->getName() << "\n");
    classes.push_back(TI);

    // First process the correspoding virtual table. We store the indexes of the primary
    // and secondary vtables, indexed by the corresponding subobject offset. This will allow
    // us to quickly jump to a particular sub-vtable.
    if (typeInfoToVTable.find(TI) != typeInfoToVTable.end()) {
      GlobalVariable* VT = typeInfoToVTable[TI]; 
      SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "Found vtable: " << VT->getName() << "\n");
      ConstantStruct* VTinit = cast<ConstantStruct>(VT->getInitializer());
      for (int i=0; i<VTinit->getNumOperands(); i++) {
        ConstantArray* VTinitElem = cast<ConstantArray>(VTinit->getOperand(i));
        for (int j=0; j<VTinitElem->getNumOperands(); j++) {
          // Each sub-vtable is preceded by a reference to the class's type_info instance.
          // (See https://mentorembedded.github.io/cxx-abi/abi.html).
          if (TI == VTinitElem->getOperand(j)->stripPointerCasts()) {
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "Found TI at index " << i << "\n");
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "Storing mapping " << VT->getName() << " <-> " << TI->getName() << "\n");
            
            // the offset to top is the offset from the vptr pointing to this
            // sub-vtable, back to the top of the object. This will be negative,
            // but the absolute value gives us the offset from the start of the
            // object (i.e. first vptr), to the subobject.
            int offsetToTop = 0;
            if (ConstantExpr* offsetValCast = dyn_cast<ConstantExpr>(VTinitElem->getOperand(j-1)->stripPointerCasts())) {
              ConstantInt* offsetVal = cast<ConstantInt>(offsetValCast->getOperand(0));
              offsetToTop = offsetVal->getSExtValue(); // will be 0 for the primary
            }
            if (offsetToTop > 0) {
              report_fatal_error("ERROR: offsetToTop is positive!");
            }
            else {
              offsetToTop *= -1;
            }
            
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "offsetToTop: " << offsetToTop << "\n")
            vTableToSecondaryVTableMaps[VT][offsetToTop] = pair<int, int>(i, j+1);
          }
        }
      }
    }
    else {
      SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "No vtable found for " << TI->getName() << "\n");
    }

    // Now process the type_info struct, extract direct base class info (what
    // their subobject offsets are, or if they are virtual then their
    // virtual-base-offset-offset)
    if (TI->hasInitializer()) {
      ConstantStruct* TIinit = cast<ConstantStruct>(TI->getInitializer());

      int TInumOperands = TIinit->getNumOperands();
      if (TInumOperands > 2) { // first two operands are vptr and type name
        // we have >= 1 base class(es).
        if (TInumOperands == 3) {
          // abi::__si_class_type_info: single, public, non-virtual base at
          // offset 0
          SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "abi::__si_class_type_info\n");
          GlobalVariable* baseTI = cast<GlobalVariable>(TIinit->getOperand(2)->stripPointerCasts());
          classToSubclasses[baseTI].push_back(TI);
          //dbgs() << "  " << *baseTI << "\n";
          classToBaseOffset[TI][baseTI] = 0;
          processTypeInfo(baseTI, M);
        }
        else {
          // abi::__vmi_class_type_info: all other cases
          SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "abi::__vmi_class_type_info\n");
          // (skip over first two additional fields, which are "flags" and "base_count")
          for (int i=4; i<TInumOperands; i+=2) {
            GlobalVariable* baseTI = cast<GlobalVariable>(TIinit->getOperand(i)->stripPointerCasts());
            classToSubclasses[baseTI].push_back(TI);
            long offset_flags = cast<ConstantInt>(TIinit->getOperand(i+1))->getSExtValue();
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << TI->getName() << " -> " << baseTI->getName() << "\n");
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "  offset_flags = " << offset_flags << "\n");
            ptrdiff_t offset = offset_flags >> offset_shift;
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "  offset = " << offset << "\n");
            // If this a virtual base class, then we obtain the
            // vbase-offset-offset.  This is the offset from the start of the
            // derived class's (primary) vtable to the location containing the
            // vbase-offset, which is the offset from the start of the object
            // to the virtual base's subobject. Note that virtual base
            // subobjects only exist once and are laid out after all other
            // non-virtual objects. We keep track of the vbase-offset-offset,
            // so that we can find the vbase offset when going down the class
            // hierarchy. (The vbase offset may differ every time but the
            // vbase-offset-offset will remain the same relative to the current
            // class's vtable in subclasses).
            if (offset_flags & virtual_mask) { // is this a virtual base class?
              SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "virtual base class: " << baseTI->getName() << "\n");
              int vbaseOffsetOffset = offset/sizeof(long); // this should be negative
              SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "vbase-offset-offset: " << vbaseOffsetOffset << "\n");
              classToVBaseOffsetOffset[TI][baseTI] = vbaseOffsetOffset;
              if (typeInfoToVTable.find(TI) != typeInfoToVTable.end()) {
                GlobalVariable* VT = typeInfoToVTable[TI];
                int vbaseOffsetIdx = vTableToSecondaryVTableMaps[VT][0].second+vbaseOffsetOffset;
                SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "vbase-offset-idx: " << vbaseOffsetIdx << "\n");
              }
              else {
                SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "No VTable for " << TI->getName() << "\n");
              }
            }
            else {
              // In the non-virtual base class case, we just record the subobj
              // offset. This is the offset from the start of the derived
              // object to the base class's subobject. We use this information
              // together with the offset-to-top info we obtained from the
              // vtable to find the base class's subvtable. Note that the
              // relative position of the base class subobj within the current
              // derived object will always remain the same, even in
              // subclasses.
              classToBaseOffset[TI][baseTI] = offset;
            }
            //dbgs() << "  " << *baseTI << "\n";
            processTypeInfo(baseTI, M);
          }
        }
      }
    }
Example #18
0
/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void IRLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
  // Figure out what the initializer looks like in the dest module.
  Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap,
                              RF_MoveDistinctMDs, &TypeMap, &GValMaterializer));
}
bool AllocateDataSegment::runOnModule(Module &M) {
  DataLayout DL(&M);
  Type *I8 = Type::getInt8Ty(M.getContext());
  Type *I32 = Type::getInt32Ty(M.getContext());
  Type *IntPtrType = DL.getIntPtrType(M.getContext());

  // First, we do a pass over the global variables, in which we compute
  // the amount of required padding between them and consequently their
  // addresses relative to the memory base of the sandbox. References to each
  // global are then replaced with direct memory pointers.
  uint32_t VarOffset = 0;
  DenseMap<GlobalVariable*, uint32_t> VarPadding;
  for (Module::global_iterator GV = M.global_begin(), E = M.global_end();
       GV != E; ++GV) {
    assert(GV->hasInitializer());

    uint32_t Padding = getPadding(VarOffset, GV, DL);
    VarPadding[GV] = Padding;
    VarOffset += Padding;

    GV->replaceAllUsesWith(
        ConstantExpr::getIntToPtr(
            ConstantInt::get(IntPtrType,
                             DataSegmentBaseAddress + VarOffset),
            GV->getType()));

    VarOffset += DL.getTypeStoreSize(GV->getType()->getPointerElementType());
  }

  // Using the offsets computed above, we prepare the layout and the contents
  // of the desired data structure. After the type and initializer of each
  // global is copied, the global is not needed any more and it is erased.
  SmallVector<Type*, 10> TemplateLayout;
  SmallVector<Constant*, 10> TemplateData;
  for (Module::global_iterator It = M.global_begin(), E = M.global_end();
       It != E; ) {
    GlobalVariable *GV = It++;

    uint32_t Padding = VarPadding[GV];
    if (Padding > 0) {
      Type *PaddingType = ArrayType::get(I8, Padding);
      TemplateLayout.push_back(PaddingType);
      TemplateData.push_back(ConstantAggregateZero::get(PaddingType));
    }

    TemplateLayout.push_back(GV->getType()->getPointerElementType());
    TemplateData.push_back(GV->getInitializer());

    GV->eraseFromParent();
  }

  // Finally, we create the struct and size global variables.
  StructType *TemplateType =
      StructType::create(M.getContext(), ExternalSymName_DataSegment);
  TemplateType->setBody(TemplateLayout, /*isPacked=*/true);

  Constant *Template = ConstantStruct::get(TemplateType, TemplateData);
  new GlobalVariable(M, Template->getType(), /*isConstant=*/true,
                     GlobalVariable::ExternalLinkage, Template,
                     ExternalSymName_DataSegment);

  Constant *TemplateSize =
      ConstantInt::get(I32, DL.getTypeAllocSize(TemplateType));
  new GlobalVariable(M, TemplateSize->getType(), /*isConstant=*/true,
                     GlobalVariable::ExternalLinkage, TemplateSize,
                     ExternalSymName_DataSegmentSize);

  return true;
}
Example #20
0
bool ConstantMerge::runOnModule(Module &M) {
  TD = getAnalysisIfAvailable<TargetData>();

  // Find all the globals that are marked "used".  These cannot be merged.
  SmallPtrSet<const GlobalValue*, 8> UsedGlobals;
  FindUsedValues(M.getGlobalVariable("llvm.used"), UsedGlobals);
  FindUsedValues(M.getGlobalVariable("llvm.compiler.used"), UsedGlobals);
  
  // Map unique <constants, has-unknown-alignment> pairs to globals.  We don't
  // want to merge globals of unknown alignment with those of explicit
  // alignment.  If we have TargetData, we always know the alignment.
  DenseMap<PointerIntPair<Constant*, 1, bool>, GlobalVariable*> CMap;

  // Replacements - This vector contains a list of replacements to perform.
  SmallVector<std::pair<GlobalVariable*, GlobalVariable*>, 32> Replacements;

  bool MadeChange = false;

  // Iterate constant merging while we are still making progress.  Merging two
  // constants together may allow us to merge other constants together if the
  // second level constants have initializers which point to the globals that
  // were just merged.
  while (1) {

    // First: Find the canonical constants others will be merged with.
    for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
         GVI != E; ) {
      GlobalVariable *GV = GVI++;

      // If this GV is dead, remove it.
      GV->removeDeadConstantUsers();
      if (GV->use_empty() && GV->hasLocalLinkage()) {
        GV->eraseFromParent();
        continue;
      }

      // Only process constants with initializers in the default address space.
      if (!GV->isConstant() || !GV->hasDefinitiveInitializer() ||
          GV->getType()->getAddressSpace() != 0 || GV->hasSection() ||
          // Don't touch values marked with attribute(used).
          UsedGlobals.count(GV))
        continue;

      // This transformation is legal for weak ODR globals in the sense it
      // doesn't change semantics, but we really don't want to perform it
      // anyway; it's likely to pessimize code generation, and some tools
      // (like the Darwin linker in cases involving CFString) don't expect it.
      if (GV->isWeakForLinker())
        continue;

      Constant *Init = GV->getInitializer();

      // Check to see if the initializer is already known.
      PointerIntPair<Constant*, 1, bool> Pair(Init, hasKnownAlignment(GV));
      GlobalVariable *&Slot = CMap[Pair];

      // If this is the first constant we find or if the old one is local,
      // replace with the current one. If the current is externally visible
      // it cannot be replace, but can be the canonical constant we merge with.
      if (Slot == 0 || IsBetterCannonical(*GV, *Slot))
        Slot = GV;
    }

    // Second: identify all globals that can be merged together, filling in
    // the Replacements vector.  We cannot do the replacement in this pass
    // because doing so may cause initializers of other globals to be rewritten,
    // invalidating the Constant* pointers in CMap.
    for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
         GVI != E; ) {
      GlobalVariable *GV = GVI++;

      // Only process constants with initializers in the default address space.
      if (!GV->isConstant() || !GV->hasDefinitiveInitializer() ||
          GV->getType()->getAddressSpace() != 0 || GV->hasSection() ||
          // Don't touch values marked with attribute(used).
          UsedGlobals.count(GV))
        continue;

      // We can only replace constant with local linkage.
      if (!GV->hasLocalLinkage())
        continue;

      Constant *Init = GV->getInitializer();

      // Check to see if the initializer is already known.
      PointerIntPair<Constant*, 1, bool> Pair(Init, hasKnownAlignment(GV));
      GlobalVariable *Slot = CMap[Pair];

      if (!Slot || Slot == GV)
        continue;

      if (!Slot->hasUnnamedAddr() && !GV->hasUnnamedAddr())
        continue;

      if (!GV->hasUnnamedAddr())
        Slot->setUnnamedAddr(false);

      // Make all uses of the duplicate constant use the canonical version.
      Replacements.push_back(std::make_pair(GV, Slot));
    }

    if (Replacements.empty())
      return MadeChange;
    CMap.clear();

    // Now that we have figured out which replacements must be made, do them all
    // now.  This avoid invalidating the pointers in CMap, which are unneeded
    // now.
    for (unsigned i = 0, e = Replacements.size(); i != e; ++i) {
      // Bump the alignment if necessary.
      if (Replacements[i].first->getAlignment() ||
          Replacements[i].second->getAlignment()) {
        Replacements[i].second->setAlignment(std::max(
            Replacements[i].first->getAlignment(),
            Replacements[i].second->getAlignment()));
      }

      // Eliminate any uses of the dead global.
      Replacements[i].first->replaceAllUsesWith(Replacements[i].second);

      // Delete the global value from the module.
      assert(Replacements[i].first->hasLocalLinkage() &&
             "Refusing to delete an externally visible global variable.");
      Replacements[i].first->eraseFromParent();
    }

    NumMerged += Replacements.size();
    Replacements.clear();
  }
}
Example #21
0
// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
bool AddressSanitizer::insertGlobalRedzones(Module &M) {
  SmallVector<GlobalVariable *, 16> GlobalsToChange;

  for (Module::GlobalListType::iterator G = M.getGlobalList().begin(),
       E = M.getGlobalList().end(); G != E; ++G) {
    Type *Ty = cast<PointerType>(G->getType())->getElementType();
    DEBUG(dbgs() << "GLOBAL: " << *G);

    if (!Ty->isSized()) continue;
    if (!G->hasInitializer()) continue;
    // Touch only those globals that will not be defined in other modules.
    // Don't handle ODR type linkages since other modules may be built w/o asan.
    if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
        G->getLinkage() != GlobalVariable::PrivateLinkage &&
        G->getLinkage() != GlobalVariable::InternalLinkage)
      continue;
    // Two problems with thread-locals:
    //   - The address of the main thread's copy can't be computed at link-time.
    //   - Need to poison all copies, not just the main thread's one.
    if (G->isThreadLocal())
      continue;
    // For now, just ignore this Alloca if the alignment is large.
    if (G->getAlignment() > RedzoneSize) continue;

    // Ignore all the globals with the names starting with "\01L_OBJC_".
    // Many of those are put into the .cstring section. The linker compresses
    // that section by removing the spare \0s after the string terminator, so
    // our redzones get broken.
    if ((G->getName().find("\01L_OBJC_") == 0) ||
        (G->getName().find("\01l_OBJC_") == 0)) {
      DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
      continue;
    }

    if (G->hasSection()) {
      StringRef Section(G->getSection());
      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
      // them.
      if ((Section.find("__OBJC,") == 0) ||
          (Section.find("__DATA, __objc_") == 0)) {
        DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
        continue;
      }
      // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
      // Constant CFString instances are compiled in the following way:
      //  -- the string buffer is emitted into
      //     __TEXT,__cstring,cstring_literals
      //  -- the constant NSConstantString structure referencing that buffer
      //     is placed into __DATA,__cfstring
      // Therefore there's no point in placing redzones into __DATA,__cfstring.
      // Moreover, it causes the linker to crash on OS X 10.7
      if (Section.find("__DATA,__cfstring") == 0) {
        DEBUG(dbgs() << "Ignoring CFString: " << *G);
        continue;
      }
    }

    GlobalsToChange.push_back(G);
  }

  size_t n = GlobalsToChange.size();
  if (n == 0) return false;

  // A global is described by a structure
  //   size_t beg;
  //   size_t size;
  //   size_t size_with_redzone;
  //   const char *name;
  // We initialize an array of such structures and pass it to a run-time call.
  StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
                                               IntptrTy, IntptrTy, NULL);
  SmallVector<Constant *, 16> Initializers(n);

  IRBuilder<> IRB(CtorInsertBefore);

  for (size_t i = 0; i < n; i++) {
    GlobalVariable *G = GlobalsToChange[i];
    PointerType *PtrTy = cast<PointerType>(G->getType());
    Type *Ty = PtrTy->getElementType();
    uint64_t SizeInBytes = TD->getTypeStoreSizeInBits(Ty) / 8;
    uint64_t RightRedzoneSize = RedzoneSize +
        (RedzoneSize - (SizeInBytes % RedzoneSize));
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);

    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
    Constant *NewInitializer = ConstantStruct::get(
        NewTy, G->getInitializer(),
        Constant::getNullValue(RightRedZoneTy), NULL);

    SmallString<2048> DescriptionOfGlobal = G->getName();
    DescriptionOfGlobal += " (";
    DescriptionOfGlobal += M.getModuleIdentifier();
    DescriptionOfGlobal += ")";
    GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal);

    // Create a new global variable with enough space for a redzone.
    GlobalVariable *NewGlobal = new GlobalVariable(
        M, NewTy, G->isConstant(), G->getLinkage(),
        NewInitializer, "", G, G->isThreadLocal());
    NewGlobal->copyAttributesFrom(G);
    NewGlobal->setAlignment(RedzoneSize);

    Value *Indices2[2];
    Indices2[0] = IRB.getInt32(0);
    Indices2[1] = IRB.getInt32(0);

    G->replaceAllUsesWith(
        ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
    NewGlobal->takeName(G);
    G->eraseFromParent();

    Initializers[i] = ConstantStruct::get(
        GlobalStructTy,
        ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
        ConstantInt::get(IntptrTy, SizeInBytes),
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
        ConstantExpr::getPointerCast(Name, IntptrTy),
        NULL);
    DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal);
  }

  ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
  GlobalVariable *AllGlobals = new GlobalVariable(
      M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
      ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");

  Function *AsanRegisterGlobals = cast<Function>(M.getOrInsertFunction(
      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);

  IRB.CreateCall2(AsanRegisterGlobals,
                  IRB.CreatePointerCast(AllGlobals, IntptrTy),
                  ConstantInt::get(IntptrTy, n));

  // We also need to unregister globals at the end, e.g. when a shared library
  // gets closed.
  Function *AsanDtorFunction = Function::Create(
      FunctionType::get(Type::getVoidTy(*C), false),
      GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
  IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
  Function *AsanUnregisterGlobals = cast<Function>(M.getOrInsertFunction(
      kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);

  IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
                       IRB.CreatePointerCast(AllGlobals, IntptrTy),
                       ConstantInt::get(IntptrTy, n));
  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);

  DEBUG(dbgs() << M);
  return true;
}
Example #22
0
void llvm::copyGVInitializer(GlobalVariable &New, const GlobalVariable &Orig,
                             ValueToValueMapTy &VMap) {
  if (Orig.hasInitializer())
    New.setInitializer(MapValue(Orig.getInitializer(), VMap));
}
Example #23
0
bool SpDefUseInstrumenter::runOnModule(Module &M) {

  cerr << "instrument: --- Def-Use pair Spectrum ---\n";

  Function *Main = M.getFunction("main");
  LLVMContext &C = M.getContext();
  
  if (Main == 0) {
    cerr << "WARNING: cannot insert def-use instrumentation into a module"
         << " with no main function!\n";
    return false;  // No main, no instrumentation!
  }

  // Add library function prototype
  Constant *SpFn = M.getOrInsertFunction("_updateSpectrum", 
                          Type::getVoidTy(C), 
                          Type::getInt32Ty(C),  // spectrum index
                          Type::getInt32Ty(C),  // component index
                          NULL);


  unsigned spectrumIndex = IndexManager::getSpectrumIndex();
  unsigned nDefs = 0;
  unsigned nUses = 0;

  // Loop through all functions within module
  for (Module::iterator F = M.begin(), ME = M.end(); F != ME; ++F) {

    // skip function declarations
    if(F->isDeclaration()) 
      continue;

    // skip the _registerAll function
    if(F->getName()=="_registerAll")
      continue;
    
    // Loop through all basic blocks within function
    for (Function::iterator B = F->begin(), FE = F->end(); B != FE; ++B) {
      //skip dead blocks
      //is this really safe??
      BasicBlock *bb = B;
      if (B!=F->begin() && (pred_begin(bb)==pred_end(bb))) continue; //skip dead blocks

      // Loop through all instructions within basic block
      for (BasicBlock::iterator I = B->begin(), BE = B->end(); I != BE; I++) {
    
        if(isa<DbgDeclareInst>(*I)) {

          // extract source file information from debug intrinsic
          DbgDeclareInst &DDI = cast<DbgDeclareInst>(*I);
          std::string file, dir;
          std::string name;
          GlobalVariable *gv = cast<GlobalVariable>(DDI.getVariable());
          if(!gv->hasInitializer()) continue;
          ConstantStruct *cs = cast<ConstantStruct>(gv->getInitializer());
          llvm::GetConstantStringInfo(cs->getOperand(2), name);
          unsigned int line = unsigned(cast<ConstantInt>(cs->getOperand(4))->getZExtValue());
          Value *V = cast<Value>(cs->getOperand(3));
          GlobalVariable *gv2 = cast<GlobalVariable>(cast<ConstantExpr>(V)->getOperand(0));
          if(!gv2->hasInitializer()) continue;
          ConstantStruct *cs2 = cast<ConstantStruct>(gv2->getInitializer());
          llvm::GetConstantStringInfo(cs2->getOperand(3), file);
          llvm::GetConstantStringInfo(cs2->getOperand(4), dir);

          // get the allocation instruction of the variable definition
          AllocaInst *AI;
          if(isa<AllocaInst>(DDI.getAddress())) {
            AI = cast<AllocaInst>(DDI.getAddress());
          } else if (isa<BitCastInst>(DDI.getAddress())) {
            AI = cast<AllocaInst>(cast<BitCastInst>(DDI.getAddress())->getOperand(0));
          } else {
            continue;
          }

          nDefs++;

          // add calls to lib function for each use of the variable
          int currUses = 0;
          for(AllocaInst::use_iterator U = AI->use_begin(), UE = AI->use_end(); U != UE; ++U) {
            if(isa<Instruction>(*U)) {

              User *user = *U;
              Instruction *insertInst = (Instruction*)user;

              // find most likely context location of use
              int useline = line;
              std::string usefile = file, usedir = dir;
              BasicBlock *parent = insertInst->getParent();
              BasicBlock::iterator inst = parent->begin();
              while(((Instruction *)inst) != insertInst  &&  inst != parent->end()) {
            	  /*TODO: solve DbgStopPointInst problem*/
            	/*if(isa<DbgStopPointInst>(*inst)) {
                  DbgStopPointInst &DSPI = cast<DbgStopPointInst>(*inst);
                  llvm::GetConstantStringInfo(DSPI.getDirectory(), usedir);
                  llvm::GetConstantStringInfo(DSPI.getFileName(), usefile);
                  useline = DSPI.getLine();
                }*/
                inst++;
              }

              std::stringstream usename;
              usename << name << "(use_" << currUses << ")";
              // add source context of this invariant to context file
              ContextManager::addSpectrumContext(
                spectrumIndex,  // spectrumIndex
                nUses,          // componentIndex
                usedir,         // path
                usefile,        // file
                useline,        // line
                usename.str()); // name
              currUses++;

              std::vector<Value*> Args(2);
              Args[0] = ConstantInt::get(Type::getInt32Ty(C), spectrumIndex);
              Args[1] = ConstantInt::get(Type::getInt32Ty(C), nUses++);

              CallInst::Create(SpFn, Args.begin(), Args.end(), "", insertInst);
            }
          }
        }
      }
    }
  }

  // add the registration of the instrumented spectrum points in the _registerAll() function
  addSpectrumRegistration(M, spectrumIndex, nUses, "Def-Use_Pairs");
  
  std::cerr << "instrument: " << nDefs << " defines with a total number of " << nUses << " uses instrumented\n";

  // notify change of program 
  return true;
}
void InitializeSoftBound:: constructCheckHandlers(Module & module){

  Type* void_ty = Type::getVoidTy(module.getContext());

  Type* void_ptr_ty = PointerType::getUnqual(Type::getInt8Ty(module.getContext()));
  Type* size_ty = Type::getInt64Ty(module.getContext());

  module.getOrInsertFunction("__softboundcets_spatial_load_dereference_check",
                             void_ty, void_ptr_ty, void_ptr_ty, 
                             void_ptr_ty, size_ty, NULL);

  module.getOrInsertFunction("__softboundcets_spatial_store_dereference_check", 
                             void_ty, void_ptr_ty, void_ptr_ty, 
                             void_ptr_ty, size_ty, NULL);

  module.getOrInsertFunction("__softboundcets_temporal_load_dereference_check", 
                             void_ty, void_ptr_ty, size_ty, 
                             void_ptr_ty, void_ptr_ty, NULL);

  module.getOrInsertFunction("__softboundcets_temporal_store_dereference_check", 
                             void_ty, void_ptr_ty, size_ty, 
                             void_ptr_ty, void_ptr_ty, NULL);


  Function* global_init = (Function *) module.getOrInsertFunction("__softboundcets_global_init", 
                                                                  void_ty, NULL);

  global_init->setDoesNotThrow();
  global_init->setLinkage(GlobalValue::InternalLinkage);

  BasicBlock* BB = BasicBlock::Create(module.getContext(), 
                                      "entry", global_init);
  
  Function* softboundcets_init = (Function*) module.getOrInsertFunction("__softboundcets_init", void_ty, Type::getInt32Ty(module.getContext()), NULL);

  
  SmallVector<Value*, 8> args;
  Constant * const_one = ConstantInt::get(Type::getInt32Ty(module.getContext()), 1);
  
  args.push_back(const_one);
  Instruction* ret = ReturnInst::Create(module.getContext(), BB);
  
  CallInst::Create(softboundcets_init, args, "", ret);



  Type * Int32Type = IntegerType::getInt32Ty(module.getContext());
  std::vector<Constant *> CtorInits;
  CtorInits.push_back(ConstantInt::get(Int32Type, 0));
  CtorInits.push_back(global_init);
  StructType * ST = ConstantStruct::getTypeForElements(CtorInits, false);
  Constant * RuntimeCtorInit = ConstantStruct::get(ST, CtorInits);

  //
  // Get the current set of static global constructors and add the new ctor
  // to the list.
  //
  std::vector<Constant *> CurrentCtors;
  GlobalVariable * GVCtor = module.getNamedGlobal ("llvm.global_ctors");
  if (GVCtor) {
    if (Constant * C = GVCtor->getInitializer()) {
      for (unsigned index = 0; index < C->getNumOperands(); ++index) {
        CurrentCtors.push_back (dyn_cast<Constant>(C->getOperand (index)));
      }
    }
  }
  CurrentCtors.push_back(RuntimeCtorInit);

  //
  // Create a new initializer.
  //
  ArrayType * AT = ArrayType::get (RuntimeCtorInit-> getType(),
                                   CurrentCtors.size());
  Constant * NewInit = ConstantArray::get (AT, CurrentCtors);

  //
  // Create the new llvm.global_ctors global variable and remove the old one
  // if it existed.
  //
  Value * newGVCtor = new GlobalVariable (module,
                                          NewInit->getType(),
                                          false,
                                          GlobalValue::AppendingLinkage,
                                          NewInit,
                                          "llvm.global_ctors");
  if (GVCtor) {
    newGVCtor->takeName (GVCtor);
    GVCtor->eraseFromParent ();
  }



}
Example #25
0
/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
  Dst.copyMetadata(&Src, 0);

  // Figure out what the initializer looks like in the dest module.
  Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
}
Example #26
0
void ControlFlowIntegrity::ParseAnnotations(void) {
  GlobalVariable *global_ctors = _M.getNamedGlobal("llvm.global.annotations");

  // check for ctor section
  if (!global_ctors || !global_ctors->getOperand(0)) {
    return;
  }

  Constant *c = global_ctors->getInitializer();
  if (!c)
    report_fatal_error("llvm.global.annotations without initializer!", false);

  ConstantArray *CA = dyn_cast<ConstantArray>(c);
  if (!CA)
    report_fatal_error("Cast to ConstantArray failed", true);

  for (Value *Op : ValueOpRange(*CA)) {
    ConstantStruct *CS = dyn_cast<ConstantStruct>(Op);
    if (!CS)
      report_fatal_error("Cast to ConstantStruct failed", true);

    Constant *FP = CS->getOperand(0);
    if (FP->isNullValue())
      break; // found a NULL termintator, stop here

    ConstantExpr *CE;
    Function *F = dyn_cast_or_null<Function>(FP);

    if (F == NULL) {
      // Strip off constant expression cast
      CE = dyn_cast<ConstantExpr>(FP);
      if (!CE)
        report_fatal_error("Cast to ConstantExpr failed", true);
      if (CE->isCast()) {
        FP = CE->getOperand(0);
        F = dyn_cast_or_null<Function>(FP);
      }
    }

    if (!F)
      report_fatal_error("Cast to Function failed", true);

    Constant *SP = CS->getOperand(1);
    if (SP->isNullValue())
      break; // found a NULL termintator, stop here

    // Strip off constant expression cast
    CE = dyn_cast<ConstantExpr>(SP);
    if (!CE)
      report_fatal_error("Cast to ConstantExpr failed", true);
    if (CE->isCast()) {
      SP = CE->getOperand(0);
    }

    Value *V = SP->getOperand(0);
    GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(V);
    if (!GV)
      report_fatal_error("Cast to GlobalVariable failed", false);
    assert(GV && "cast to GlobalVariable failed");

    Constant *cval = GV->getInitializer();
    const StringRef s = (cast<ConstantDataArray>(cval))->getAsCString();
    if (s == ANNOTATION_IGNORE_BLOCK) {
      _IgnoredBlocksFunctions.insert(F->getName());
    }
  }

  if (global_ctors->getNumUses() > 0)
    report_fatal_error("llvm.global.annotations uses count is > 0", false);
}
// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
bool AddressSanitizer::insertGlobalRedzones(Module &M) {
  SmallVector<GlobalVariable *, 16> GlobalsToChange;

  for (Module::GlobalListType::iterator G = M.global_begin(),
       E = M.global_end(); G != E; ++G) {
    if (ShouldInstrumentGlobal(G))
      GlobalsToChange.push_back(G);
  }

  size_t n = GlobalsToChange.size();
  if (n == 0) return false;

  // A global is described by a structure
  //   size_t beg;
  //   size_t size;
  //   size_t size_with_redzone;
  //   const char *name;
  //   size_t has_dynamic_init;
  // We initialize an array of such structures and pass it to a run-time call.
  StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
                                               IntptrTy, IntptrTy,
                                               IntptrTy, NULL);
  SmallVector<Constant *, 16> Initializers(n), DynamicInit;

  IRBuilder<> IRB(CtorInsertBefore);

  if (ClInitializers)
    FindDynamicInitializers(M);

  // The addresses of the first and last dynamically initialized globals in
  // this TU.  Used in initialization order checking.
  Value *FirstDynamic = 0, *LastDynamic = 0;

  for (size_t i = 0; i < n; i++) {
    GlobalVariable *G = GlobalsToChange[i];
    PointerType *PtrTy = cast<PointerType>(G->getType());
    Type *Ty = PtrTy->getElementType();
    uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
    uint64_t RightRedzoneSize = RedzoneSize +
        (RedzoneSize - (SizeInBytes % RedzoneSize));
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
    // Determine whether this global should be poisoned in initialization.
    bool GlobalHasDynamicInitializer = HasDynamicInitializer(G);
    // Don't check initialization order if this global is blacklisted.
    GlobalHasDynamicInitializer &= !BL->isInInit(*G);

    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
    Constant *NewInitializer = ConstantStruct::get(
        NewTy, G->getInitializer(),
        Constant::getNullValue(RightRedZoneTy), NULL);

    SmallString<2048> DescriptionOfGlobal = G->getName();
    DescriptionOfGlobal += " (";
    DescriptionOfGlobal += M.getModuleIdentifier();
    DescriptionOfGlobal += ")";
    GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal);

    // Create a new global variable with enough space for a redzone.
    GlobalVariable *NewGlobal = new GlobalVariable(
        M, NewTy, G->isConstant(), G->getLinkage(),
        NewInitializer, "", G, G->getThreadLocalMode());
    NewGlobal->copyAttributesFrom(G);
    NewGlobal->setAlignment(RedzoneSize);

    Value *Indices2[2];
    Indices2[0] = IRB.getInt32(0);
    Indices2[1] = IRB.getInt32(0);

    G->replaceAllUsesWith(
        ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
    NewGlobal->takeName(G);
    G->eraseFromParent();

    Initializers[i] = ConstantStruct::get(
        GlobalStructTy,
        ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
        ConstantInt::get(IntptrTy, SizeInBytes),
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
        ConstantExpr::getPointerCast(Name, IntptrTy),
        ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
        NULL);

    // Populate the first and last globals declared in this TU.
    if (ClInitializers && GlobalHasDynamicInitializer) {
      LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy);
      if (FirstDynamic == 0)
        FirstDynamic = LastDynamic;
    }

    DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal);
  }

  ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
  GlobalVariable *AllGlobals = new GlobalVariable(
      M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
      ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");

  // Create calls for poisoning before initializers run and unpoisoning after.
  if (ClInitializers && FirstDynamic && LastDynamic)
    createInitializerPoisonCalls(M, FirstDynamic, LastDynamic);

  Function *AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
      kAsanRegisterGlobalsName, IRB.getVoidTy(),
      IntptrTy, IntptrTy, NULL));
  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);

  IRB.CreateCall2(AsanRegisterGlobals,
                  IRB.CreatePointerCast(AllGlobals, IntptrTy),
                  ConstantInt::get(IntptrTy, n));

  // We also need to unregister globals at the end, e.g. when a shared library
  // gets closed.
  Function *AsanDtorFunction = Function::Create(
      FunctionType::get(Type::getVoidTy(*C), false),
      GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
  IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
  Function *AsanUnregisterGlobals =
      checkInterfaceFunction(M.getOrInsertFunction(
          kAsanUnregisterGlobalsName,
          IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);

  IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
                       IRB.CreatePointerCast(AllGlobals, IntptrTy),
                       ConstantInt::get(IntptrTy, n));
  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);

  DEBUG(dbgs() << M);
  return true;
}
/// GetConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V.  If successful, it returns true
/// and returns the string in Str.  If unsuccessful, it returns false.
bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
                                 bool StopAtNul) {
  // If V is NULL then return false;
  if (V == NULL) return false;

  // Look through bitcast instructions.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
  
  // If the value is not a GEP instruction nor a constant expression with a
  // GEP instruction, then return false because ConstantArray can't occur
  // any other way
  User *GEP = 0;
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
    GEP = GEPI;
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() == Instruction::BitCast)
      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
    if (CE->getOpcode() != Instruction::GetElementPtr)
      return false;
    GEP = CE;
  }
  
  if (GEP) {
    // Make sure the GEP has exactly three arguments.
    if (GEP->getNumOperands() != 3)
      return false;
    
    // Make sure the index-ee is a pointer to array of i8.
    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
    if (AT == 0 || AT->getElementType() != Type::Int8Ty)
      return false;
    
    // Check to make sure that the first operand of the GEP is an integer and
    // has value 0 so that we are sure we're indexing into the initializer.
    ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
    if (FirstIdx == 0 || !FirstIdx->isZero())
      return false;
    
    // If the second index isn't a ConstantInt, then this is a variable index
    // into the array.  If this occurs, we can't say anything meaningful about
    // the string.
    uint64_t StartIdx = 0;
    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
      StartIdx = CI->getZExtValue();
    else
      return false;
    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
                                 StopAtNul);
  }
  
  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
  if (!GV || !GV->isConstant() || !GV->hasInitializer())
    return false;
  Constant *GlobalInit = GV->getInitializer();
  
  // Handle the ConstantAggregateZero case
  if (isa<ConstantAggregateZero>(GlobalInit)) {
    // This is a degenerate case. The initializer is constant zero so the
    // length of the string must be zero.
    Str.clear();
    return true;
  }
  
  // Must be a Constant Array
  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
  if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
    return false;
  
  // Get the number of elements in the array
  uint64_t NumElts = Array->getType()->getNumElements();
  
  if (Offset > NumElts)
    return false;
  
  // Traverse the constant array from 'Offset' which is the place the GEP refers
  // to in the array.
  Str.reserve(NumElts-Offset);
  for (unsigned i = Offset; i != NumElts; ++i) {
    Constant *Elt = Array->getOperand(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
    if (!CI) // This array isn't suitable, non-int initializer.
      return false;
    if (StopAtNul && CI->isZero())
      return true; // we found end of string, success!
    Str += (char)CI->getZExtValue();
  }
  
  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
  return true;
}
Example #29
0
void PrivilegedCallAnalysis::doAnalysis(Module& M, SandboxVector& sandboxes) {
  // first find all methods annotated as being privileged and then check calls within sandboxes
  if (GlobalVariable* lga = M.getNamedGlobal("llvm.global.annotations")) {
    ConstantArray* lgaArray = dyn_cast<ConstantArray>(lga->getInitializer()->stripPointerCasts());
    for (User::op_iterator i=lgaArray->op_begin(), e = lgaArray->op_end(); e!=i; i++) {
      ConstantStruct* lgaArrayElement = dyn_cast<ConstantStruct>(i->get());

      // get the annotation value first
      GlobalVariable* annotationStrVar = dyn_cast<GlobalVariable>(lgaArrayElement->getOperand(1)->stripPointerCasts());
      ConstantDataArray* annotationStrArray = dyn_cast<ConstantDataArray>(annotationStrVar->getInitializer());
      StringRef annotationStrArrayCString = annotationStrArray->getAsCString();

      GlobalValue* annotatedVal = dyn_cast<GlobalValue>(lgaArrayElement->getOperand(0)->stripPointerCasts());
      if (isa<Function>(annotatedVal)) {
        Function* annotatedFunc = dyn_cast<Function>(annotatedVal);
        if (annotationStrArrayCString == SOAAP_PRIVILEGED) {
          outs() << "   Found function: " << annotatedFunc->getName() << "\n";
          privAnnotFuncs.push_back(annotatedFunc);
        }
      }
    }
  }          

  // now check calls within sandboxes
  for (Function* privilegedFunc : privAnnotFuncs) {
    for (User* U : privilegedFunc->users()) {
      if (CallInst* C = dyn_cast<CallInst>(U)) {
        Function* enclosingFunc = C->getParent()->getParent();
        for (Sandbox* S : sandboxes) {
          if (!S->hasCallgate(privilegedFunc) && S->containsFunction(enclosingFunc)) {
            outs() << " *** Sandbox \"" << S->getName() << "\" calls privileged function \"" << privilegedFunc->getName() << "\" that they are not allowed to. If intended, annotate this permission using the __soaap_callgates annotation.\n";
            if (MDNode *N = C->getMetadata("dbg")) {  // Here I is an LLVM instruction
              DILocation Loc(N);                      // DILocation is in DebugInfo.h
              unsigned Line = Loc.getLineNumber();
              StringRef File = Loc.getFilename();
              outs() << " +++ Line " << Line << " of file " << File << "\n";
            }
          }
        }
      }
    }
  }

  /*
  for (Sandbox* S : sandboxes) {
    FunctionVector callgates = S->getCallgates();
    for (Function* F : S->getFunctions()) {
      for (BasicBlock& BB : F->getBasicBlockList()) {
        for (Instruction& I : BB.getInstList()) {
          if (CallInst* C = dyn_cast<CallInst>(&I)) {
            if (Function* Target = C->getCalledFunction()) {
              if (find(privAnnotFuncs.begin(), privAnnotFuncs.end(), Target) != privAnnotFuncs.end()) {
                // check if this sandbox is allowed to call the privileged function
                DEBUG(dbgs() << "   Found privileged call: "); 
                DEBUG(C->dump());
                if (find(callgates.begin(), callgates.end(), Target) == callgates.end()) {
                  outs() << " *** Sandbox \"" << S->getName() << "\" calls privileged function \"" << Target->getName() << "\" that they are not allowed to. If intended, annotate this permission using the __soaap_callgates annotation.\n";
                  if (MDNode *N = C->getMetadata("dbg")) {  // Here I is an LLVM instruction
                    DILocation Loc(N);                      // DILocation is in DebugInfo.h
                    unsigned Line = Loc.getLineNumber();
                    StringRef File = Loc.getFilename();
                    outs() << " +++ Line " << Line << " of file " << File << "\n";
                  }
                }
              }
            }
          }
        }
      }
    }
  }
  */
}