int main(int argc, char* argv[]) { string cmpFileName, movieFileName; int argi = 3; int numMetrics = 8; map<string,bool> metricOptions; int maxElements = 0; // // Default is all options are true // CreateMetricOptions(metricOptions); string metricList = ""; bool useCcs = false; bool byRead = false; bool failOnMissingData = false; CommandLineParser clp; bool printVersion = false; clp.RegisterStringOption("basFileName", &movieFileName, "The input {bas,pls}.h5 or input.fofn.", true); clp.RegisterStringOption("cmpFileName", &cmpFileName, "The cmp.h5 file to load pulse information into.", true); clp.RegisterPreviousFlagsAsHidden(); clp.RegisterStringOption("metrics", &metricList, "The a string delimited list of metrics (with no spaces).The " "valid options are: QualityValue, ClassifierQV, MergeQV, StartFrame," "PulseWidth, pkmid, IPD, and Light."); clp.RegisterFlagOption("useccs", &useCcs, "Load pulse information for CCS sequences and not raw bases."); clp.RegisterFlagOption("byread", &byRead, "Load pulse information by read rather than buffering an entire pls.h5 file. " "This option will soon be deprecated and on by default."); clp.RegisterIntOption("maxElements", &maxElements, "Set a limit on the size of pls/bas file to buffer in.", CommandLineParser::PositiveInteger); clp.RegisterFlagOption("failOnMissingData", &failOnMissingData, "Exit if any data fields are missing from the bas.h5 or pls.h5 input that are required to load a metric. Defualt is a warning."); clp.SetProgramSummary("Load pulse information such as inter pulse distance, or quality information into the cmp.h5 file." "This allows one to analyze kinetic and quality information by alignment column."); clp.ParseCommandLine(argc, argv); if (printVersion) { cout << VERSION << endl; exit(1); } if (metricList == "") { SetDefaultMetricOptions(metricOptions); } else { ParseMetricsList(metricList, metricOptions); } // // Always read in basecalls since they are used to check the sanity // of the alignment indices. // metricOptions["Basecall"] = true; // // Translate from the metrics to be loaded to the ones that are // required to compute them. // vector<string> datasetFields; RequirementMap fieldRequirements; BuildRequirementMap(fieldRequirements); StoreDatasetFieldsFromPulseFields(metricOptions, fieldRequirements, datasetFields); vector<string> movieFileNames; vector<string> fofnMovieNames; FileOfFileNames::StoreFileOrFileList(movieFileName, movieFileNames); HDFBasReader hdfBasReader; HDFPlsReader hdfPlsReader; HDFCCSReader<SMRTSequence> hdfCcsReader; vector<string> baseFileFields, pulseFileFields; int fieldIndex; bool useBaseFile = false, usePulseFile = false; for (fieldIndex = 0; fieldIndex < datasetFields.size(); fieldIndex++) { if (hdfBasReader.ContainsField(datasetFields[fieldIndex])) { useBaseFile = true; baseFileFields.push_back(datasetFields[fieldIndex]); } } if (maxElements != 0) { hdfBasReader.maxAllocNElements = maxElements; hdfPlsReader.maxAllocNElements = maxElements; } // // For now, all runs will attempt to use information from a .bas // file, since it's assumed that if one has alignments, one has a // .bas file. // useBaseFile = true; // // Add some default fields. // hdfBasReader.IncludeField("Basecall"); hdfBasReader.IncludeField("PulseIndex"); hdfBasReader.InitializeFields(baseFileFields); for (fieldIndex = 0; fieldIndex < datasetFields.size(); fieldIndex++) { if (hdfPlsReader.ContainsField(datasetFields[fieldIndex])) { usePulseFile = true; pulseFileFields.push_back(datasetFields[fieldIndex]); } } if (usePulseFile) { hdfPlsReader.InitializeFields(pulseFileFields); } hdfPlsReader.IncludeField("NumEvent"); int nMovies = movieFileNames.size(); int movieIndex; MovieNameToArrayIndex movieNameMap; // // Initialize movies. This accomplishes two tasks. First, all movie // files are opened and initialized, so that if there are data // fields missing the program will exit now rather than in the // middle of loading pulses. // Next, a list of movie names is created in fofnMovieNames. The // cmp file does not necessarily index movies in the order of the // fofn, and so when loading pulses from a movie indexed by a cmp // file, one needs to look up the file name of the movie. This is // done by scanning the fofnMovieNames list in order until the movie // is found. for (movieIndex = 0; movieIndex < nMovies; movieIndex++) { if (!hdfBasReader.Initialize(movieFileNames[movieIndex])) { cout << "ERROR, could not initialize HDF file " << movieFileNames[movieIndex] << " for reading bases." << endl; exit(1); } else { fofnMovieNames.push_back(hdfBasReader.GetMovieName()); movieNameMap[hdfBasReader.GetMovieName()] = movieIndex; hdfBasReader.Close(); } // // The pulse file is optional. // if (usePulseFile) { if (hdfPlsReader.Initialize(movieFileNames[movieIndex]) == 0) { usePulseFile = false; } } } CmpFile cmpFile; /* * These readers pull information from the same pls file. */ HDFCmpFile<CmpAlignment> cmpReader; if (cmpReader.Initialize(cmpFileName, H5F_ACC_RDWR) == 0) { cout << "ERROR, could not open the cmp file." << endl; exit(0); } cmpReader.Read(cmpFile); string commandLine; clp.CommandLineToString(argc, argv, commandLine); string versionStr(VERSION); AppendPerforceChangelist(PERFORCE_VERSION_STRING, versionStr); cmpReader.fileLogGroup.AddEntry(commandLine, "Loading pulse metrics", "loadPulses", GetTimestamp(), versionStr); // // Group alignment indices by movie so that they may be processed one movie at a time // later on. The movie indices set keeps track of all indices // listed in alignment files. This keeps a reference to all // alignments in memory at once. At the time of writing this, most // projects will have at most a few million alignments, and so the // size of this structure is modest. // UInt alignmentIndex; map<int, vector<int> > movieIndexSets; for (alignmentIndex = 0; alignmentIndex < cmpFile.alnInfo.alignments.size(); alignmentIndex++) { movieIndexSets[cmpFile.alnInfo.alignments[alignmentIndex].GetMovieId()].push_back(alignmentIndex); } vector<float> computedPulseField; string alignedSequence; string readSequence; vector<unsigned char> byteAlignment; int m; vector<int> baseToAlignmentMap; // // Load pulses from movies in order they appear in the input fofn. // int fofnMovieIndex; for (fofnMovieIndex = 0; fofnMovieIndex < fofnMovieNames.size(); fofnMovieIndex++) { if (cmpFile.readType == ReadType::CCS or useCcs) { hdfBasReader.SetReadBasesFromCCS(); hdfCcsReader.Initialize(movieFileNames[fofnMovieIndex]); } hdfBasReader.Initialize(movieFileNames[fofnMovieIndex]); BaseFile baseFile; PulseFile pulseFile; if (byRead == false) { // // Read the entire bas file at once, and then extract values // from memory. This can be faster depending on the chunk // size and size of the movie. // hdfBasReader.ReadBaseFile(baseFile); hdfBasReader.Close(); } else { // // Reads are scanned one by instead of caching all. It is // still necessary to read in some of the datasets entirely, // in particular the start positions and hole numbers. // // This is repeated below for a pulse file. Since the pulse // and base files are separate objects, the scan data is // read into each separately. Somehow later the information // should be merged into just one. if (hdfBasReader.scanDataReader.fileHasScanData) { hdfBasReader.scanDataReader.Read(baseFile.scanData); } baseFile.readStartPositions.resize(hdfBasReader.nReads+1); baseFile.readStartPositions[0] = 0; hdfBasReader.GetAllReadLengths(baseFile.readLengths); int i; assert(baseFile.readLengths.size() + 1 == baseFile.readStartPositions.size()); for (i = 1; i < hdfBasReader.nReads + 1; i++ ) { baseFile.readStartPositions[i] = baseFile.readLengths[i-1] + baseFile.readStartPositions[i-1]; } // // Although the whole bas file isn't being read in, it is // necessary to read in which hole numbers are contained in this // bas file since it is possible that the alignment for a // particular hole number may be in a different input bas.h5 // file even if it is the same movie. // hdfBasReader.GetAllHoleNumbers(baseFile.holeNumbers); } set<uint32_t> moviePartHoleNumbers; copy(baseFile.holeNumbers.begin(), baseFile.holeNumbers.end(), inserter(moviePartHoleNumbers, moviePartHoleNumbers.begin())); if (usePulseFile) { hdfPlsReader.Initialize(movieFileNames[fofnMovieIndex]); hdfPlsReader.IncludeField("NumEvent"); hdfPlsReader.IncludeField("StartFrame"); if (byRead == false) { hdfPlsReader.ReadPulseFile(pulseFile); hdfPlsReader.Close(); } else { if (usePulseFile) { pulseFile.pulseStartPositions.resize(hdfBasReader.nReads+1); pulseFile.pulseStartPositions[0] = 0; hdfPlsReader.GetAllNumEvent(pulseFile.numEvent); int i; for (i = 1; i < hdfBasReader.nReads + 1; i++ ) { pulseFile.pulseStartPositions[i] = pulseFile.numEvent[i-1] + pulseFile.pulseStartPositions[i-1]; } if (hdfPlsReader.scanDataReader.fileHasScanData) { hdfPlsReader.scanDataReader.Read(pulseFile.scanData); } } } } string cmpFileMovieName; for (m = 0; m < cmpFile.movieInfo.name.size(); m++) { // // First find the file name for the movie 'm' // cmpFileMovieName = cmpFile.movieInfo.name[m]; int fofnMovieIndex; if (baseFile.GetMovieName() == cmpFileMovieName) { break; } } // // If the movie specified in the input.fofn is not found in the // cmp file, that indicates something bad is happeing. Either the // input.fofn was not used to generate the cmp.h5 file, or no // alignments were found between the input bas.h5 and the // reference. That shouldn't happen. // if (m == cmpFile.movieInfo.name.size()) { cout << "WARNING: The movie indexed in the compare file " << cmpFileMovieName << " is not listed in the file " << movieFileName << endl; continue; } // // Open the movie and load its pulses into memory. // movieIndex = cmpFile.movieInfo.id[m]; int movieAlignmentIndex; float NaN = 0.0/0.0; UChar missingQualityValue = 255; HalfWord missingFrameRateValue = USHRT_MAX; unsigned int missingPulseIndex = UINT_MAX; // // Since usePulseFile is set when the input file is a pulseFile, // and ReadType::CCS becomes the read type when the alignments are // ccs, when pulse files are specified for de novo ccs alignments, // they will be opened as pulse files. Since the de novo ccs // sequences do not have pulse file information, the auto-reading // of pulse files needs to be disabled. Do that here. // if (cmpFile.readType == ReadType::CCS or useCcs) { usePulseFile = false; } // // Now check the sanity of metric options. // map<string,bool>::iterator metricIt; for (metricIt = metricOptions.begin(); metricIt != metricOptions.end(); ++metricIt) { if (metricIt->second == false) { continue; } bool metricMayBeComputed = true; if (cmpFile.readType == ReadType::CCS and metricIt->first != "QualityValue" and metricIt->first != "DeletionQV" and metricIt->first != "SubstitutionQV" and metricIt->first != "InsertionQV" and metricIt->first != "DeletionTag" and metricIt->first != "SubstitutionTag" and metricIt->first != "Basecall") { cout << "ERROR! The metric " << metricIt->first << " cannot be loaded into de novo ccs alignemnts." << endl; // exit(0); metricMayBeComputed = false; } if (metricIt->first == "IPD") { // // The field requirements for IPD are special. // if ((useBaseFile and !hdfBasReader.FieldIsIncluded("PreBaseFrames")) or (usePulseFile and (!hdfPlsReader.FieldIsIncluded("StartFrame") and !hdfPlsReader.FieldIsIncluded("WidthInFrames")))) { metricMayBeComputed = false; } } else { if (fieldRequirements.find(metricIt->first) != fieldRequirements.end()) { // // There are requirements for this field. Make sure all are // present before trying to compute this field. // int requirementIndex; for (requirementIndex = 0; requirementIndex < fieldRequirements[metricIt->first].size(); ++requirementIndex) { string requirement; requirement = fieldRequirements[metricIt->first][requirementIndex]; if (((useBaseFile == false or ((hdfBasReader.includedFields.find(requirement) == hdfBasReader.includedFields.end() or hdfBasReader.includedFields[requirement] == false))) and ((usePulseFile == false or (hdfPlsReader.includedFields.find(requirement) == hdfPlsReader.includedFields.end() or hdfPlsReader.includedFields[requirement] == false))))) { metricMayBeComputed = false; } } } else { // // There are no requirements for this field, so it must exist as // a datset in either the bas or pls file. // if ((useBaseFile == false or ((hdfBasReader.includedFields.find(metricIt->first) == hdfBasReader.includedFields.end() or hdfBasReader.includedFields[metricIt->first] == false))) and (usePulseFile == false or (((hdfPlsReader.includedFields.find(metricIt->first) == hdfPlsReader.includedFields.end() or hdfPlsReader.includedFields[metricIt->first] == false))))) { metricMayBeComputed = false; } } } if (metricMayBeComputed == false) { if (failOnMissingData) { cout << "ERROR"; } else { cout << "WARNING"; } cout << ": There is insufficient data to compute metric: " << metricIt->first << " in the file " << movieFileNames[fofnMovieIndex] << " "; cout << " It will be ignored." << endl; if (failOnMissingData) { exit(1); } metricOptions[metricIt->first] = false; } } UInt i; // // This is currently used as a sentinal for showing that an array // element does not have a value stored for it, as in deleted // bases. // vector<int> pulseIndexArray; vector<unsigned int> statTime; if (metricOptions["WhenStarted"]) { string whenStarted; if (hdfPlsReader.scanDataReader.useWhenStarted == false) { cout << "ERROR! Attempting to read WhenStarted from " << movieFileNames[fofnMovieIndex] << " but the attriubte does not exist." << endl; exit(1); } hdfPlsReader.scanDataReader.ReadWhenStarted(whenStarted); if (!cmpReader.movieInfoGroup.whenStartedArray.IsInitialized()) { cmpReader.movieInfoGroup.whenStartedArray.Initialize(cmpReader.movieInfoGroup.movieInfoGroup, "WhenStarted"); } cmpReader.movieInfoGroup.whenStartedArray.Write(&whenStarted, 1); } if (AnyFieldRequiresFrameRate(datasetFields)) { if (useBaseFile) { cmpReader.movieInfoGroup.StoreFrameRate(m, baseFile.GetFrameRate()); } else if (usePulseFile) { cmpReader.movieInfoGroup.StoreFrameRate(m, pulseFile.GetFrameRate()); } } // // An index set is a set of indices into the alignment array that // are of reads generated by this movie. Load pulses for all // alignments generated for this movie. // // // Movie index sets should be sorted by alignment index. Build a lookup table for this. // std::vector<std::pair<int,int> > toFrom; for (movieAlignmentIndex = 0; movieAlignmentIndex < movieIndexSets[movieIndex].size(); movieAlignmentIndex++) { alignmentIndex = movieIndexSets[movieIndex][movieAlignmentIndex]; toFrom.push_back(std::pair<int,int>(cmpFile.alnInfo.alignments[alignmentIndex].GetAlignmentId(), movieAlignmentIndex)); } // orders by first by default. std::sort(toFrom.begin(), toFrom.end()); // // Load metrics for alignments from movie 'movieIndex'. // cout << "loading " << movieIndexSets[movieIndex].size() << " alignments for movie " << movieIndex << endl; for (movieAlignmentIndex = 0; movieAlignmentIndex < movieIndexSets[movieIndex].size(); movieAlignmentIndex++) { alignmentIndex = movieIndexSets[movieIndex][toFrom[movieAlignmentIndex].second]; // // Alignments are groupsd by ref group id then movie id. // int refGroupId = cmpFile.alnInfo.alignments[alignmentIndex].GetRefGroupId(); int movieId = cmpFile.alnInfo.alignments[alignmentIndex].GetMovieId(); UInt holeNumber = cmpFile.alnInfo.alignments[alignmentIndex].GetHoleNumber(); // // Since the movie may be split into multiple parts, look to see // if this hole number is one of the ones covered by this // set. If it is not, just continue. It will be loaded on // another pass through a different movie part. // if (moviePartHoleNumbers.find(holeNumber) == moviePartHoleNumbers.end()) { continue; } // // Now locate where this movie is stored. // if (cmpReader.refGroupIdToArrayIndex.find(refGroupId) == cmpReader.refGroupIdToArrayIndex.end()) { cout << "ERROR! An alignment " << alignmentIndex << " is specified with reference group " << endl << refGroupId << " that is not found as an alignment group." << endl; exit(1); } int refGroupIndex = cmpReader.refGroupIdToArrayIndex[refGroupId]; // // Now find the group containing the alignment for this movie. // if (cmpReader.refAlignGroups[refGroupIndex]->movieIdToIndex.find(movieId) == cmpReader.refAlignGroups[refGroupIndex]->movieIdToIndex.end()) { cout << "ERROR! An alignment " << alignmentIndex << " is specified with movie index " << endl << movieId << " that is not found in the alignment group " << refGroupIndex << endl; exit(1); } int readGroupIndex = cmpReader.refAlignGroups[refGroupIndex]->movieIdToIndex[movieId]; // // First do sanity check on the read to make sure the pules and the bases match. // // // Look to see if the output HDF arrays need to be created. // UInt offsetBegin, offsetEnd; offsetBegin = cmpFile.alnInfo.alignments[alignmentIndex].GetOffsetBegin(); offsetEnd = cmpFile.alnInfo.alignments[alignmentIndex].GetOffsetEnd(); int alignedSequenceLength = offsetEnd - offsetBegin; if (alignedSequenceLength >= 0) { alignedSequence.resize(alignedSequenceLength); byteAlignment.resize(alignedSequenceLength); } // // Read the alignment string. All alignments // cmpReader.refAlignGroups[refGroupIndex]->readGroups[readGroupIndex]->alignmentArray.Read(offsetBegin, offsetEnd, &byteAlignment[0]); // // Convert to something we can compare easily. // ByteAlignmentToQueryString(&byteAlignment[0], byteAlignment.size(), &alignedSequence[0]); // // Do a sanity check to make sure the pulses and the alignment // make sense. The main check is to see if the query sequence // in the alignment is the same as the query sequence in the // read. // // // First pull out the bases corresponding to this read. // int queryStart = cmpFile.alnInfo.alignments[alignmentIndex].GetQueryStart(); int queryEnd = cmpFile.alnInfo.alignments[alignmentIndex].GetQueryEnd(); // Build a map of where CreateSequenceToAlignmentMap(byteAlignment, baseToAlignmentMap); // // Condense gaps in the alignment for easy comparison. // // RemoveGaps(alignedSequence, alignedSequence); // // Query the cmp file for a way to look up a read based on // coordinate information. For Astro reads, the coords are // based on x and y. For Springfield, it is read index. The // base files should be able to look up reads by x,y or by // index. // int readIndex; if (cmpFile.platformId == Astro) { cout << "ASTRO pulse loading is deprecated." << endl; exit(0); } if (baseFile.LookupReadIndexByHoleNumber(holeNumber, readIndex) == false) { cout << "ERROR! Alignment has hole number " << holeNumber << " that is not in the movie. " << endl; assert(0); } int readStart, readLength, alignBaseStart, alignBaseEnd, alignBaseLength; readStart = baseFile.readStartPositions[readIndex]; readLength = baseFile.readStartPositions[readIndex+1] - baseFile.readStartPositions[readIndex]; alignBaseStart = readStart + queryStart; alignBaseEnd = readStart + queryEnd; alignBaseLength = alignBaseEnd - alignBaseStart; int pulseStart; if (usePulseFile) { pulseStart = pulseFile.pulseStartPositions[readIndex]; } // // This maps from pulse to a base, since there are more pulses // called than bases, and the is one pulse for every base. // pulseIndexArray.resize(readLength); SMRTSequence sourceRead; unsigned int numPasses; // // These are not allocated in the regular allocate function // since they are only used in loadPulses. (maybe I should // subclass SMRTSequence here). // if (byRead) { // Read in the data from the bas file if it exsts. if (useBaseFile) { hdfBasReader.GetReadAt(readIndex, sourceRead); if (cmpFile.readType == ReadType::CCS or useCcs) { numPasses = hdfCcsReader.GetNumPasses(readIndex); } } // Read in the data from the pls file if it exists. if (usePulseFile) { hdfPlsReader.GetReadAt(readIndex, sourceRead.pulseIndex, sourceRead); } } else { // // The entire base/pulse file was read in, so copy data from that into a read // For the data used in the read, it is possible to simply // reference the data, but for the pls file it is necessary // to copy since there is a packing of data. // if (useBaseFile) { baseFile.CopyReadAt(readIndex, sourceRead); if (cmpFile.readType == ReadType::CCS or useCcs) { numPasses = hdfCcsReader.GetNumPasses(readIndex); } } if (usePulseFile) { // // Copy the subset of pulses that correspond to the ones called as bases. // int i; for (i = 0; i < readLength; i++) { pulseIndexArray[i] = pulseStart + baseFile.pulseIndex[readStart + i]; } pulseFile.CopyReadAt(readIndex, &pulseIndexArray[0], sourceRead); } } readSequence.resize(queryEnd - queryStart); CapQualityValues(sourceRead); copy((char*) (sourceRead.seq + queryStart), (char*) (sourceRead.seq + queryEnd), readSequence.begin()); bool stringsMatch = true; if (alignedSequence.size() != readSequence.size() or alignedSequence != readSequence) { cout << "ERROR, the query sequence does not match the aligned query sequence." << endl; cout << "HoleNumber: "<< holeNumber << ", MovieName: " << cmpFileMovieName; cout << " ,ReadIndex: " << (int) readIndex << cout << ", qStart: "<< queryStart << ", qEnd: " << queryEnd << endl; cout << "Aligned sequence: "<< endl; cout << alignedSequence << endl; cout << "Original sequence: " << endl; cout << readSequence << endl; assert(0); } /* * Compute any necessary data fields. These usually involve * using differences of pulse indices, pulse widths, etc.. * Missing fields are stored as 0's. */ vector<float> readPulseMetric; vector<float> floatMetric; vector<UChar> qvMetric; vector<HalfWord> frameRateMetric; vector<uint32_t> timeMetric; int ungappedAlignedSequenceLength = alignedSequence.size(); floatMetric.resize(alignedSequenceLength+1); readPulseMetric.resize(alignedSequenceLength+1); qvMetric.resize(alignedSequenceLength+1); frameRateMetric.resize(alignedSequenceLength+1); timeMetric.resize(alignedSequenceLength+1); UInt i; UInt pi; HDFCmpExperimentGroup* expGroup = cmpReader.refAlignGroups[refGroupIndex]->readGroups[readGroupIndex]; if (cmpFile.readType == ReadType::CCS or useCcs) { if (!cmpReader.alnInfoGroup.numPasses.IsInitialized()) { cmpReader.alnInfoGroup.InitializeNumPasses(); } cmpReader.alnInfoGroup.numPasses.WriteToPos(&numPasses, 1, alignmentIndex); } if (metricOptions["StartTimeOffset"] == true) { if (!expGroup->startTimeOffset.IsInitialized()) { expGroup->startTimeOffset.Initialize(expGroup->experimentGroup, "StartTimeOffset"); } unsigned int readStartTimeOffset = sourceRead.startFrame[queryStart]; expGroup->startTimeOffset.WriteToPos(&readStartTimeOffset, 1, alignmentIndex); } if (metricOptions["QualityValue"] == true) { if (!expGroup->qualityValue.IsInitialized()) { expGroup->qualityValue.Initialize(expGroup->experimentGroup, "QualityValue"); } // Store start time normalized to frame rate. fill(qvMetric.begin(), qvMetric.end(), missingQualityValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { qvMetric[baseToAlignmentMap[i]] = sourceRead.qual[queryStart + i]; } qvMetric[qvMetric.size()-1] = 0; expGroup->qualityValue.WriteToPos(&qvMetric[0], qvMetric.size(), offsetBegin); } if (metricOptions["InsertionQV"] == true) { if (!expGroup->insertionQV.IsInitialized()) { expGroup->insertionQV.Initialize(expGroup->experimentGroup, "InsertionQV"); } // Store start time normalized to frame rate. fill(qvMetric.begin(), qvMetric.end(), missingQualityValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { qvMetric[baseToAlignmentMap[i]] = sourceRead.insertionQV[queryStart+ i]; } qvMetric[qvMetric.size()-1] = 0; expGroup->insertionQV.WriteToPos(&qvMetric[0], qvMetric.size(), offsetBegin); } if (metricOptions["MergeQV"] == true) { if (!expGroup->mergeQV.IsInitialized()) { expGroup->mergeQV.Initialize(expGroup->experimentGroup, "MergeQV"); } // Store start time normalized to frame rate. fill(qvMetric.begin(), qvMetric.end(), missingQualityValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { qvMetric[baseToAlignmentMap[i]] = sourceRead.mergeQV[queryStart+ i]; } qvMetric[qvMetric.size()-1] = 0; expGroup->mergeQV.WriteToPos(&qvMetric[0], qvMetric.size(), offsetBegin); } if (metricOptions["DeletionQV"] == true) { if (!expGroup->deletionQV.IsInitialized()) { expGroup->deletionQV.Initialize(expGroup->experimentGroup, "DeletionQV"); } // Store start time normalized to frame rate. fill(qvMetric.begin(), qvMetric.end(), missingQualityValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { qvMetric[baseToAlignmentMap[i]] = sourceRead.deletionQV[queryStart+i]; } qvMetric[qvMetric.size()-1] = 0; expGroup->deletionQV.WriteToPos(&qvMetric[0], qvMetric.size(), offsetBegin); } if (metricOptions["DeletionTag"] == true) { if (!expGroup->deletionTag.IsInitialized()) { expGroup->deletionTag.Initialize(expGroup->experimentGroup, "DeletionTag"); } vector<char> readDeletionTagMetric; readDeletionTagMetric.resize(readPulseMetric.size()); // Store start time normalized to frame rate. for (i = 0; i < readDeletionTagMetric.size()-1; i++ ) { readDeletionTagMetric[i] = '-'; } readDeletionTagMetric[i] = '\0'; for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { assert(baseToAlignmentMap[i] < readDeletionTagMetric.size()); readDeletionTagMetric[baseToAlignmentMap[i]] = sourceRead.deletionTag[queryStart+i]; } readDeletionTagMetric[readDeletionTagMetric.size()-1] = 0; expGroup->deletionTag.WriteToPos(&readDeletionTagMetric[0], readDeletionTagMetric.size(), offsetBegin); } if (metricOptions["PulseIndex"] == true) { if (!expGroup->pulseIndex.IsInitialized()) { expGroup->pulseIndex.Initialize(expGroup->experimentGroup, "PulseIndex"); } vector<uint32_t> readPulseIndexMetric; fill(readPulseIndexMetric.begin(), readPulseIndexMetric.end(), missingPulseIndex); readPulseIndexMetric.resize(readPulseMetric.size()); // Store start time normalized to frame rate. assert(readPulseIndexMetric.size() > 0); for (i = 0; i < readPulseIndexMetric.size(); i++ ) { readPulseIndexMetric[i] = 0; } for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { readPulseIndexMetric[baseToAlignmentMap[i]] = sourceRead.pulseIndex[queryStart+i]; } readPulseIndexMetric[readPulseIndexMetric.size()-1] = 0; expGroup->pulseIndex.WriteToPos(&readPulseIndexMetric[0], readPulseIndexMetric.size(), offsetBegin); } if (metricOptions["SubstitutionTag"] == true) { if (!expGroup->substitutionTag.IsInitialized()) { expGroup->substitutionTag.Initialize(expGroup->experimentGroup, "SubstitutionTag"); } vector<char> readSubstitutionTagMetric; readSubstitutionTagMetric.resize(readPulseMetric.size()); // Store start time normalized to frame rate. for (i = 0; i < readSubstitutionTagMetric.size()-1; i++ ) { readSubstitutionTagMetric[i] = '-'; } readSubstitutionTagMetric[i] = '\0'; for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { readSubstitutionTagMetric[baseToAlignmentMap[i]] = sourceRead.substitutionTag[queryStart+i]; } readSubstitutionTagMetric[readSubstitutionTagMetric.size()-1] = 0; expGroup->substitutionTag.WriteToPos(&readSubstitutionTagMetric[0], readSubstitutionTagMetric.size(), offsetBegin); } if (metricOptions["SubstitutionQV"] == true) { if (!expGroup->substitutionQV.IsInitialized()) { expGroup->substitutionQV.Initialize(expGroup->experimentGroup, "SubstitutionQV"); } // Store start time normalized to frame rate. fill(qvMetric.begin(), qvMetric.end(), missingQualityValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { qvMetric[baseToAlignmentMap[i]] = sourceRead.substitutionQV[queryStart+i]; } qvMetric[qvMetric.size()-1] = 0; expGroup->substitutionQV.WriteToPos(&qvMetric[0], qvMetric.size(), offsetBegin); } if (metricOptions["ClassifierQV"] == true) { if (!expGroup->classifierQV.IsInitialized()) { expGroup->classifierQV.Initialize(expGroup->experimentGroup, "ClassifierQV"); } // Store start time normalized to frame rate. fill(floatMetric.begin(), floatMetric.end(), missingQualityValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { floatMetric[baseToAlignmentMap[i]] = sourceRead.classifierQV[i+queryStart]; } floatMetric[floatMetric.size()-1] = 0; expGroup->classifierQV.WriteToPos(&floatMetric[0], floatMetric.size(), offsetBegin); } if (metricOptions["StartFrame"] == true) { if (!expGroup->startTime.IsInitialized()) { expGroup->startTime.Initialize(expGroup->experimentGroup, "StartFrame"); } if (useBaseFile) { sourceRead.startFrame = new unsigned int[sourceRead.length]; copy(sourceRead.preBaseFrames, &sourceRead.preBaseFrames[sourceRead.length], sourceRead.startFrame); for (i = 0; i < sourceRead.length-1; i++) { sourceRead.startFrame[i+1] += sourceRead.widthInFrames[i]; } partial_sum(sourceRead.startFrame, &sourceRead.startFrame[sourceRead.length], sourceRead.startFrame); } // Store start time normalized to frame rate. fill(timeMetric.begin(), timeMetric.end(), missingPulseIndex); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { timeMetric[baseToAlignmentMap[i]] = sourceRead.startFrame[i+queryStart]; } timeMetric[timeMetric.size()-1] = 0; expGroup->startTime.WriteToPos(&timeMetric[0], timeMetric.size(), offsetBegin); } if (metricOptions["PulseWidth"] == true) { if (!expGroup->pulseWidth.IsInitialized()) { expGroup->pulseWidth.Initialize(expGroup->experimentGroup, "PulseWidth"); } // Store start time normalized to frame rate. fill(frameRateMetric.begin(), frameRateMetric.end(), missingFrameRateValue); // // For legacy reasons, it's possible the width in frames is // stored in the bas file. If this is the case, use the width // in frames there. Otherwise, use the width in frames stored // in the pls file. for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { frameRateMetric[baseToAlignmentMap[i]] = sourceRead.widthInFrames[queryStart + i]; } frameRateMetric[frameRateMetric.size()-1] = 0; expGroup->pulseWidth.WriteToPos(&frameRateMetric[0], frameRateMetric.size(), offsetBegin); } if (metricOptions["PreBaseFrames"] == true) { if (!expGroup->preBaseFrames.IsInitialized()) { expGroup->preBaseFrames.Initialize(expGroup->experimentGroup, "PreBaseFrames"); } // Compute width in frames normalized to frame rate. fill(frameRateMetric.begin(), frameRateMetric.end(), missingFrameRateValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { frameRateMetric[baseToAlignmentMap[i]] = sourceRead.preBaseFrames[i+queryStart]; } frameRateMetric[frameRateMetric.size()-1] = 0; expGroup->preBaseFrames.WriteToPos(&frameRateMetric[0], frameRateMetric.size(), offsetBegin); } if (metricOptions["WidthInFrames"] == true) { if (!expGroup->widthInFrames.IsInitialized()) { expGroup->widthInFrames.Initialize(expGroup->experimentGroup, "WidthInFrames"); } // Compute width in frames normalized to frame rate. fill(frameRateMetric.begin(), frameRateMetric.end(), missingFrameRateValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { if (usePulseFile) { frameRateMetric[baseToAlignmentMap[i]] = sourceRead.widthInFrames[i+queryStart]; } else { frameRateMetric[baseToAlignmentMap[i]] = sourceRead.widthInFrames[i+queryStart]; } } frameRateMetric[frameRateMetric.size()-1] = 0; expGroup->widthInFrames.WriteToPos(&frameRateMetric[0], frameRateMetric.size(), offsetBegin); } if (metricOptions["pkmid"] == true) { if (!expGroup->pkmid.IsInitialized()) { expGroup->pkmid.Initialize(expGroup->experimentGroup, "pkmid"); } for (i = 0; i < readPulseMetric.size(); i++ ) { readPulseMetric[i] = NaN; } for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { readPulseMetric[baseToAlignmentMap[i]] = sourceRead.midSignal[i+queryStart]; } readPulseMetric[readPulseMetric.size()-1] = 0; expGroup->pkmid.WriteToPos(&readPulseMetric[0], readPulseMetric.size(), offsetBegin); } if (metricOptions["IPD"] == true) { if (!expGroup->ipd.IsInitialized()) { expGroup->ipd.Initialize(expGroup->experimentGroup, "IPD"); } fill(frameRateMetric.begin(), frameRateMetric.end(), missingFrameRateValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { // // The IPD is undefined for the first base in a read. // if (usePulseFile ) { if (queryStart == 0 and i == 0) { frameRateMetric[baseToAlignmentMap[i]] = 0; } else { frameRateMetric[baseToAlignmentMap[i]] = (sourceRead.startFrame[i+queryStart] - sourceRead.startFrame[i+queryStart-1] - sourceRead.widthInFrames[i+queryStart-1]); } } else if (useBaseFile) { frameRateMetric[baseToAlignmentMap[i]] = sourceRead.preBaseFrames[i + queryStart]; } } frameRateMetric[frameRateMetric.size()-1] = 0; expGroup->ipd.WriteToPos(&frameRateMetric[0], frameRateMetric.size(), offsetBegin); } if (metricOptions["Light"] == true) { if (!expGroup->light.IsInitialized()) { expGroup->light.Initialize(expGroup->experimentGroup, "Light"); } fill(frameRateMetric.begin(), frameRateMetric.end(), missingFrameRateValue); for (i = 0; i < ungappedAlignedSequenceLength; i++ ) { frameRateMetric[baseToAlignmentMap[i]] = sourceRead.meanSignal[i+queryStart]; frameRateMetric[baseToAlignmentMap[i]] = (frameRateMetric[baseToAlignmentMap[i]] * sourceRead.widthInFrames[i+queryStart]); } frameRateMetric[frameRateMetric.size()-1] = 0; expGroup->light.WriteToPos(&frameRateMetric[0], frameRateMetric.size(), offsetBegin); } sourceRead.Free(); Free(sourceRead.meanSignal); Free(sourceRead.maxSignal); Free(sourceRead.midSignal); Free(sourceRead.startFrame); Free(sourceRead.classifierQV); Free(sourceRead.widthInFrames); } if (byRead == true) { if (useBaseFile) { hdfBasReader.Close(); } if (cmpFile.readType == ReadType::CCS or useCcs) { hdfCcsReader.Close(); } if (usePulseFile) { hdfPlsReader.Close(); } } } // done loading movies cmpReader.Close(); }
TEST(SubreadsTest, EndToEnd_Multiple) { // setup const string movieName = "m140905_042212_sidney_c100564852550000001823085912221377_s1_X0"; vector<string> baxFilenames; baxFilenames.push_back(tests::Data_Dir + "/" + movieName + ".1.bax.h5"); const string generatedBam = movieName + ".subreads.bam"; const string scrapBam = movieName + ".scraps.bam"; // run conversion const int result = RunBax2Bam(baxFilenames, "--subread"); EXPECT_EQ(0, result); // open BAX reader on original data HDFBasReader baxReader; baxReader.IncludeField("Basecall"); baxReader.IncludeField("DeletionQV"); baxReader.IncludeField("DeletionTag"); baxReader.IncludeField("InsertionQV"); baxReader.IncludeField("PreBaseFrames"); baxReader.IncludeField("MergeQV"); baxReader.IncludeField("SubstitutionQV"); baxReader.IncludeField("HQRegionSNR"); // not using SubTag or PulseWidth here string baxBasecallerVersion; string baxBindingKit; string baxSequencingKit; const int initOk = baxReader.Initialize(baxFilenames.front()); EXPECT_EQ(1, initOk); if (initOk == 1) { if (baxReader.scanDataReader.fileHasScanData && baxReader.scanDataReader.initializedRunInfoGroup) { if (baxReader.scanDataReader.runInfoGroup.ContainsAttribute("BindingKit")) { HDFAtom<std::string> bkAtom; if (bkAtom.Initialize(baxReader.scanDataReader.runInfoGroup, "BindingKit")) { bkAtom.Read(baxBindingKit); bkAtom.dataspace.close(); } } if (baxReader.scanDataReader.runInfoGroup.ContainsAttribute("SequencingKit")) { HDFAtom<std::string> skAtom; if (skAtom.Initialize(baxReader.scanDataReader.runInfoGroup, "SequencingKit")) { skAtom.Read(baxSequencingKit); skAtom.dataspace.close(); } } } baxReader.GetChangeListID(baxBasecallerVersion); } // read region table info boost::scoped_ptr<HDFRegionTableReader> regionTableReader(new HDFRegionTableReader); RegionTable regionTable; std::string fn = baxFilenames.front(); EXPECT_TRUE(regionTableReader->Initialize(fn) != 0); regionTable.Reset(); regionTableReader->ReadTable(regionTable); regionTableReader->Close(); EXPECT_NO_THROW( { // open BAM file BamFile bamFile(generatedBam); // check BAM header information const BamHeader& header = bamFile.Header(); EXPECT_EQ(string("1.5"), header.Version()); EXPECT_EQ(string("unknown"), header.SortOrder()); EXPECT_EQ(string("3.0.1"), header.PacBioBamVersion()); EXPECT_TRUE(header.Sequences().empty()); EXPECT_TRUE(header.Comments().empty()); ASSERT_FALSE(header.Programs().empty()); const vector<string> readGroupIds = header.ReadGroupIds(); ASSERT_FALSE(readGroupIds.empty()); const ReadGroupInfo& rg = header.ReadGroup(readGroupIds.front()); string rawId = movieName + "//SUBREAD"; string md5Id; MakeMD5(rawId, md5Id, 8); EXPECT_EQ(md5Id, rg.Id()); EXPECT_EQ(string("PACBIO"), rg.Platform()); EXPECT_EQ(movieName, rg.MovieName()); EXPECT_TRUE(rg.SequencingCenter().empty()); EXPECT_TRUE(rg.Date().empty()); EXPECT_TRUE(rg.FlowOrder().empty()); EXPECT_TRUE(rg.KeySequence().empty()); EXPECT_TRUE(rg.Library().empty()); EXPECT_TRUE(rg.Programs().empty()); EXPECT_TRUE(rg.PredictedInsertSize().empty()); EXPECT_TRUE(rg.Sample().empty()); EXPECT_EQ("SUBREAD", rg.ReadType()); EXPECT_EQ(baxBasecallerVersion, rg.BasecallerVersion()); EXPECT_EQ(baxBindingKit, rg.BindingKit()); EXPECT_EQ(baxSequencingKit, rg.SequencingKit()); EXPECT_EQ(75, std::stod(rg.FrameRateHz())); EXPECT_EQ("dq", rg.BaseFeatureTag(BaseFeature::DELETION_QV)); EXPECT_EQ("dt", rg.BaseFeatureTag(BaseFeature::DELETION_TAG)); EXPECT_EQ("iq", rg.BaseFeatureTag(BaseFeature::INSERTION_QV)); EXPECT_EQ("ip", rg.BaseFeatureTag(BaseFeature::IPD)); EXPECT_EQ("mq", rg.BaseFeatureTag(BaseFeature::MERGE_QV)); EXPECT_EQ("sq", rg.BaseFeatureTag(BaseFeature::SUBSTITUTION_QV)); EXPECT_FALSE(rg.HasBaseFeature(BaseFeature::SUBSTITUTION_TAG)); EXPECT_EQ(FrameCodec::V1, rg.IpdCodec()); // compare 1st record from each file SMRTSequence baxRecord; UInt holeNumber = 0; vector<float> hqSnr; size_t intervalIdx = 0; vector<SubreadInterval> subreadIntervals; size_t numTested = 0; EntireFileQuery entireFile(bamFile); for (BamRecord& bamRecord : entireFile) { if (intervalIdx >= subreadIntervals.size()) { while (baxReader.GetNext(baxRecord)) { holeNumber = baxRecord.zmwData.holeNumber; ComputeSubreadIntervals(&subreadIntervals, regionTable, holeNumber); /* this is for debugging subread interval problems int hqStart = 0; int hqEnd = 0; int hqScore = 0; LookupHQRegion(holeNumber, regionTable, hqStart, hqEnd, hqScore); vector<ReadInterval> subreadIntervals_; CollectSubreadIntervals(baxRecord, ®ionTable, subreadIntervals_); for (int i = subreadIntervals_.size() - 1; i >= 0; --i) { auto& in = subreadIntervals_[i]; int inStart = max(hqStart, in.start); int inEnd = min(hqEnd, in.end); if (inEnd <= inStart) subreadIntervals_.erase(subreadIntervals_.begin() + i); } cerr << "hqRegion: " << hqStart << ", " << hqEnd << endl; cerr << "subreadRegions:" << endl; for (const auto& in : subreadIntervals_) cerr << " l, r: " << in.start << ", " << in.end << endl; cerr << "adapterDerived:" << endl; for (const auto& in : subreadIntervals) cerr << " l, r: " << in.Start << ", " << in.End << endl; cerr << endl; // */ if (subreadIntervals.empty()) continue; intervalIdx = 0; hqSnr.clear(); hqSnr.push_back(baxRecord.HQRegionSnr('A')); hqSnr.push_back(baxRecord.HQRegionSnr('C')); hqSnr.push_back(baxRecord.HQRegionSnr('G')); hqSnr.push_back(baxRecord.HQRegionSnr('T')); EXPECT_GT(hqSnr[0], 0); EXPECT_GT(hqSnr[1], 0); EXPECT_GT(hqSnr[2], 0); EXPECT_GT(hqSnr[3], 0); goto compare; } goto cleanup; } compare: const BamRecordImpl& bamRecordImpl = bamRecord.Impl(); EXPECT_EQ(4680,bamRecordImpl.Bin()); EXPECT_EQ(0, bamRecordImpl.InsertSize()); EXPECT_EQ(255, bamRecordImpl.MapQuality()); EXPECT_EQ(-1, bamRecordImpl.MatePosition()); EXPECT_EQ(-1, bamRecordImpl.MateReferenceId()); EXPECT_EQ(-1, bamRecordImpl.Position()); EXPECT_EQ(-1, bamRecordImpl.ReferenceId()); EXPECT_FALSE(bamRecordImpl.IsMapped()); const int subreadStart = subreadIntervals[intervalIdx].Start; const int subreadEnd = subreadIntervals[intervalIdx].End; const string expectedName = movieName + "/" + to_string(holeNumber) + "/" + to_string(subreadStart) + "_" + to_string(subreadEnd); EXPECT_EQ(expectedName, bamRecordImpl.Name()); using PacBio::BAM::QualityValue; using PacBio::BAM::QualityValues; const DNALength length = subreadEnd - subreadStart; string expectedSequence; expectedSequence.assign((const char*)baxRecord.seq + subreadStart, length); const string bamSequence = bamRecord.Sequence(); const QualityValues bamQualities = bamRecord.Qualities(); EXPECT_EQ(expectedSequence, bamSequence); EXPECT_TRUE(bamQualities.empty()); const QualityValues bamDeletionQVs = bamRecord.DeletionQV(); const QualityValues bamInsertionQVs = bamRecord.InsertionQV(); const QualityValues bamMergeQVs = bamRecord.MergeQV(); const QualityValues bamSubstitutionQVs = bamRecord.SubstitutionQV(); for (size_t i = 0; i < length; ++i) { const size_t pos = subreadStart + i; EXPECT_EQ((QualityValue)baxRecord.GetDeletionQV(pos), bamDeletionQVs.at(i)); EXPECT_EQ((QualityValue)baxRecord.GetInsertionQV(pos), bamInsertionQVs.at(i)); EXPECT_EQ((QualityValue)baxRecord.GetMergeQV(pos), bamMergeQVs.at(i)); EXPECT_EQ((QualityValue)baxRecord.GetSubstitutionQV(pos), bamSubstitutionQVs.at(i)); } if (baxRecord.deletionTag) { string expectedDeletionTags; expectedDeletionTags.assign((char*)baxRecord.deletionTag + subreadStart, (char*)baxRecord.deletionTag + subreadStart + length); const string& bamDeletionTags = bamRecord.DeletionTag(); EXPECT_EQ(expectedDeletionTags, bamDeletionTags); } if (baxRecord.substitutionTag) { string expectedSubstitutionTags; expectedSubstitutionTags.assign((char*)baxRecord.substitutionTag + subreadStart, (char*)baxRecord.substitutionTag + subreadStart + length); const string& bamSubstitutionTags = bamRecord.SubstitutionTag(); EXPECT_EQ(expectedSubstitutionTags, bamSubstitutionTags); } // TODO: IPDs const LocalContextFlags ctxFlags = subreadIntervals[intervalIdx].LocalContextFlags; EXPECT_EQ(md5Id, bamRecord.ReadGroupId()); EXPECT_EQ(movieName, bamRecord.MovieName()); EXPECT_EQ(1, bamRecord.NumPasses()); EXPECT_EQ(holeNumber, bamRecord.HoleNumber()); EXPECT_EQ(subreadStart, bamRecord.QueryStart()); EXPECT_EQ(subreadEnd, bamRecord.QueryEnd()); EXPECT_EQ(hqSnr, bamRecord.SignalToNoise()); EXPECT_EQ(ctxFlags, bamRecord.LocalContextFlags()); numTested++; intervalIdx++; } cleanup: EXPECT_GT(numTested, 1); // cleanup baxReader.Close(); RemoveFile(generatedBam); RemoveFile(scrapBam); }); // EXPECT_NO_THROW
int main(int argc, char* argv[]) { string plsFileName, fastaOutName; vector<string> plsFileNames; bool trimByRegion, maskByRegion; trimByRegion = false; maskByRegion = false; int argi = 3; RegionTable regionTable; string regionsFOFNName = ""; vector<string> regionFileNames; bool splitSubreads = true; int minSubreadLength = 0; bool addSimulatedData = false; bool printSimulatedCoordinate = false; bool printSimulatedSequenceIndex = false; bool printFastq = false; bool printCcs = false; int lineLength = 50; int minReadScore = 0; bool encodeCCSPassesInTitle = false; vector<int> holeNumbers; CommandLineParser clp; bool printOnlyBest = false; clp.SetProgramName("pls2fasta"); clp.RegisterStringOption("file.pls.h5", &plsFileName, "Input pls/bas.h5 file.", true); clp.RegisterStringOption("out.fasta", &fastaOutName, "Output fasta/fastq file.", true); clp.RegisterPreviousFlagsAsHidden(); clp.RegisterFlagOption("trimByRegion", &trimByRegion, "Trim away low quality regions."); clp.RegisterFlagOption("maskByRegion", &maskByRegion, "Mask low quality regions with 'N'."); clp.RegisterStringOption("regionTable", ®ionsFOFNName, "Optional HDF file with a /PulseData/Regions dataset."); clp.RegisterIntOption("minSubreadLength", &minSubreadLength, "Do not write subreads less than the specified length.", CommandLineParser::PositiveInteger); clp.RegisterFlagOption("noSplitSubreads", &splitSubreads, "Do not split reads on adapter sequences."); clp.RegisterIntListOption("holeNumber", &holeNumbers, "Only print this hole number (or list of numbers)."); clp.RegisterFlagOption("fastq", &printFastq, "Print in FASTQ format with quality."); clp.RegisterFlagOption("ccs", &printCcs, "Print de novo CCS sequences"); clp.RegisterFlagOption("passesInTitle", &encodeCCSPassesInTitle, "Append /N_passes/ to ccs sequence title, where" " N is the number of passes."); clp.RegisterIntOption("lineLength", &lineLength, "Specify fasta/fastq line length", CommandLineParser::PositiveInteger); clp.RegisterIntOption("minReadScore", &minReadScore, "Minimum read score to print a read. The score is " "a number between 0 and 1000 and represents the expected accuracy percentage * 10. " "A typical value would be between 750 and 800. This does not apply to ccs reads.", CommandLineParser::NonNegativeInteger); clp.RegisterFlagOption("best", &printOnlyBest, "If a CCS sequence exists, print this. Otherwise, print the longest" "subread. This does not support fastq."); clp.SetProgramSummary("Converts bas.h5 files to fasta or fastq files. Although fasta files are provided" " with every run, they are not trimmed nor split into subreads. This program takes " "additional annotation information, such as the subread coordinates and high quality regions " "and uses them to create fasta sequences that are substrings of all bases called. Most of the time " "you will want to trim low quality reads, so you should specify -trimByRegion."); clp.ParseCommandLine(argc, argv); if (trimByRegion and maskByRegion) { cout << "ERROR! You cannot both trim and mask regions. Use one or the other." << endl; exit(1); } if (printFastq) { // Setting lineLength to 0 flags to print on one line. lineLength = 0; } if (FileOfFileNames::IsFOFN(plsFileName)) { FileOfFileNames::FOFNToList(plsFileName, plsFileNames); } else { plsFileNames.push_back(plsFileName); } if (regionsFOFNName == "") { regionFileNames = plsFileNames; } else { if (FileOfFileNames::IsFOFN(regionsFOFNName)) { FileOfFileNames::FOFNToList(regionsFOFNName, regionFileNames); } else { regionFileNames.push_back(regionsFOFNName); } } ofstream fastaOut; CrucialOpen(fastaOutName, fastaOut); int plsFileIndex; HDFRegionTableReader hdfRegionReader; sort(holeNumbers.begin(), holeNumbers.end()); for (plsFileIndex = 0; plsFileIndex < plsFileNames.size(); plsFileIndex++) { if (trimByRegion or maskByRegion or splitSubreads) { hdfRegionReader.Initialize(regionFileNames[plsFileIndex]); hdfRegionReader.ReadTable(regionTable); regionTable.SortTableByHoleNumber(); } HDFCCSReader<CCSSequence> ccsReader; HDFBasReader smrtReader; if (printCcs) { ccsReader.Initialize(plsFileNames[plsFileIndex]); } else { smrtReader.Initialize(plsFileNames[plsFileIndex]); } vector<ReadInterval> subreadIntervals;; SMRTSequence seq; CCSSequence ccsSeq; while (true) { if (printCcs == true or printOnlyBest == true) { if (ccsReader.GetNext(ccsSeq) == false) { break; } else { seq = ccsSeq.unrolledRead; } } else { if (smrtReader.GetNext(seq) == false) { break; } } if (holeNumbers.size() != 0 and binary_search(holeNumbers.begin(), holeNumbers.end(), seq.zmwData.holeNumber) == false) { continue; } if (encodeCCSPassesInTitle) { assert(printCcs); string title = ccsSeq.title; stringstream titleStrm; titleStrm << title << "/"<<ccsSeq.numPasses << "_passes/"; ccsSeq.CopyTitle(titleStrm.str()); } if (printCcs == true or (printOnlyBest and ccsSeq.length > 0)) { // // The reason for checking to see if the length is greater // than 0 again is in case -ccs flag is specified, but the ccs // sequence is empty, nothing should be printed. When // printing only the best this block should only be entered if // a ccs sequence exists, because the rest of the loop is // skipped after this. if (ccsSeq.length > 0) { if (printFastq == false) { ccsSeq.PrintSeq(fastaOut); } else { ccsSeq.PrintFastq(fastaOut, lineLength); } } ccsSeq.Free(); seq.Free(); continue; } if (seq.length == 0) { continue; } // // Determine the high quality boundaries of the read. This is // the full read is no hq regions exist, or it is stated to // ignore regions. // DNALength hqReadStart, hqReadEnd; int hqRegionScore; if (GetReadTrimCoordinates(seq, seq.zmwData, regionTable, hqReadStart, hqReadEnd, hqRegionScore) == false or (trimByRegion == false and maskByRegion == false)) { hqReadStart = 0; hqReadEnd = seq.length; } // // Mask off the low quality portions of the reads. // if (maskByRegion) { if (hqReadStart > 0) { fill(&seq.seq[0], &seq.seq[hqReadStart], 'N'); } if (hqReadEnd != seq.length) { fill(&seq.seq[hqReadEnd], &seq.seq[seq.length], 'N'); } } // // Now possibly print the full read with masking. This could be handled by making a // if (splitSubreads == false) { ReadInterval wholeRead(0, seq.length); // The set of subread intervals is just the entire read. subreadIntervals.clear(); subreadIntervals.push_back(wholeRead); } else { // // Print subread coordinates no matter whether or not reads have subreads. // subreadIntervals.clear(); // clear old, new intervals are appended. CollectSubreadIntervals(seq, ®ionTable, subreadIntervals); } // // Output all subreads as separate sequences. // int intvIndex; SMRTSequence bestSubreadSequence; int bestSubreadScore = -1; int bestSubreadIndex = 0; int bestSubreadStart = 0, bestSubreadEnd = 0; SMRTSequence bestSubread; for (intvIndex = 0; intvIndex < subreadIntervals.size(); intvIndex++) { SMRTSequence subreadSequence, subreadSequenceRC; subreadSequence.subreadStart = subreadIntervals[intvIndex].start; subreadSequence.subreadEnd = subreadIntervals[intvIndex].end; // // When trimming by region, only output the parts of the // subread that overlap the hq region. // if (trimByRegion == true) { subreadSequence.subreadStart = max((DNALength) subreadIntervals[intvIndex].start, hqReadStart); subreadSequence.subreadEnd = min((DNALength) subreadIntervals[intvIndex].end, hqReadEnd); } if (subreadSequence.subreadStart >= subreadSequence.subreadEnd or subreadSequence.subreadEnd - subreadSequence.subreadStart <= minSubreadLength) { // // There is no high qualty portion of this subread. Skip it. // continue; } if (hqRegionScore < minReadScore) { continue; } // // Print the subread, adding the coordinates as part of the title. // subreadSequence.ReferenceSubstring(seq, subreadSequence.subreadStart, subreadSequence.subreadEnd - subreadSequence.subreadStart); stringstream titleStream; titleStream << seq.title; if (splitSubreads) { // // Add the subread coordinates if splitting on subread. // titleStream << "/" << subreadSequence.subreadStart << "_" << subreadSequence.subreadEnd; } subreadSequence.CopyTitle(titleStream.str()); // // Eventually replace with WriterAgglomerate. // if (printOnlyBest == false) { if (subreadSequence.length > 0) { if (printFastq == false) { ((FASTASequence*)&subreadSequence)->PrintSeq(fastaOut); } else { subreadSequence.PrintFastq(fastaOut, lineLength); } } delete[] subreadSequence.title; } else { int subreadWeightedScore = subreadSequence.length * hqRegionScore; if (subreadWeightedScore > bestSubreadScore) { bestSubreadIndex = intvIndex; bestSubread = subreadSequence; bestSubreadScore = subreadWeightedScore; } } } if (printOnlyBest) { if (bestSubreadScore >= 0) { if (printFastq == false) { bestSubread.PrintSeq(fastaOut); } else { bestSubread.PrintFastq(fastaOut, bestSubread.length); } bestSubread.Free(); } } ccsSeq.Free(); seq.Free(); } if (printCcs or printOnlyBest) { ccsReader.Close(); } else { smrtReader.Close(); } hdfRegionReader.Close(); } }