Hypergraph FKAlgorithmA::transversal (const Hypergraph& H) const { BOOST_LOG_TRIVIAL(debug) << "Starting FKA. Hypergraph has " << H.num_verts() << " vertices and " << H.num_edges() << " edges."; Hypergraph G (H.num_verts()); Hypergraph Hmin = H.minimization(); Hypergraph::Edge V = Hmin.verts_covered(); bool still_searching_for_transversals = true; while (still_searching_for_transversals) { Hypergraph::Edge omit_set = find_omit_set(Hmin, G); if (omit_set.none() and G.num_edges() > 0) { BOOST_LOG_TRIVIAL(debug) << "Received empty omit_set, so we're done."; still_searching_for_transversals = false; } else { Hypergraph::Edge new_hs = V - omit_set; Hypergraph::Edge new_mhs = minimize_new_hs(H, G, new_hs); BOOST_LOG_TRIVIAL(trace) << "Received witness." << "\nomit_set:\t" << omit_set << "\nMHS:\t\t" << new_mhs; G.add_edge(new_mhs, true); BOOST_LOG_TRIVIAL(debug) << "New G size: " << G.num_edges(); } } return G; }
Hypergraph ParBMAlgorithm::transversal (const Hypergraph& H) const { BOOST_LOG_TRIVIAL(debug) << "Starting BM with " << num_threads << " threads. Hypergraph has " << H.num_verts() << " vertices and " << H.num_edges() << " edges."; // Set up inputs Hypergraph Hmin = H.minimization(); Hypergraph G (H.num_verts()); Hypergraph::Edge V = Hmin.verts_covered(); // Initialize using any HS we can find Hypergraph::Edge first_hs = FKAlgorithm::minimize_new_hs(Hmin, G, V); G.add_edge(first_hs); // Grow G until it covers all vertices bool G_has_full_coverage = false; while (not G_has_full_coverage) { Hypergraph::Edge new_hs = V - coverage_condition_check(H, G); if (new_hs.is_proper_subset_of(V)) { Hypergraph::Edge new_mhs = FKAlgorithm::minimize_new_hs(Hmin, G, new_hs); G.add_edge(new_mhs); } else { G_has_full_coverage = true; } } // Apply the BM algorithm repeatedly, generating new transversals // until duality is confirmed bool still_searching_for_transversals = true; Hypergraph::EdgeQueue new_hses, new_mhses; #pragma omp parallel shared(Hmin, G, new_hses, new_mhses) num_threads(num_threads) #pragma omp master while (still_searching_for_transversals) { find_new_hses(Hmin, G, Hmin.verts_covered(), new_hses); if (new_hses.size_approx() == 0) { still_searching_for_transversals = false; } else { minimize_new_hses(Hmin, G, new_hses, new_mhses); Hypergraph::Edge new_mhs; while (new_mhses.try_dequeue(new_mhs)) { // The results will all be inclusion-minimal, but // there may be some overlap. Thus, we try to add // them... try { G.add_edge(new_mhs, true); } // But ignore any minimality_violated_exception // that is thrown. catch (minimality_violated_exception& e) {} } BOOST_LOG_TRIVIAL(debug) << "New |G|: " << G.num_edges(); } } return G; }
Hypergraph::Edge ParBMAlgorithm::find_subset_edge (const Hypergraph& H, const Hypergraph::Edge& I) { /** Search for an edge of H which is a subset of I. If found, return it; if not, return an empty edge as a signal. **/ for (auto& edge: H) { if (edge.is_subset_of(I)) { return edge; } } // If we make it this far, no edge was found Hypergraph::Edge empty_edge (H.num_verts()); return empty_edge; }
Hypergraph::Edge ParBMAlgorithm::find_missed_edge (const Hypergraph& H, const Hypergraph::Edge& I) { /** Search for an edge of H which does not intersect I. If found, return it; if not, return an empty edge as a signal. **/ for (auto& edge: H) { if (not edge.intersects(I)) { return edge; } } // If we make it this far, no edge was found Hypergraph::Edge empty_edge (H.num_verts()); return empty_edge; }
Hypergraph ParBMAlgorithm::l5_full_cover (const Hypergraph& H, const Hypergraph::Edge& base_transversal) { /** Find a full cover of the dual of H from the given base_transversal in accordance with lemma 5 of BM. **/ Hypergraph C (H.num_verts()); Hypergraph::Edge V = H.verts_covered(); C.add_edge(base_transversal, false); Hypergraph::EdgeIndex i = base_transversal.find_first(); while (i != Hypergraph::Edge::npos) { V.reset(i); C.add_edge(V, false); V.set(i); i = base_transversal.find_next(i); } return C; }
Hypergraph ParBMAlgorithm::l4_full_cover (const Hypergraph& H, const Hypergraph::Edge& base_edge) { /** Find a full cover of the dual of H from the given base_edge in accordance with lemma 4 of BM. **/ Hypergraph C (H.num_verts()); Hypergraph::Edge V = H.verts_covered(); for (auto& edge: H) { Hypergraph::Edge intersection = edge & base_edge; Hypergraph::EdgeIndex i = intersection.find_first(); while (i != Hypergraph::Edge::npos) { Hypergraph::Edge new_edge = V - edge; new_edge.set(i); C.add_edge(new_edge, false); i = intersection.find_next(i); } } return C; }
Hypergraph::Edge FKAlgorithmA::find_omit_set (const Hypergraph& F, const Hypergraph& G) { /** Test whether F and G are dual. If so, return an empty edge as a notification. If not, return a omit_set as per FK. **/ BOOST_LOG_TRIVIAL(trace) << "Beginning run with " << "|F| = " << F.num_edges() << " and |G| = " << G.num_edges(); // Input specification assert(F.num_verts() == G.num_verts()); // Create an empty omit_set to use as temporary storage Hypergraph::Edge omit_set (F.num_verts()); // FK step 1: initialize if G is empty if (G.num_edges() == 0) { BOOST_LOG_TRIVIAL(trace) << "Returning empty omit_set since G is empty."; return omit_set; } // FK step 2: consistency checks // Check 1.1: hitting condition omit_set = hitting_condition_check(F, G); if (omit_set.any()) { return omit_set; } // Check 1.2: same vertices covered omit_set = coverage_condition_check(F, G); if (omit_set.any()) { return omit_set; } // Check 1.3: neither F nor G has edges too large omit_set = edge_size_check(F, G); if (omit_set.any()) { return omit_set; } // Check 2.1: satisfiability count condition omit_set = satisfiability_count_check(F, G); if (omit_set.any()) { return omit_set; } // FK step 3: Check whether F and G are small // If either hypergraph is empty, they cannot be dual omit_set = small_hypergraphs_check(F, G); if (omit_set.any()) { return omit_set; } // FK step 4: Recurse // Find the most frequently occurring vertex Hypergraph::EdgeIndex max_freq_vert = most_frequent_vertex(F, G); // Then we compute the split hypergraphs F0, F1, G0, and G1 std::pair<Hypergraph, Hypergraph> Fsplit, Gsplit; Hypergraph F0, F1, G0, G1; Fsplit = split_hypergraph_over_vertex(F, max_freq_vert); F0 = Fsplit.first; F1 = Fsplit.second; Gsplit = split_hypergraph_over_vertex(G, max_freq_vert); G0 = Gsplit.first; G1 = Gsplit.second; // We will also need the unions F0∪F1 and G0∪G1 Hypergraph Fnew = minimized_union(F0, F1); Hypergraph Gnew = minimized_union(G0, G1); // And, finally, fire up the two recursions if (F1.num_edges() > 0 and Gnew.num_edges() > 0) { BOOST_LOG_TRIVIAL(trace) << "Side 1 recursion."; Hypergraph::Edge omit_set = find_omit_set(F1, Gnew); if (omit_set.any()) { return omit_set; } } if (Fnew.num_edges() > 0 and G1.num_edges() > 0) { BOOST_LOG_TRIVIAL(trace) << "Side 2 recursion."; Hypergraph::Edge omit_set = find_omit_set(Fnew, G1); if (omit_set.any()) { omit_set.set(max_freq_vert); return omit_set; } } // If we make it this far, we did not find a nonempty // omit_set, so the pair is dual return omit_set; }