// Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI || !CI->isEquality())
    return false;

  Value *LHS = CI->getOperand(0);

  if (!LHS->getType()->isPointerTy())
    return false;

  assert(CI->getOperand(1)->getType()->isPointerTy());

  // p != 0   ->   isProb = true
  // p == 0   ->   isProb = false
  // p != q   ->   isProb = true
  // p == q   ->   isProb = false;
  unsigned TakenIdx = 0, NonTakenIdx = 1;
  bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
  if (!isProb)
    std::swap(TakenIdx, NonTakenIdx);

  BranchProbability TakenProb(PH_TAKEN_WEIGHT,
                              PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
  setEdgeProbability(BB, TakenIdx, TakenProb);
  setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
  return true;
}
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityAnalysis::calcPointerHeuristics(BasicBlock *BB) {
  BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI || !CI->isEquality())
    return false;

  Value *LHS = CI->getOperand(0);

  if (!LHS->getType()->isPointerTy())
    return false;

  assert(CI->getOperand(1)->getType()->isPointerTy());

  BasicBlock *Taken = BI->getSuccessor(0);
  BasicBlock *NonTaken = BI->getSuccessor(1);

  // p != 0   ->   isProb = true
  // p == 0   ->   isProb = false
  // p != q   ->   isProb = true
  // p == q   ->   isProb = false;
  bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
  if (!isProb)
    std::swap(Taken, NonTaken);

  BP->setEdgeWeight(BB, Taken, PH_TAKEN_WEIGHT);
  BP->setEdgeWeight(BB, NonTaken, PH_NONTAKEN_WEIGHT);
  return true;
}
bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) {
    BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BI || !BI->isConditional())
        return false;

    Value *Cond = BI->getCondition();
    ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
    if (!CI)
        return false;

    Value *RHS = CI->getOperand(1);
    ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
    if (!CV)
        return false;

    bool isProb;
    if (CV->isZero()) {
        switch (CI->getPredicate()) {
        case CmpInst::ICMP_EQ:
            // X == 0   ->  Unlikely
            isProb = false;
            break;
        case CmpInst::ICMP_NE:
            // X != 0   ->  Likely
            isProb = true;
            break;
        case CmpInst::ICMP_SLT:
            // X < 0   ->  Unlikely
            isProb = false;
            break;
        case CmpInst::ICMP_SGT:
            // X > 0   ->  Likely
            isProb = true;
            break;
        default:
            return false;
        }
    } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
        // InstCombine canonicalizes X <= 0 into X < 1.
        // X <= 0   ->  Unlikely
        isProb = false;
    } else if (CV->isAllOnesValue() && CI->getPredicate() == CmpInst::ICMP_SGT) {
        // InstCombine canonicalizes X >= 0 into X > -1.
        // X >= 0   ->  Likely
        isProb = true;
    } else {
        return false;
    }

    unsigned TakenIdx = 0, NonTakenIdx = 1;

    if (!isProb)
        std::swap(TakenIdx, NonTakenIdx);

    setEdgeWeight(BB, TakenIdx, ZH_TAKEN_WEIGHT);
    setEdgeWeight(BB, NonTakenIdx, ZH_NONTAKEN_WEIGHT);

    return true;
}
/// Given a LoadInst LI this adds assume(LI != null) after it.
static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
  Function *AssumeIntrinsic =
      Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
  ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
                                       Constant::getNullValue(LI->getType()));
  LoadNotNull->insertAfter(LI);
  CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
  CI->insertAfter(LoadNotNull);
  AC->registerAssumption(CI);
}
Example #5
0
void IndVarSimplify::EliminateIVComparisons() {
  // Look for ICmp users.
  for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
    IVStrideUse &UI = *I;
    ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser());
    if (!ICmp) continue;

    bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1);
    ICmpInst::Predicate Pred = ICmp->getPredicate();
    if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred);

    // Get the SCEVs for the ICmp operands.
    const SCEV *S = IU->getReplacementExpr(UI);
    const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped));

    // Simplify unnecessary loops away.
    const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
    S = SE->getSCEVAtScope(S, ICmpLoop);
    X = SE->getSCEVAtScope(X, ICmpLoop);

    // If the condition is always true or always false, replace it with
    // a constant value.
    if (SE->isKnownPredicate(Pred, S, X))
      ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
    else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
      ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
    else
      continue;

    DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
    DeadInsts.push_back(ICmp);
  }
}
Example #6
0
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
  assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
         "I does not need promotion to i32");

  IRBuilder<> Builder(&I);
  Builder.SetCurrentDebugLocation(I.getDebugLoc());

  Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
  Value *ExtOp0 = nullptr;
  Value *ExtOp1 = nullptr;
  Value *NewICmp  = nullptr;

  if (I.isSigned()) {
    ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
    ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
  } else {
    ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
    ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
  }
  NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);

  I.replaceAllUsesWith(NewICmp);
  I.eraseFromParent();

  return true;
}
bool BranchProbabilityAnalysis::calcZeroHeuristics(BasicBlock *BB) {
  BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI)
    return false;

  Value *RHS = CI->getOperand(1);
  ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
  if (!CV || !CV->isZero())
    return false;

  bool isProb;
  switch (CI->getPredicate()) {
  case CmpInst::ICMP_EQ:
    // Equal to zero is not expected to be taken.
    isProb = false;
    break;

  case CmpInst::ICMP_NE:
    // Not equal to zero is expected.
    isProb = true;
    break;

  case CmpInst::ICMP_SLT:
    // Less or equal to zero is not expected.
    // X < 0   ->  Unlikely
    isProb = false;
    break;

  case CmpInst::ICMP_UGT:
  case CmpInst::ICMP_SGT:
    // Greater or equal to zero is expected.
    // X > 0   ->  Likely
    isProb = true;
    break;

  default:
    return false;
  };

  BasicBlock *Taken = BI->getSuccessor(0);
  BasicBlock *NonTaken = BI->getSuccessor(1);

  if (!isProb)
    std::swap(Taken, NonTaken);

  BP->setEdgeWeight(BB, Taken, ZH_TAKEN_WEIGHT);
  BP->setEdgeWeight(BB, NonTaken, ZH_NONTAKEN_WEIGHT);

  return true;
}
bool LowerExpectIntrinsic::HandleIfExpect(BranchInst *BI) {
  if (BI->isUnconditional())
    return false;

  // Handle non-optimized IR code like:
  //   %expval = call i64 @llvm.expect.i64(i64 %conv1, i64 1)
  //   %tobool = icmp ne i64 %expval, 0
  //   br i1 %tobool, label %if.then, label %if.end
  //
  // Or the following simpler case:
  //   %expval = call i1 @llvm.expect.i1(i1 %cmp, i1 1)
  //   br i1 %expval, label %if.then, label %if.end

  CallInst *CI;

  ICmpInst *CmpI = dyn_cast<ICmpInst>(BI->getCondition());
  if (!CmpI) {
    CI = dyn_cast<CallInst>(BI->getCondition());
  } else {
    if (CmpI->getPredicate() != CmpInst::ICMP_NE)
      return false;
    CI = dyn_cast<CallInst>(CmpI->getOperand(0));
  }

  if (!CI)
    return false;

  Function *Fn = CI->getCalledFunction();
  if (!Fn || Fn->getIntrinsicID() != Intrinsic::expect)
    return false;

  Value *ArgValue = CI->getArgOperand(0);
  ConstantInt *ExpectedValue = dyn_cast<ConstantInt>(CI->getArgOperand(1));
  if (!ExpectedValue)
    return false;

  MDBuilder MDB(CI->getContext());
  MDNode *Node;

  // If expect value is equal to 1 it means that we are more likely to take
  // branch 0, in other case more likely is branch 1.
  if (ExpectedValue->isOne())
    Node = MDB.createBranchWeights(LikelyBranchWeight, UnlikelyBranchWeight);
  else
    Node = MDB.createBranchWeights(UnlikelyBranchWeight, LikelyBranchWeight);

  BI->setMetadata(LLVMContext::MD_prof, Node);

  if (CmpI)
    CmpI->setOperand(0, ArgValue);
  else
    BI->setCondition(ArgValue);
  return true;
}
Example #9
0
void TempScopInfo::buildAffineCondition(Value &V, bool inverted,
                                         Comparison **Comp,
                                         TempScop &Scop) const {
  Region &R = Scop.getMaxRegion();
  ParamSetType &Params = Scop.getParamSet();
  if (ConstantInt *C = dyn_cast<ConstantInt>(&V)) {
    // If this is always true condition, we will create 1 >= 0,
    // otherwise we will create 1 == 0.
    SCEVAffFunc *AffLHS = new SCEVAffFunc(SE->getConstant(C->getType(), 0),
                                          SCEVAffFunc::Eq, R, Params, LI, SE);
    SCEVAffFunc *AffRHS = new SCEVAffFunc(SE->getConstant(C->getType(), 1),
                                          SCEVAffFunc::Eq, R, Params, LI, SE);
    if (C->isOne() == inverted)
      *Comp = new Comparison(AffRHS, AffLHS, ICmpInst::ICMP_NE);
    else
      *Comp = new Comparison(AffLHS, AffLHS, ICmpInst::ICMP_EQ);

    return;
  }

  ICmpInst *ICmp = dyn_cast<ICmpInst>(&V);
  assert(ICmp && "Only ICmpInst of constant as condition supported!");

  const SCEV *LHS = SE->getSCEV(ICmp->getOperand(0)),
             *RHS = SE->getSCEV(ICmp->getOperand(1));

  ICmpInst::Predicate Pred = ICmp->getPredicate();

  // Invert the predicate if needed.
  if (inverted)
    Pred = ICmpInst::getInversePredicate(Pred);

  SCEVAffFunc *AffLHS = new SCEVAffFunc(LHS, SCEVAffFunc::Eq, R, Params, LI,
                                        SE);
  SCEVAffFunc *AffRHS = new SCEVAffFunc(RHS, SCEVAffFunc::Eq, R, Params, LI,
                                        SE);

  switch (Pred) {
  case ICmpInst::ICMP_UGT:
  case ICmpInst::ICMP_UGE:
  case ICmpInst::ICMP_ULT:
  case ICmpInst::ICMP_ULE:
    // TODO: At the moment we need to see everything as signed. This is an
    //       correctness issue that needs to be solved.
    //AffLHS->setUnsigned();
    //AffRHS->setUnsigned();
    break;
  default:
    break;
  }

  *Comp = new Comparison(AffLHS, AffRHS, Pred);
}
Example #10
0
    bool visitICmpInst(ICmpInst& inst) {
        // errs() << "got icmp instruction!  " << inst << '\n';

        bool changed = false;
        if (inst.getPredicate() == CmpInst::ICMP_EQ) {
            assert(inst.getNumOperands() == 2);

            if (inst.getOperand(1) == processing) {
                inst.swapOperands();
                changed = true;
                any_changes = true;
            }
            assert(dyn_cast<Instruction>(inst.getOperand(0)) == processing);
            Value* other = inst.getOperand(1);
            if (isa<ConstantPointerNull>(other)) {
                if (VERBOSITY("opt") >= 2) {
                    errs() << inst << '\n';
                    errs() << "replacing with false!\n";
                }

                Value* new_value = ConstantInt::getFalse(other->getContext());
                inst.replaceAllUsesWith(new_value);
                inst.eraseFromParent();
                changed = true;
                any_changes = true;
            }
        }
        return changed;
    }
Example #11
0
/// restrictLoopBound - Op dominates loop body. Op compares an IV based value 
/// with a loop invariant value. Update loop's lower and upper bound based on 
/// the loop invariant value.
bool LoopIndexSplit::restrictLoopBound(ICmpInst &Op) {
  bool Sign = Op.isSigned();
  Instruction *PHTerm = L->getLoopPreheader()->getTerminator();

  if (IVisGT(*ExitCondition) || IVisGE(*ExitCondition)) {
    BranchInst *EBR = 
      cast<BranchInst>(ExitCondition->getParent()->getTerminator());
    ExitCondition->setPredicate(ExitCondition->getInversePredicate());
    BasicBlock *T = EBR->getSuccessor(0);
    EBR->setSuccessor(0, EBR->getSuccessor(1));
    EBR->setSuccessor(1, T);
  }

  LLVMContext &Context = Op.getContext();

  // New upper and lower bounds.
  Value *NLB = NULL;
  Value *NUB = NULL;
  if (Value *V = IVisLT(Op)) {
    // Restrict upper bound.
    if (IVisLE(*ExitCondition)) 
      V = getMinusOne(V, Sign, PHTerm, Context);
    NUB = getMin(V, IVExitValue, Sign, PHTerm);
  } else if (Value *V = IVisLE(Op)) {
    // Restrict upper bound.
    if (IVisLT(*ExitCondition)) 
      V = getPlusOne(V, Sign, PHTerm, Context);
    NUB = getMin(V, IVExitValue, Sign, PHTerm);
  } else if (Value *V = IVisGT(Op)) {
    // Restrict lower bound.
    V = getPlusOne(V, Sign, PHTerm, Context);
    NLB = getMax(V, IVStartValue, Sign, PHTerm);
  } else if (Value *V = IVisGE(Op))
    // Restrict lower bound.
    NLB = getMax(V, IVStartValue, Sign, PHTerm);

  if (!NLB && !NUB) 
    return false;

  if (NLB) {
    unsigned i = IndVar->getBasicBlockIndex(L->getLoopPreheader());
    IndVar->setIncomingValue(i, NLB);
  }

  if (NUB) {
    unsigned i = (ExitCondition->getOperand(0) != IVExitValue);
    ExitCondition->setOperand(i, NUB);
  }
  return true;
}
Example #12
0
File: ABCD.cpp Project: aaasz/SHP
/// Creates the graphs for this function.
/// It will look for all comparators used in branches, and create them.
/// These comparators will create constraints for any instruction as an
/// operand.
void ABCD::executeABCD(Function &F) {
  for (Function::iterator begin = F.begin(), end = F.end();
       begin != end; ++begin) {
    BasicBlock *BB = begin;
    TerminatorInst *TI = BB->getTerminator();
    if (TI->getNumOperands() == 0)
      continue;

    ICmpInst *ICI = dyn_cast<ICmpInst>(TI->getOperand(0));
    if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType()))
      continue;

    createConstraintCmpInst(ICI, TI);
    seekRedundancy(ICI, TI);
  }
}
Example #13
0
void TempScopInfo::buildAffineCondition(Value &V, bool inverted,
                                        Comparison **Comp) const {
  if (ConstantInt *C = dyn_cast<ConstantInt>(&V)) {
    // If this is always true condition, we will create 0 <= 1,
    // otherwise we will create 0 >= 1.
    const SCEV *LHS = SE->getConstant(C->getType(), 0);
    const SCEV *RHS = SE->getConstant(C->getType(), 1);

    if (C->isOne() == inverted)
      *Comp = new Comparison(LHS, RHS, ICmpInst::ICMP_SLE);
    else
      *Comp = new Comparison(LHS, RHS, ICmpInst::ICMP_SGE);

    return;
  }

  ICmpInst *ICmp = dyn_cast<ICmpInst>(&V);
  assert(ICmp && "Only ICmpInst of constant as condition supported!");

  Loop *L = LI->getLoopFor(ICmp->getParent());
  const SCEV *LHS = SE->getSCEVAtScope(ICmp->getOperand(0), L);
  const SCEV *RHS = SE->getSCEVAtScope(ICmp->getOperand(1), L);

  ICmpInst::Predicate Pred = ICmp->getPredicate();

  // Invert the predicate if needed.
  if (inverted)
    Pred = ICmpInst::getInversePredicate(Pred);

  switch (Pred) {
  case ICmpInst::ICMP_UGT:
  case ICmpInst::ICMP_UGE:
  case ICmpInst::ICMP_ULT:
  case ICmpInst::ICMP_ULE:
    // TODO: At the moment we need to see everything as signed. This is an
    //       correctness issue that needs to be solved.
    // AffLHS->setUnsigned();
    // AffRHS->setUnsigned();
    break;
  default:
    break;
  }

  *Comp = new Comparison(LHS, RHS, Pred);
}
Example #14
0
bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
  bool Changed = false;

  if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
      DA->isUniform(&I))
    Changed |= promoteUniformOpToI32(I);

  return Changed;
}
Example #15
0
/// If From has a conditional jump to To, add the condition to Conditions,
/// if it is relevant to any argument at CS.
static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To,
                            ConditionsTy &Conditions) {
  auto *BI = dyn_cast<BranchInst>(From->getTerminator());
  if (!BI || !BI->isConditional())
    return;

  CmpInst::Predicate Pred;
  Value *Cond = BI->getCondition();
  if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
    return;

  ICmpInst *Cmp = cast<ICmpInst>(Cond);
  if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
    if (isCondRelevantToAnyCallArgument(Cmp, CS))
      Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
                                     ? Pred
                                     : Cmp->getInversePredicate()});
}
Example #16
0
bool LowerExpectIntrinsic::HandleIfExpect(BranchInst *BI) {
  if (BI->isUnconditional())
    return false;

  // Handle non-optimized IR code like:
  //   %expval = call i64 @llvm.expect.i64.i64(i64 %conv1, i64 1)
  //   %tobool = icmp ne i64 %expval, 0
  //   br i1 %tobool, label %if.then, label %if.end

  ICmpInst *CmpI = dyn_cast<ICmpInst>(BI->getCondition());
  if (!CmpI || CmpI->getPredicate() != CmpInst::ICMP_NE)
    return false;

  CallInst *CI = dyn_cast<CallInst>(CmpI->getOperand(0));
  if (!CI)
    return false;

  Function *Fn = CI->getCalledFunction();
  if (!Fn || Fn->getIntrinsicID() != Intrinsic::expect)
    return false;

  Value *ArgValue = CI->getArgOperand(0);
  ConstantInt *ExpectedValue = dyn_cast<ConstantInt>(CI->getArgOperand(1));
  if (!ExpectedValue)
    return false;

  LLVMContext &Context = CI->getContext();
  const Type *Int32Ty = Type::getInt32Ty(Context);
  bool Likely = ExpectedValue->isOne();

  // If expect value is equal to 1 it means that we are more likely to take
  // branch 0, in other case more likely is branch 1.
  Value *Ops[] = {
    MDString::get(Context, "branch_weights"),
    ConstantInt::get(Int32Ty, Likely ? LikelyBranchWeight : UnlikelyBranchWeight),
    ConstantInt::get(Int32Ty, Likely ? UnlikelyBranchWeight : LikelyBranchWeight)
  };

  MDNode *WeightsNode = MDNode::get(Context, Ops);
  BI->setMetadata(LLVMContext::MD_prof, WeightsNode);

  CmpI->setOperand(0, ArgValue);
  return true;
}
/// MatchPointerHeuristic - Predict that a comparison of a pointer against
/// null or of two pointers will fail.
/// @returns a Prediction that is a pair in which the first element is the
/// successor taken, and the second the successor not taken.
Prediction BranchHeuristicsInfo::MatchPointerHeuristic(BasicBlock *root) const {
  // Last instruction of basic block.
  TerminatorInst *TI = root->getTerminator();

  // Basic block successors. True and False branches.
  BasicBlock *trueSuccessor = TI->getSuccessor(0);
  BasicBlock *falseSuccessor = TI->getSuccessor(1);

  // Is the last instruction a Branch Instruction?
  BranchInst *BI = dyn_cast<BranchInst>(TI);
  if (!BI || !BI->isConditional())
    return empty;

  // Conditional instruction.
  Value *cond = BI->getCondition();

  // Pointer comparisons are integer comparisons.
  ICmpInst *II = dyn_cast<ICmpInst>(cond);
  if (!II)
    return empty;

  // An integer comparison has always two operands.
  Value *operand1 = II->getOperand(0);
  Value *operand2 = II->getOperand(1);

  // Obtain the type of comparison.
  enum ICmpInst::Predicate signedPred = II->getSignedPredicate();

  // The heuristic states that it must be compared against null,
  // but in LLVM, null is also a PointerType, so it only requires
  // to test if there is a comparison between two pointers.
  if (signedPred == ICmpInst::ICMP_EQ &&
      isa<PointerType>(operand1->getType()) && // NULL is a pointer type too
      isa<PointerType>(operand2->getType())) { // NULL is a pointer type too
    return std::make_pair(falseSuccessor, trueSuccessor);
  } else if (signedPred != ICmpInst::ICMP_EQ &&
             isa<PointerType>(operand1->getType()) &&
             isa<PointerType>(operand2->getType())) {
    return std::make_pair(trueSuccessor, falseSuccessor);
  }

  return empty;
}
Example #18
0
// createSigmasForCondBranch
void Redefinition::createSigmasForCondBranch(BranchInst *BI) {
  assert(BI->isConditional() && "Expected conditional branch");

  ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
  if (!ICI || !ICI->getOperand(0)->getType()->isIntegerTy())
    return;

  RDEF_DEBUG(dbgs() << "createSigmasForCondBranch: " << *BI << "\n");

  Value *Left = ICI->getOperand(0);
  Value *Right = ICI->getOperand(1);

  BasicBlock *TB = BI->getSuccessor(0);
  BasicBlock *FB = BI->getSuccessor(1);

  bool HasSinglePredTB = TB->getSinglePredecessor() != NULL;
  bool HasSinglePredFB = FB->getSinglePredecessor() != NULL;

  bool IsRedefinableRight = IsRedefinable(Right);
  bool SameBranchOperands = Left == Right;

  //errs() << HasSinglePredTB << ", " << HasSinglePredFB << "\n";
  //errs() << IsRedefinable(Left) << ", " << IsRedefinableRight << "\n";

  if (IsRedefinable(Left)) {
    // We don't want to place extranius definitions of a value, so the only
    // place the sigma once if the branch operands are the same.
    Value *Second = SameBranchOperands && IsRedefinableRight ? Right : NULL;
    if (HasSinglePredTB)
      createSigmaNodesForValueAt(Left, Second, TB);
    if (HasSinglePredFB)
      createSigmaNodesForValueAt(Left, Second, FB);
  }
  // Left isn't definable down here.
  else if (IsRedefinable(Right)) {
    if (HasSinglePredTB)
      createSigmaNodesForValueAt(Right, NULL, TB);
    if (HasSinglePredFB)
      createSigmaNodesForValueAt(Right, NULL, FB);
  }
}
Example #19
0
void IndVarSimplify::EliminateIVComparisons() {
  SmallVector<WeakVH, 16> DeadInsts;

  // Look for ICmp users.
  for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
    IVStrideUse &UI = *I;
    ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser());
    if (!ICmp) continue;

    bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1);
    ICmpInst::Predicate Pred = ICmp->getPredicate();
    if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred);

    // Get the SCEVs for the ICmp operands.
    const SCEV *S = IU->getReplacementExpr(UI);
    const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped));

    // Simplify unnecessary loops away.
    const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
    S = SE->getSCEVAtScope(S, ICmpLoop);
    X = SE->getSCEVAtScope(X, ICmpLoop);

    // If the condition is always true or always false, replace it with
    // a constant value.
    if (SE->isKnownPredicate(Pred, S, X))
      ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
    else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
      ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
    else
      continue;

    DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
    DeadInsts.push_back(ICmp);
  }

  // Now that we're done iterating through lists, clean up any instructions
  // which are now dead.
  while (!DeadInsts.empty())
    if (Instruction *Inst =
        dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
      RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
/// returning the kind and providing the out parameter results if we
/// successfully match.
static SelectPatternFlavor
MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
  SelectInst *SI = dyn_cast<SelectInst>(V);
  if (SI == 0) return SPF_UNKNOWN;

  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
  if (ICI == 0) return SPF_UNKNOWN;

  LHS = ICI->getOperand(0);
  RHS = ICI->getOperand(1);

  // (icmp X, Y) ? X : Y
  if (SI->getTrueValue() == ICI->getOperand(0) &&
      SI->getFalseValue() == ICI->getOperand(1)) {
    switch (ICI->getPredicate()) {
    default: return SPF_UNKNOWN; // Equality.
    case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_UGE: return SPF_UMAX;
    case ICmpInst::ICMP_SGT:
    case ICmpInst::ICMP_SGE: return SPF_SMAX;
    case ICmpInst::ICMP_ULT:
    case ICmpInst::ICMP_ULE: return SPF_UMIN;
    case ICmpInst::ICMP_SLT:
    case ICmpInst::ICMP_SLE: return SPF_SMIN;
    }
  }

  // (icmp X, Y) ? Y : X
  if (SI->getTrueValue() == ICI->getOperand(1) &&
      SI->getFalseValue() == ICI->getOperand(0)) {
    switch (ICI->getPredicate()) {
      default: return SPF_UNKNOWN; // Equality.
      case ICmpInst::ICMP_UGT:
      case ICmpInst::ICMP_UGE: return SPF_UMIN;
      case ICmpInst::ICMP_SGT:
      case ICmpInst::ICMP_SGE: return SPF_SMIN;
      case ICmpInst::ICMP_ULT:
      case ICmpInst::ICMP_ULE: return SPF_UMAX;
      case ICmpInst::ICMP_SLT:
      case ICmpInst::ICMP_SLE: return SPF_SMAX;
    }
  }

  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)

  return SPF_UNKNOWN;
}
int BranchProbabilities::CheckPointerHeuristic()
{
    // Heuristic fails if the last instruction is not a conditional branch
    BranchInst *BI = dyn_cast<BranchInst>(_TI);
    if ((!BI) || (BI->isUnconditional()))
        return -1;

    // All pointer comparisons are done with the icmp instruction
    ICmpInst *icmp = dyn_cast<ICmpInst>(BI->getCondition());
    if (!icmp)
        return -1;

    Value *v[2];
    v[0] = icmp->getOperand(0);
    v[1] = icmp->getOperand(1);

    // Make sure we're comparing pointers
    if (isa<PointerType>(v[0]->getType()))
    {
        assert(isa<PointerType>(v[1]->getType()) && "v[1] is not a pointer!");

        // Choose the prefered branch depending on if this is an eq or neq comp
        switch (icmp->getPredicate())
        {
        case ICmpInst::ICMP_EQ:
            return 1;
        case ICmpInst::ICMP_NE:
            return 0;
        default:
            assert("non-equality comparison of pointers");
            return -1;
        }
    }

    return -1;
}
Example #22
0
bool CallAnalyzer::visitICmp(ICmpInst &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  // First try to handle simplified comparisons.
  if (!isa<Constant>(LHS))
    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
      LHS = SimpleLHS;
  if (!isa<Constant>(RHS))
    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
      RHS = SimpleRHS;
  if (Constant *CLHS = dyn_cast<Constant>(LHS))
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
        SimplifiedValues[&I] = C;
        return true;
      }

  // Otherwise look for a comparison between constant offset pointers with
  // a common base.
  Value *LHSBase, *RHSBase;
  APInt LHSOffset, RHSOffset;
  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
  if (LHSBase) {
    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    if (RHSBase && LHSBase == RHSBase) {
      // We have common bases, fold the icmp to a constant based on the
      // offsets.
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
        SimplifiedValues[&I] = C;
        ++NumConstantPtrCmps;
        return true;
      }
    }
  }

  // If the comparison is an equality comparison with null, we can simplify it
  // for any alloca-derived argument.
  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
    if (isAllocaDerivedArg(I.getOperand(0))) {
      // We can actually predict the result of comparisons between an
      // alloca-derived value and null. Note that this fires regardless of
      // SROA firing.
      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
                                        : ConstantInt::getFalse(I.getType());
      return true;
    }

  // Finally check for SROA candidates in comparisons.
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    if (isa<ConstantPointerNull>(I.getOperand(1))) {
      accumulateSROACost(CostIt, InlineConstants::InstrCost);
      return true;
    }

    disableSROA(CostIt);
  }

  return false;
}
Example #23
0
bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) {
  BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI)
    return false;

  Value *RHS = CI->getOperand(1);
  ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
  if (!CV)
    return false;

  // If the LHS is the result of AND'ing a value with a single bit bitmask,
  // we don't have information about probabilities.
  if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
    if (LHS->getOpcode() == Instruction::And)
      if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
        if (AndRHS->getUniqueInteger().isPowerOf2())
          return false;

  bool isProb;
  if (CV->isZero()) {
    switch (CI->getPredicate()) {
    case CmpInst::ICMP_EQ:
      // X == 0   ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_NE:
      // X != 0   ->  Likely
      isProb = true;
      break;
    case CmpInst::ICMP_SLT:
      // X < 0   ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_SGT:
      // X > 0   ->  Likely
      isProb = true;
      break;
    default:
      return false;
    }
  } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
    // InstCombine canonicalizes X <= 0 into X < 1.
    // X <= 0   ->  Unlikely
    isProb = false;
  } else if (CV->isAllOnesValue()) {
    switch (CI->getPredicate()) {
    case CmpInst::ICMP_EQ:
      // X == -1  ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_NE:
      // X != -1  ->  Likely
      isProb = true;
      break;
    case CmpInst::ICMP_SGT:
      // InstCombine canonicalizes X >= 0 into X > -1.
      // X >= 0   ->  Likely
      isProb = true;
      break;
    default:
      return false;
    }
  } else {
    return false;
  }

  unsigned TakenIdx = 0, NonTakenIdx = 1;

  if (!isProb)
    std::swap(TakenIdx, NonTakenIdx);

  BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
                              ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
  setEdgeProbability(BB, TakenIdx, TakenProb);
  setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
  return true;
}
Example #24
0
bool LoopIndexSplit::splitLoop() {
  SplitCondition = NULL;
  if (ExitCondition->getPredicate() == ICmpInst::ICMP_NE
      || ExitCondition->getPredicate() == ICmpInst::ICMP_EQ)
    return false;
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  BranchInst *SBR = NULL; // Split Condition Branch
  BranchInst *EBR = cast<BranchInst>(ExitCondition->getParent()->getTerminator());
  // If Exiting block includes loop variant instructions then this
  // loop may not be split safely.
  BasicBlock *ExitingBlock = ExitCondition->getParent();
  if (!cleanBlock(ExitingBlock)) return false;

  LLVMContext &Context = Header->getContext();

  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I) {
    BranchInst *BR = dyn_cast<BranchInst>((*I)->getTerminator());
    if (!BR || BR->isUnconditional()) continue;
    ICmpInst *CI = dyn_cast<ICmpInst>(BR->getCondition());
    if (!CI || CI == ExitCondition 
        || CI->getPredicate() == ICmpInst::ICMP_NE
        || CI->getPredicate() == ICmpInst::ICMP_EQ)
      continue;

    // Unable to handle triangle loops at the moment.
    // In triangle loop, split condition is in header and one of the
    // the split destination is loop latch. If split condition is EQ
    // then such loops are already handle in processOneIterationLoop().
    if (Header == (*I)
        && (Latch == BR->getSuccessor(0) || Latch == BR->getSuccessor(1)))
      continue;

    // If the block does not dominate the latch then this is not a diamond.
    // Such loop may not benefit from index split.
    if (!DT->dominates((*I), Latch))
      continue;

    // If split condition branches heads do not have single predecessor, 
    // SplitCondBlock, then is not possible to remove inactive branch.
    if (!BR->getSuccessor(0)->getSinglePredecessor() 
        || !BR->getSuccessor(1)->getSinglePredecessor())
      return false;

    // If the merge point for BR is not loop latch then skip this condition.
    if (BR->getSuccessor(0) != Latch) {
      DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0));
      assert (DF0 != DF->end() && "Unable to find dominance frontier");
      if (!DF0->second.count(Latch))
        continue;
    }
    
    if (BR->getSuccessor(1) != Latch) {
      DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1));
      assert (DF1 != DF->end() && "Unable to find dominance frontier");
      if (!DF1->second.count(Latch))
        continue;
    }
    SplitCondition = CI;
    SBR = BR;
    break;
  }
   
  if (!SplitCondition)
    return false;

  // If the predicate sign does not match then skip.
  if (ExitCondition->isSigned() != SplitCondition->isSigned())
    return false;

  unsigned EVOpNum = (ExitCondition->getOperand(1) == IVExitValue);
  unsigned SVOpNum = IVBasedValues.count(SplitCondition->getOperand(0));
  Value *SplitValue = SplitCondition->getOperand(SVOpNum);
  if (!L->isLoopInvariant(SplitValue))
    return false;
  if (!IVBasedValues.count(SplitCondition->getOperand(!SVOpNum)))
    return false;

  // Normalize loop conditions so that it is easier to calculate new loop
  // bounds.
  if (IVisGT(*ExitCondition) || IVisGE(*ExitCondition)) {
    ExitCondition->setPredicate(ExitCondition->getInversePredicate());
    BasicBlock *T = EBR->getSuccessor(0);
    EBR->setSuccessor(0, EBR->getSuccessor(1));
    EBR->setSuccessor(1, T);
  }

  if (IVisGT(*SplitCondition) || IVisGE(*SplitCondition)) {
    SplitCondition->setPredicate(SplitCondition->getInversePredicate());
    BasicBlock *T = SBR->getSuccessor(0);
    SBR->setSuccessor(0, SBR->getSuccessor(1));
    SBR->setSuccessor(1, T);
  }

  //[*] Calculate new loop bounds.
  Value *AEV = SplitValue;
  Value *BSV = SplitValue;
  bool Sign = SplitCondition->isSigned();
  Instruction *PHTerm = L->getLoopPreheader()->getTerminator();

  if (IVisLT(*ExitCondition)) {
    if (IVisLT(*SplitCondition)) {
      /* Do nothing */
    }
    else if (IVisLE(*SplitCondition)) {
      AEV = getPlusOne(SplitValue, Sign, PHTerm, Context);
      BSV = getPlusOne(SplitValue, Sign, PHTerm, Context);
    } else {
      assert (0 && "Unexpected split condition!");
    }
  }
  else if (IVisLE(*ExitCondition)) {
    if (IVisLT(*SplitCondition)) {
      AEV = getMinusOne(SplitValue, Sign, PHTerm, Context);
    }
    else if (IVisLE(*SplitCondition)) {
      BSV = getPlusOne(SplitValue, Sign, PHTerm, Context);
    } else {
      assert (0 && "Unexpected split condition!");
    }
  } else {
    assert (0 && "Unexpected exit condition!");
  }
  AEV = getMin(AEV, IVExitValue, Sign, PHTerm);
  BSV = getMax(BSV, IVStartValue, Sign, PHTerm);

  // [*] Clone Loop
  DenseMap<const Value *, Value *> ValueMap;
  Loop *BLoop = CloneLoop(L, LPM, LI, ValueMap, this);
  Loop *ALoop = L;

  // [*] ALoop's exiting edge enters BLoop's header.
  //    ALoop's original exit block becomes BLoop's exit block.
  PHINode *B_IndVar = cast<PHINode>(ValueMap[IndVar]);
  BasicBlock *A_ExitingBlock = ExitCondition->getParent();
  BranchInst *A_ExitInsn =
    dyn_cast<BranchInst>(A_ExitingBlock->getTerminator());
  assert (A_ExitInsn && "Unable to find suitable loop exit branch");
  BasicBlock *B_ExitBlock = A_ExitInsn->getSuccessor(1);
  BasicBlock *B_Header = BLoop->getHeader();
  if (ALoop->contains(B_ExitBlock)) {
    B_ExitBlock = A_ExitInsn->getSuccessor(0);
    A_ExitInsn->setSuccessor(0, B_Header);
  } else
    A_ExitInsn->setSuccessor(1, B_Header);

  // [*] Update ALoop's exit value using new exit value.
  ExitCondition->setOperand(EVOpNum, AEV);

  // [*] Update BLoop's header phi nodes. Remove incoming PHINode's from
  //     original loop's preheader. Add incoming PHINode values from
  //     ALoop's exiting block. Update BLoop header's domiantor info.

  // Collect inverse map of Header PHINodes.
  DenseMap<Value *, Value *> InverseMap;
  for (BasicBlock::iterator BI = ALoop->getHeader()->begin(), 
         BE = ALoop->getHeader()->end(); BI != BE; ++BI) {
    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
      PHINode *PNClone = cast<PHINode>(ValueMap[PN]);
      InverseMap[PNClone] = PN;
    } else
      break;
  }

  BasicBlock *A_Preheader = ALoop->getLoopPreheader();
  for (BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
       BI != BE; ++BI) {
    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
      // Remove incoming value from original preheader.
      PN->removeIncomingValue(A_Preheader);

      // Add incoming value from A_ExitingBlock.
      if (PN == B_IndVar)
        PN->addIncoming(BSV, A_ExitingBlock);
      else { 
        PHINode *OrigPN = cast<PHINode>(InverseMap[PN]);
        Value *V2 = NULL;
        // If loop header is also loop exiting block then
        // OrigPN is incoming value for B loop header.
        if (A_ExitingBlock == ALoop->getHeader())
          V2 = OrigPN;
        else
          V2 = OrigPN->getIncomingValueForBlock(A_ExitingBlock);
        PN->addIncoming(V2, A_ExitingBlock);
      }
    } else
      break;
  }

  DT->changeImmediateDominator(B_Header, A_ExitingBlock);
  DF->changeImmediateDominator(B_Header, A_ExitingBlock, DT);
  
  // [*] Update BLoop's exit block. Its new predecessor is BLoop's exit
  //     block. Remove incoming PHINode values from ALoop's exiting block.
  //     Add new incoming values from BLoop's incoming exiting value.
  //     Update BLoop exit block's dominator info..
  BasicBlock *B_ExitingBlock = cast<BasicBlock>(ValueMap[A_ExitingBlock]);
  for (BasicBlock::iterator BI = B_ExitBlock->begin(), BE = B_ExitBlock->end();
       BI != BE; ++BI) {
    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
      PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(A_ExitingBlock)], 
                                                            B_ExitingBlock);
      PN->removeIncomingValue(A_ExitingBlock);
    } else
      break;
  }

  DT->changeImmediateDominator(B_ExitBlock, B_ExitingBlock);
  DF->changeImmediateDominator(B_ExitBlock, B_ExitingBlock, DT);

  //[*] Split ALoop's exit edge. This creates a new block which
  //    serves two purposes. First one is to hold PHINode defnitions
  //    to ensure that ALoop's LCSSA form. Second use it to act
  //    as a preheader for BLoop.
  BasicBlock *A_ExitBlock = SplitEdge(A_ExitingBlock, B_Header, this);

  //[*] Preserve ALoop's LCSSA form. Create new forwarding PHINodes
  //    in A_ExitBlock to redefine outgoing PHI definitions from ALoop.
  for(BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
      BI != BE; ++BI) {
    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
      Value *V1 = PN->getIncomingValueForBlock(A_ExitBlock);
      PHINode *newPHI = PHINode::Create(PN->getType(), PN->getName());
      newPHI->addIncoming(V1, A_ExitingBlock);
      A_ExitBlock->getInstList().push_front(newPHI);
      PN->removeIncomingValue(A_ExitBlock);
      PN->addIncoming(newPHI, A_ExitBlock);
    } else
      break;
  }

  //[*] Eliminate split condition's inactive branch from ALoop.
  BasicBlock *A_SplitCondBlock = SplitCondition->getParent();
  BranchInst *A_BR = cast<BranchInst>(A_SplitCondBlock->getTerminator());
  BasicBlock *A_InactiveBranch = NULL;
  BasicBlock *A_ActiveBranch = NULL;
  A_ActiveBranch = A_BR->getSuccessor(0);
  A_InactiveBranch = A_BR->getSuccessor(1);
  A_BR->setUnconditionalDest(A_ActiveBranch);
  removeBlocks(A_InactiveBranch, L, A_ActiveBranch);

  //[*] Eliminate split condition's inactive branch in from BLoop.
  BasicBlock *B_SplitCondBlock = cast<BasicBlock>(ValueMap[A_SplitCondBlock]);
  BranchInst *B_BR = cast<BranchInst>(B_SplitCondBlock->getTerminator());
  BasicBlock *B_InactiveBranch = NULL;
  BasicBlock *B_ActiveBranch = NULL;
  B_ActiveBranch = B_BR->getSuccessor(1);
  B_InactiveBranch = B_BR->getSuccessor(0);
  B_BR->setUnconditionalDest(B_ActiveBranch);
  removeBlocks(B_InactiveBranch, BLoop, B_ActiveBranch);

  BasicBlock *A_Header = ALoop->getHeader();
  if (A_ExitingBlock == A_Header)
    return true;

  //[*] Move exit condition into split condition block to avoid
  //    executing dead loop iteration.
  ICmpInst *B_ExitCondition = cast<ICmpInst>(ValueMap[ExitCondition]);
  Instruction *B_IndVarIncrement = cast<Instruction>(ValueMap[IVIncrement]);
  ICmpInst *B_SplitCondition = cast<ICmpInst>(ValueMap[SplitCondition]);

  moveExitCondition(A_SplitCondBlock, A_ActiveBranch, A_ExitBlock, ExitCondition,
                    cast<ICmpInst>(SplitCondition), IndVar, IVIncrement, 
                    ALoop, EVOpNum);

  moveExitCondition(B_SplitCondBlock, B_ActiveBranch, 
                    B_ExitBlock, B_ExitCondition,
                    B_SplitCondition, B_IndVar, B_IndVarIncrement, 
                    BLoop, EVOpNum);

  NumIndexSplit++;
  return true;
}
Example #25
0
/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
///   bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
///   bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
  unsigned BackEdge     = IncomingEdge^1;

  // Check incoming value.
  ConstantFP *InitValueVal =
    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));

  int64_t InitValue;
  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    return;

  // Check IV increment. Reject this PN if increment operation is not
  // an add or increment value can not be represented by an integer.
  BinaryOperator *Incr =
    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
  
  // If this is not an add of the PHI with a constantfp, or if the constant fp
  // is not an integer, bail out.
  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
  int64_t IncValue;
  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    return;

  // Check Incr uses. One user is PN and the other user is an exit condition
  // used by the conditional terminator.
  Value::use_iterator IncrUse = Incr->use_begin();
  Instruction *U1 = cast<Instruction>(IncrUse++);
  if (IncrUse == Incr->use_end()) return;
  Instruction *U2 = cast<Instruction>(IncrUse++);
  if (IncrUse != Incr->use_end()) return;

  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
  // only used by a branch, we can't transform it.
  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
  if (!Compare)
    Compare = dyn_cast<FCmpInst>(U2);
  if (Compare == 0 || !Compare->hasOneUse() ||
      !isa<BranchInst>(Compare->use_back()))
    return;
  
  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());

  // We need to verify that the branch actually controls the iteration count
  // of the loop.  If not, the new IV can overflow and no one will notice.
  // The branch block must be in the loop and one of the successors must be out
  // of the loop.
  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
  if (!L->contains(TheBr->getParent()) ||
      (L->contains(TheBr->getSuccessor(0)) &&
       L->contains(TheBr->getSuccessor(1))))
    return;
  
  
  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
  // transform it.
  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
  int64_t ExitValue;
  if (ExitValueVal == 0 ||
      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    return;
  
  // Find new predicate for integer comparison.
  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
  switch (Compare->getPredicate()) {
  default: return;  // Unknown comparison.
  case CmpInst::FCMP_OEQ:
  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
  case CmpInst::FCMP_ONE:
  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
  }
  
  // We convert the floating point induction variable to a signed i32 value if
  // we can.  This is only safe if the comparison will not overflow in a way
  // that won't be trapped by the integer equivalent operations.  Check for this
  // now.
  // TODO: We could use i64 if it is native and the range requires it.
  
  // The start/stride/exit values must all fit in signed i32.
  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    return;

  // If not actually striding (add x, 0.0), avoid touching the code.
  if (IncValue == 0)
    return;

  // Positive and negative strides have different safety conditions.
  if (IncValue > 0) {
    // If we have a positive stride, we require the init to be less than the
    // exit value and an equality or less than comparison.
    if (InitValue >= ExitValue ||
        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
      return;
    
    uint32_t Range = uint32_t(ExitValue-InitValue);
    if (NewPred == CmpInst::ICMP_SLE) {
      // Normalize SLE -> SLT, check for infinite loop.
      if (++Range == 0) return;  // Range overflows.
    }
    
    unsigned Leftover = Range % uint32_t(IncValue);
    
    // If this is an equality comparison, we require that the strided value
    // exactly land on the exit value, otherwise the IV condition will wrap
    // around and do things the fp IV wouldn't.
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
        Leftover != 0)
      return;
    
    // If the stride would wrap around the i32 before exiting, we can't
    // transform the IV.
    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
      return;
    
  } else {
    // If we have a negative stride, we require the init to be greater than the
    // exit value and an equality or greater than comparison.
    if (InitValue >= ExitValue ||
        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
      return;
    
    uint32_t Range = uint32_t(InitValue-ExitValue);
    if (NewPred == CmpInst::ICMP_SGE) {
      // Normalize SGE -> SGT, check for infinite loop.
      if (++Range == 0) return;  // Range overflows.
    }
    
    unsigned Leftover = Range % uint32_t(-IncValue);
    
    // If this is an equality comparison, we require that the strided value
    // exactly land on the exit value, otherwise the IV condition will wrap
    // around and do things the fp IV wouldn't.
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
        Leftover != 0)
      return;
    
    // If the stride would wrap around the i32 before exiting, we can't
    // transform the IV.
    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
      return;
  }
  
  const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());

  // Insert new integer induction variable.
  PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN);
  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
                      PN->getIncomingBlock(IncomingEdge));

  Value *NewAdd =
    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
                              Incr->getName()+".int", Incr);
  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));

  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
                                      ConstantInt::get(Int32Ty, ExitValue),
                                      Compare->getName());

  // In the following deletions, PN may become dead and may be deleted.
  // Use a WeakVH to observe whether this happens.
  WeakVH WeakPH = PN;

  // Delete the old floating point exit comparison.  The branch starts using the
  // new comparison.
  NewCompare->takeName(Compare);
  Compare->replaceAllUsesWith(NewCompare);
  RecursivelyDeleteTriviallyDeadInstructions(Compare);

  // Delete the old floating point increment.
  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
  RecursivelyDeleteTriviallyDeadInstructions(Incr);

  // If the FP induction variable still has uses, this is because something else
  // in the loop uses its value.  In order to canonicalize the induction
  // variable, we chose to eliminate the IV and rewrite it in terms of an
  // int->fp cast.
  //
  // We give preference to sitofp over uitofp because it is faster on most
  // platforms.
  if (WeakPH) {
    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
                                 PN->getParent()->getFirstNonPHI());
    PN->replaceAllUsesWith(Conv);
    RecursivelyDeleteTriviallyDeadInstructions(PN);
  }

  // Add a new IVUsers entry for the newly-created integer PHI.
  IU->AddUsersIfInteresting(NewPHI);
}
Example #26
0
bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
  IU = &getAnalysis<IVUsers>();
  LI = &getAnalysis<LoopInfo>();
  SE = &getAnalysis<ScalarEvolution>();
  DT = &getAnalysis<DominatorTree>();
  Changed = false;

  // If there are any floating-point recurrences, attempt to
  // transform them to use integer recurrences.
  RewriteNonIntegerIVs(L);

  BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);

  // Create a rewriter object which we'll use to transform the code with.
  SCEVExpander Rewriter(*SE);

  // Check to see if this loop has a computable loop-invariant execution count.
  // If so, this means that we can compute the final value of any expressions
  // that are recurrent in the loop, and substitute the exit values from the
  // loop into any instructions outside of the loop that use the final values of
  // the current expressions.
  //
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
    RewriteLoopExitValues(L, Rewriter);

  // Compute the type of the largest recurrence expression, and decide whether
  // a canonical induction variable should be inserted.
  const Type *LargestType = 0;
  bool NeedCannIV = false;
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
    LargestType = BackedgeTakenCount->getType();
    LargestType = SE->getEffectiveSCEVType(LargestType);
    // If we have a known trip count and a single exit block, we'll be
    // rewriting the loop exit test condition below, which requires a
    // canonical induction variable.
    if (ExitingBlock)
      NeedCannIV = true;
  }
  for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
    const Type *Ty =
      SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
    if (!LargestType ||
        SE->getTypeSizeInBits(Ty) >
          SE->getTypeSizeInBits(LargestType))
      LargestType = Ty;
    NeedCannIV = true;
  }

  // Now that we know the largest of the induction variable expressions
  // in this loop, insert a canonical induction variable of the largest size.
  Value *IndVar = 0;
  if (NeedCannIV) {
    // Check to see if the loop already has any canonical-looking induction
    // variables. If any are present and wider than the planned canonical
    // induction variable, temporarily remove them, so that the Rewriter
    // doesn't attempt to reuse them.
    SmallVector<PHINode *, 2> OldCannIVs;
    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
          SE->getTypeSizeInBits(LargestType))
        OldCannIV->removeFromParent();
      else
        break;
      OldCannIVs.push_back(OldCannIV);
    }

    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);

    ++NumInserted;
    Changed = true;
    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');

    // Now that the official induction variable is established, reinsert
    // any old canonical-looking variables after it so that the IR remains
    // consistent. They will be deleted as part of the dead-PHI deletion at
    // the end of the pass.
    while (!OldCannIVs.empty()) {
      PHINode *OldCannIV = OldCannIVs.pop_back_val();
      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
    }
  }

  // If we have a trip count expression, rewrite the loop's exit condition
  // using it.  We can currently only handle loops with a single exit.
  ICmpInst *NewICmp = 0;
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
      !BackedgeTakenCount->isZero() &&
      ExitingBlock) {
    assert(NeedCannIV &&
           "LinearFunctionTestReplace requires a canonical induction variable");
    // Can't rewrite non-branch yet.
    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
      NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
                                          ExitingBlock, BI, Rewriter);
  }

  // Rewrite IV-derived expressions. Clears the rewriter cache.
  RewriteIVExpressions(L, Rewriter);

  // The Rewriter may not be used from this point on.

  // Loop-invariant instructions in the preheader that aren't used in the
  // loop may be sunk below the loop to reduce register pressure.
  SinkUnusedInvariants(L);

  // For completeness, inform IVUsers of the IV use in the newly-created
  // loop exit test instruction.
  if (NewICmp)
    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));

  // Clean up dead instructions.
  Changed |= DeleteDeadPHIs(L->getHeader());
  // Check a post-condition.
  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
  return Changed;
}
Example #27
0
string esp::parseName(Value *value){
  // has existed
  if(names.find(value) != names.end())
    return names[value];

  string name = "";
  Value *current = value;

  /*
  bool continueFlag = true;
  do{
    if(isa<Instruction > (current)){
      Instruction* inst = dyn_cast<Instruction>(current);
      unsigned op = inst->getOpcode();
      switch(op){
      case Instruction::Ret :{
        break;
      }

      case Instruction::Br :{
        break;
      }

      case Instruction::Switch :{
        break;
      }

      case Instruction::Call :{
        CallInst *callinst = (CallInst*) current;

        if (((CallInst*) current)->getCalledFunction() != NULL) {
            name += string("@")+((CallInst*) current)->getCalledFunction()->getNameStr() + "(";
        } else {
            name += string("@[funcPTR](");
            name += ((CallInst*) current)->getCalledValue()->getNameStr();
        }

        for (unsigned i = 1; i < callinst->getNumOperands(); i++) {
            name += esp::parseName(callinst->getOperand(i));
        }

        name += string(")");
        continueFlag = false;
        break;
      }

      case Instruction::PHI :{
        name += string("PHI[");
        name += current->getNameStr();
        PHINode *phi = (PHINode*) current;
        for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
            Value *incoming = phi->getIncomingValue(i);
            if (i != 0) name += ",";
            if (!hasLoop(incoming)) {
                if (!incoming->hasName()) {
                    name += esp::parseName(incoming);
                } else {
                    name += incoming->getNameStr();
                }

            }
        }

        name += std::string("]");
        continueFlag = false;
        break;
      }

      case Instruction::Select :{
        break;
      }

      case Instruction::Add :{
        name += "+";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::Sub :{
        name += "-";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::Mul :{
        name += "*";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::UDiv :{
        name += "/";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::SDiv :{
        name += "//";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::And :{
        name += "&";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::Or :{
        name += "|";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::Xor :{
        name += "^";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::Shl :{
        name += "<<";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::LShr :{
        name += ">>";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::AShr :{
        name += ">>>";
        name += parseBinaryOpName(inst);
        break;
      }

      case Instruction::ICmp :{
        ICmpInst * icmp = dyn_cast<ICmpInst>(current);
        if (isa<Constant>(icmp->getOperand(0))) {
          name += esp::parseName(icmp->getOperand(1));
          continueFlag = false;
        } else {
          name += esp::parseName(icmp->getOperand(0));
          continueFlag = false;
        }
        break;
      }

      case Instruction::Alloca :{
        name += current->getNameStr();
        break;
      }

      case Instruction::Load :{
        if (((LoadInst*) inst)->isVolatile())
          name += std::string("@VolatileLoad");
        name += "*";
        name += esp::parseName(inst->getOperand(0));
        continueFlag = false;
        break;
      }

      case Instruction::Store :{
        // need to handle
        continueFlag = false;
        break;
      }

      case Instruction::GetElementPtr :{
        GetElementPtrInst * gep = dyn_cast<GetElementPtrInst>(current);
        unsigned ops = gep->getNumOperands();
        name += "[";
        for (unsigned i = 1; i < ops; i++) {
          Value *v = gep->getOperand(i);
          if (ConstantInt * ci = dyn_cast<ConstantInt>(v)) {
            if (i == 1 && ci->equalsInt(0))
              continue;
            name += ".";
            name += ci->getValue().toString(10, false);
          } else {
            name += ".";
            name += esp::parseName(v);
          }
        }
        name += "]";
        name += esp::parseName(gep->getOperand(0));
        continueFlag = false;
        break;
      }

      case Instruction::BitCast:{
        name += esp::parseName(inst->getOperand(0));
        continueFlag = false;
        break;
      }

      default :{
        // Illegal or unsupported instruction
        name += current->getNameStr();
        break;
      }
      }

    }else if(isa<Argument>(current)){
      if (arguments.find(current) != arguments.end())
        name += std::string("$") + current->getNameStr();

    }else if(isa<GlobalValue>(current)){
      name += std::string("@") + current->getNameStr();

    }else if(isa<ConstantInt>(current)){
      ConstantInt * cint = dyn_cast<ConstantInt > (current);
      name += cint->getValue().toString(10, true);

    }else if (isa<Constant > (current)) {
      Constant *c = dyn_cast<Constant > (current);
      if (c->isNullValue()) {
          name += "null";
      }
  }else{
      // Illegal format
  }
  if(!continueFlag)
    break;
  current = parents[current];
  }while(current);
  */

  //Refactor

   do {
     if (isa<LoadInst > (current)) {
       name += "*";
       if (parents[current] == NULL)
         name += (((LoadInst*) current)->getOperand(0))->getNameStr();
       if (((LoadInst*) current)->isVolatile())
         name += std::string("@VolatileLoad");

     } else if (dyn_cast<GetElementPtrInst > (current)) {
       GetElementPtrInst * gep = dyn_cast<GetElementPtrInst > (current);
       unsigned ops = gep->getNumOperands();
       name += "[";
       for (unsigned i = 1; i < ops; i++) {
         Value *v = gep->getOperand(i);
         if (dyn_cast<ConstantInt > (current)) {
           ConstantInt * ci = dyn_cast<ConstantInt > (current);
           if (i == 1 && ci->equalsInt(0)) continue;
           name += ".";
           name += ci->getValue().toString(10, false);
         } else {
           name += ".";
           name += parseName(v);
         }

       }
       name += "]";
       name += parseName(gep->getOperand(0));
       break;

     } else if (isa<AllocaInst > (current)) {
       name += current->getNameStr();
     } else if (isa<Argument > (current)) {
       if (arguments.find(current) != arguments.end())
         name += std::string("$") + current->getNameStr();
     } else if (isa<GlobalValue > (current)) {
       name += std::string("@") + current->getNameStr();
     } else if (isa<CallInst > (current)) {
       CallInst *callinst = (CallInst*) current;

       if (((CallInst*) current)->getCalledFunction() != NULL) {
         name += std::string("@")+((CallInst*) current)->getCalledFunction()->getNameStr() + "(";
       } else {
         name += std::string("@[funcPTR](");
         name += ((CallInst*) current)->getCalledValue()->getNameStr();
       }

       for (unsigned i = 1; i < callinst->getNumOperands(); i++) {
         name += parseName(callinst->getOperand(i));
       }

       name += std::string(")");
       break;
     } else if (isa<CastInst > (current)) {
     } else if (isa<PHINode > (current)) {
       /*
       name += std::string("PHI[");
       s += parent->getNameStr();
       PHINode *phi = (PHINode*) parent;
       for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
         //s+=phi->getIncomingBlock(i)->getNameStr();
         Value *incoming = phi->getIncomingValue(i);
         if (i != 0) s += ",";
         if (!hasLoop(incoming)) {
           DEBUG(errs() << "incoming#" << i << " no loop(i rather doubt it)\n");
           if (!incoming->hasName()) {
             s += parseName(incoming);
           } else {
             s += incoming->getNameStr();
           }

         }
       }

       // PHI nodes...ugh
       s += std::string("]");
       break;
       */

     } else if (isa<BinaryOperator > (current)) {
       BinaryOperator *bo = dyn_cast<BinaryOperator > (current);
       Instruction::BinaryOps opcode = bo->getOpcode();
       if (opcode == Instruction::Add) {
         name.append("+");
       } else if (opcode == Instruction::Sub) {
         name.append("-");
       } else if (opcode == Instruction::Or) {
         name.append("||");
       } else if (opcode == Instruction::Mul) {
         name.append("*");
       } else if (opcode == Instruction::Xor) {
         name.append("^");
       } else if (opcode == Instruction::And) {
         name.append("&&");
       } else if (opcode == Instruction::Shl) {
         name.append("<<");
       } else if (opcode == Instruction::AShr) {
         name.append(">>");
       } else if (opcode == Instruction::LShr) {
         name.append(">>>");
       }
       Value *v0 = bo->getOperand(0);
       Value *v1 = bo->getOperand(1);
       if (isa<ConstantInt > (v0)) {
         name += ((ConstantInt*) v0)->getValue().toString(10, false);
       } else if (isa<ConstantInt > (v1)) {
         name += ((ConstantInt*) v1)->getValue().toString(10, false);
       } else {
         printDebugMsg("Binary Operation between non-constants\n");
       }
     } else if (dyn_cast<GEPOperator > (current)) {
       GEPOperator * gep = dyn_cast<GEPOperator > (current);
       unsigned ops = gep->getNumOperands();
       name += "[";
       for (unsigned i = 1; i < ops; i++) {
         Value *v = gep->getOperand(i);
         if (dyn_cast<ConstantInt > (v)) {
           ConstantInt * ci = dyn_cast<ConstantInt > (v);
           if (i == 1 && ci->equalsInt(0)) continue;
           name += ".";
           name += ci->getValue().toString(10, false);
         }

       }
       name += "]";

       name += parseName(gep->getOperand(0));
       break;

     } else if (dyn_cast<ICmpInst > (current)) {
       ICmpInst * icmp = dyn_cast<ICmpInst > (current);
       if (isa<Constant > (icmp->getOperand(0))) {
         name += parseName(icmp->getOperand(1));
         break;
       } else {
         name += parseName(icmp->getOperand(0));
         break;
       }
     } else if (dyn_cast<ConstantInt > (current)) {
       ConstantInt * cint = dyn_cast<ConstantInt > (current);
       name += cint->getValue().toString(10, true);
     } else {
       name += current->getNameStr(); // might not work
     }

   } while ((current = parents[current]));

  names[value] = name;

  return name;
}
Example #28
0
bool GambasPass::runOnFunction(Function &F){
	IRBuilder<> Builder(F.getContext());
	
	bool changed = false;
	for(Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
		for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ){
			ICmpInst* ICI = dyn_cast<ICmpInst>(I);
			CallInst* CI = dyn_cast<CallInst>(I++);
			
			if (ICI && ICI->hasMetadata() && ICI->getMetadata("unref_slt") && dyn_cast<LoadInst>(ICI->getOperand(0))){
				ICI->replaceAllUsesWith(ConstantInt::get(ICI->getType(), false));
				ICI->eraseFromParent();
				changed = true;
				continue;
			}
			
			if (!CI)
				continue;
			
			Function* callee = CI->getCalledFunction();
			if (callee == NULL || !callee->isDeclaration())
				continue;
			
			StringRef name = callee->getName();
			if (name == "JR_release_variant" || name == "JR_borrow_variant"){
				ConstantInt* vtype_int = dyn_cast<ConstantInt>(CI->getArgOperand(0));
				if (!vtype_int)
					continue;
				
				uint64_t vtype = vtype_int->getZExtValue();
				if (TYPE_is_string(vtype) || TYPE_is_object(vtype))
					continue;
				
				CI->eraseFromParent();
				changed = true;
			} else if (name == FUNCTION_NAME(__finite)){
				ConstantFP* op = dyn_cast<ConstantFP>(CI->getArgOperand(0));
				if (!op)
					continue;
				
				int val = __finite(op->getValueAPF().convertToDouble());
				Constant* res = ConstantInt::get(CI->getType(), val);
				CI->replaceAllUsesWith(res);
				CI->eraseFromParent();
				changed = true;
			} else if (name == FUNCTION_NAME(__isnan)){
				ConstantFP* op = dyn_cast<ConstantFP>(CI->getArgOperand(0));
				if (!op)
					continue;
				
				int val = __isnan(op->getValueAPF().convertToDouble());
				Constant* res = ConstantInt::get(CI->getType(), val);
				CI->replaceAllUsesWith(res);
				CI->eraseFromParent();
				changed = true;
			} else if (name == FUNCTION_NAME(__isinf)){
				ConstantFP* op = dyn_cast<ConstantFP>(CI->getArgOperand(0));
				if (!op)
					continue;
				
				int val = __isinf(op->getValueAPF().convertToDouble());
				Constant* res = ConstantInt::get(CI->getType(), val);
				CI->replaceAllUsesWith(res);
				CI->eraseFromParent();
				changed = true;
			}
		}
	}
	return changed;
}
Example #29
0
void CPFlowFunction::visitBranchInst(BranchInst &BI) {
  CPLatticePoint* result = new CPLatticePoint(*(info_in_casted.back()));
  info_in_casted.pop_back();
  BranchInst* current = &BI;

  if (BI.isConditional()) {
    Value* cond = BI.getCondition();
    if (isa<ICmpInst>(cond)) {
      std::pair<Use*, Use *> branches = helper::getOps(BI);
      Use* true_branch = branches.first;
      Use* false_branch = branches.second;

      ICmpInst* cmp = dyn_cast<ICmpInst>(cond);
      std::pair<Use*, Use *> operands = helper::getOps(*cmp);
      Use* rhs = operands.second;
      Use* lhs = operands.first;

      ConstantInt* rhs_const = NULL;
      ConstantInt* lhs_const = NULL;
      // get the rhs/lhs as a constant int
      if (isa<ConstantInt>(rhs)) {
        rhs_const = dyn_cast<ConstantInt>(rhs);
      } else if (result->representation.count(rhs->get()) > 0) {
        rhs_const = result->representation[rhs->get()];
      } else {
        rhs_const = ConstantInt::get(context, llvm::APInt(32, 0, true));
      } 
      if (isa<ConstantInt>(lhs)) {
        lhs_const = dyn_cast<ConstantInt>(lhs->get());
      } else if (result->representation.count(lhs->get()) > 0) {
        lhs_const = result->representation[lhs->get()];
      } else {
        lhs_const = ConstantInt::get(context, llvm::APInt(32, 0, true));
      }

      // Create successors
      CPLatticePoint* true_branchCLP = new CPLatticePoint(false, false, std::map<Value*,ConstantInt*>(result->representation));
      CPLatticePoint* false_branchCLP = new CPLatticePoint(false, false, std::map<Value*,ConstantInt*>(result->representation));

      // get the predicate
      int predicate = 0;
      predicate = cmp->isSigned() ? cmp->getSignedPredicate() : cmp->getUnsignedPredicate();
      if (predicate == CmpInst::ICMP_EQ) {
        if (isa<ConstantInt>(lhs)) {
           true_branchCLP->representation[rhs->get()] = lhs_const;
        } else if (isa<ConstantInt>(rhs)) {
           true_branchCLP->representation[lhs->get()] = rhs_const;
        }
        out_map[true_branch->get()] = true_branchCLP;
        out_map[false_branch->get()] = false_branchCLP;
      } else if (predicate == CmpInst::ICMP_NE) {
        if (isa<ConstantInt>(lhs)) {
           false_branchCLP->representation[rhs->get()] = lhs_const;
        } else if (isa<ConstantInt>(rhs)) {
           false_branchCLP->representation[lhs->get()] = rhs_const;
        }
        out_map[true_branch->get()] = true_branchCLP;
        out_map[false_branch->get()] = false_branchCLP;
      } else {
        for (std::map<Value *, LatticePoint *>::iterator it=out_map.begin(); it != out_map.end(); ++it){
          Value* elm = it->first;
          out_map[elm] = new CPLatticePoint(*result);
        }
      }
    } else {
      for (std::map<Value *, LatticePoint *>::iterator it=out_map.begin(); it != out_map.end(); ++it){
        Value* elm = it->first;
        out_map[elm] = new CPLatticePoint(*result);
      }
    }
  } else {
    for (std::map<Value *, LatticePoint *>::iterator it=out_map.begin(); it != out_map.end(); ++it){
        Value* elm = it->first;
        out_map[elm] = new CPLatticePoint(*result);
    }
  }
}
/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
/// returning the kind and providing the out parameter results if we
/// successfully match.
static SelectPatternFlavor
MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
  SelectInst *SI = dyn_cast<SelectInst>(V);
  if (!SI) return SPF_UNKNOWN;

  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
  if (!ICI) return SPF_UNKNOWN;

  ICmpInst::Predicate Pred = ICI->getPredicate();
  Value *CmpLHS = ICI->getOperand(0);
  Value *CmpRHS = ICI->getOperand(1);
  Value *TrueVal = SI->getTrueValue();
  Value *FalseVal = SI->getFalseValue();

  LHS = CmpLHS;
  RHS = CmpRHS;

  // (icmp X, Y) ? X : Y
  if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
    switch (Pred) {
    default: return SPF_UNKNOWN; // Equality.
    case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_UGE: return SPF_UMAX;
    case ICmpInst::ICMP_SGT:
    case ICmpInst::ICMP_SGE: return SPF_SMAX;
    case ICmpInst::ICMP_ULT:
    case ICmpInst::ICMP_ULE: return SPF_UMIN;
    case ICmpInst::ICMP_SLT:
    case ICmpInst::ICMP_SLE: return SPF_SMIN;
    }
  }

  // (icmp X, Y) ? Y : X
  if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
    switch (Pred) {
    default: return SPF_UNKNOWN; // Equality.
    case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_UGE: return SPF_UMIN;
    case ICmpInst::ICMP_SGT:
    case ICmpInst::ICMP_SGE: return SPF_SMIN;
    case ICmpInst::ICMP_ULT:
    case ICmpInst::ICMP_ULE: return SPF_UMAX;
    case ICmpInst::ICMP_SLT:
    case ICmpInst::ICMP_SLE: return SPF_SMAX;
    }
  }

  if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
    if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
        (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {

      // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
      // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
      if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
        return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS;
      }

      // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
      // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
      if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
        return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS;
      }
    }
  }

  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)

  return SPF_UNKNOWN;
}