/*! \brief Builds the **anisotropic** \f$ \mathbf{R}_\infty \f$ matrix * \param[in] cav the discretized cavity * \param[in] gf_i Green's function inside the cavity * \param[in] gf_o Green's function outside the cavity * \return the \f$ \mathbf{R}_\infty\mathbf{A} \f$ matrix * * We use the following definition: * \f[ * \mathbf{R}_\infty = * \left(2\pi\mathbf{A}^{-1} - \mathbf{D}_\mathrm{e}\right) - * \mathbf{S}_\mathrm{e}\mathbf{S}^{-1}_\mathrm{i}\left(2\pi\mathbf{A}^{-1}-\mathbf{D}_\mathrm{i}\right) * \f] * The matrix is not symmetrized and is not symmetry packed. */ inline Eigen::MatrixXd anisotropicRinfinity(const Cavity & cav, const IGreensFunction & gf_i, const IGreensFunction & gf_o) { // The total size of the cavity size_t cavitySize = cav.size(); // The number of irreps in the group int nrBlocks = cav.pointGroup().nrIrrep(); // The size of the irreducible portion of the cavity int dimBlock = cav.irreducible_size(); // Compute SI, DI and SE, DE on the whole cavity, regardless of symmetry Eigen::MatrixXd SI = gf_i.singleLayer(cav.elements()); Eigen::MatrixXd DI = gf_i.doubleLayer(cav.elements()); Eigen::MatrixXd SE = gf_o.singleLayer(cav.elements()); Eigen::MatrixXd DE = gf_o.doubleLayer(cav.elements()); // Perform symmetry blocking // If the group is C1 avoid symmetry blocking, we will just pack the matrix // into "block diagonal" when all other manipulations are done. if (cav.pointGroup().nrGenerators() != 0) { symmetryBlocking(DI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(DE, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SE, cavitySize, dimBlock, nrBlocks); } Eigen::MatrixXd a = cav.elementArea().asDiagonal(); Eigen::MatrixXd Id = Eigen::MatrixXd::Identity(cavitySize, cavitySize); // Form T Eigen::FullPivLU<Eigen::MatrixXd> SI_LU(SI); if (!(SI_LU.isInvertible())) PCMSOLVER_ERROR("SI matrix is not invertible!", BOOST_CURRENT_FUNCTION); return ((2 * M_PI * Id - DE * a) - SE * SI_LU.inverse() * (2 * M_PI * Id - DI * a)); }
/*! \brief Builds the **anisotropic** \f$ \mathbf{T}_\varepsilon \f$ matrix * \param[in] cav the discretized cavity * \param[in] gf_i Green's function inside the cavity * \param[in] gf_o Green's function outside the cavity * \return the \f$ \mathbf{T}_\varepsilon \f$ matrix * * We use the following definition: * \f[ * \mathbf{T}_\varepsilon = * \left(2\pi\mathbf{I} - \mathbf{D}_\mathrm{e}\mathbf{A}\right)\mathbf{S}_\mathrm{i} * +\mathbf{S}_\mathrm{e}\left(2\pi\mathbf{I} + * \mathbf{A}\mathbf{D}_\mathrm{i}^\dagger\right) * \f] * The matrix is not symmetrized and is not symmetry packed. */ inline Eigen::MatrixXd anisotropicTEpsilon(const Cavity & cav, const IGreensFunction & gf_i, const IGreensFunction & gf_o) { // The total size of the cavity size_t cavitySize = cav.size(); // The number of irreps in the group int nrBlocks = cav.pointGroup().nrIrrep(); // The size of the irreducible portion of the cavity int dimBlock = cav.irreducible_size(); // Compute SI, DI and SE, DE on the whole cavity, regardless of symmetry Eigen::MatrixXd SI = gf_i.singleLayer(cav.elements()); Eigen::MatrixXd DI = gf_i.doubleLayer(cav.elements()); Eigen::MatrixXd SE = gf_o.singleLayer(cav.elements()); Eigen::MatrixXd DE = gf_o.doubleLayer(cav.elements()); // Perform symmetry blocking // If the group is C1 avoid symmetry blocking, we will just pack the matrix // into "block diagonal" when all other manipulations are done. if (cav.pointGroup().nrGenerators() != 0) { symmetryBlocking(DI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(DE, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SE, cavitySize, dimBlock, nrBlocks); } Eigen::MatrixXd a = cav.elementArea().asDiagonal(); Eigen::MatrixXd Id = Eigen::MatrixXd::Identity(cavitySize, cavitySize); // Form T return ((2 * M_PI * Id - DE * a) * SI + SE * (2 * M_PI * Id + a * DI.adjoint().eval())); }
/*! \brief Builds the **anisotropic** IEFPCM matrix * \param[in] cav the discretized cavity * \param[in] gf_i Green's function inside the cavity * \param[in] gf_o Green's function outside the cavity * \return the \f$ \mathbf{K} = \mathbf{T}^{-1}\mathbf{R}\mathbf{A} \f$ matrix * * This function calculates the PCM matrix. We use the following definitions: * \f[ * \begin{align} * \mathbf{T} &= * \left(2\pi\mathbf{I} - \mathbf{D}_\mathrm{e}\mathbf{A}\right)\mathbf{S}_\mathrm{i} * +\mathbf{S}_\mathrm{e}\left(2\pi\mathbf{I} + * \mathbf{A}\mathbf{D}_\mathrm{i}^\dagger\right) \\ * \mathbf{R} &= * \left(2\pi\mathbf{A}^{-1} - \mathbf{D}_\mathrm{e}\right) - * \mathbf{S}_\mathrm{e}\mathbf{S}^{-1}_\mathrm{i}\left(2\pi\mathbf{A}^{-1}-\mathbf{D}_\mathrm{i}\right) * \end{align} * \f] * The matrix is not symmetrized and is not symmetry packed. */ inline Eigen::MatrixXd anisotropicIEFMatrix(const Cavity & cav, const IGreensFunction & gf_i, const IGreensFunction & gf_o) { // The total size of the cavity size_t cavitySize = cav.size(); // The number of irreps in the group int nrBlocks = cav.pointGroup().nrIrrep(); // The size of the irreducible portion of the cavity int dimBlock = cav.irreducible_size(); // Compute SI, DI and SE, DE on the whole cavity, regardless of symmetry TIMER_ON("Computing SI"); Eigen::MatrixXd SI = gf_i.singleLayer(cav.elements()); TIMER_OFF("Computing SI"); TIMER_ON("Computing DI"); Eigen::MatrixXd DI = gf_i.doubleLayer(cav.elements()); TIMER_OFF("Computing DI"); TIMER_ON("Computing SE"); Eigen::MatrixXd SE = gf_o.singleLayer(cav.elements()); TIMER_OFF("Computing SE"); TIMER_ON("Computing DE"); Eigen::MatrixXd DE = gf_o.doubleLayer(cav.elements()); TIMER_OFF("Computing DE"); // Perform symmetry blocking // If the group is C1 avoid symmetry blocking, we will just pack the fullPCMMatrix // into "block diagonal" when all other manipulations are done. if (cav.pointGroup().nrGenerators() != 0) { TIMER_ON("Symmetry blocking"); symmetryBlocking(DI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(DE, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SE, cavitySize, dimBlock, nrBlocks); TIMER_OFF("Symmetry blocking"); } Eigen::MatrixXd a = cav.elementArea().asDiagonal(); Eigen::MatrixXd Id = Eigen::MatrixXd::Identity(cavitySize, cavitySize); // 1. Form T TIMER_ON("Assemble T matrix"); Eigen::MatrixXd fullPCMMatrix = ((2 * M_PI * Id - DE * a) * SI + SE * (2 * M_PI * Id + a * DI.adjoint().eval())); TIMER_OFF("Assemble T matrix"); // 2. Invert T using LU decomposition with full pivoting // This is a rank-revealing LU decomposition, this allows us // to test if T is invertible before attempting to invert it. TIMER_ON("Invert T matrix"); Eigen::FullPivLU<Eigen::MatrixXd> T_LU(fullPCMMatrix); if (!(T_LU.isInvertible())) PCMSOLVER_ERROR("T matrix is not invertible!", BOOST_CURRENT_FUNCTION); fullPCMMatrix = T_LU.inverse(); TIMER_OFF("Invert T matrix"); Eigen::FullPivLU<Eigen::MatrixXd> SI_LU(SI); if (!(SI_LU.isInvertible())) PCMSOLVER_ERROR("SI matrix is not invertible!", BOOST_CURRENT_FUNCTION); TIMER_ON("Assemble T^-1R matrix"); fullPCMMatrix *= ((2 * M_PI * Id - DE * a) - SE * SI_LU.inverse() * (2 * M_PI * Id - DI * a)); TIMER_OFF("Assemble T^-1R matrix"); return fullPCMMatrix; }
void IEFSolver::buildAnisotropicMatrix(const Cavity & cav, const IGreensFunction & gf_i, const IGreensFunction & gf_o) { // The total size of the cavity size_t cavitySize = cav.size(); // The number of irreps in the group int nrBlocks = cav.pointGroup().nrIrrep(); // The size of the irreducible portion of the cavity int dimBlock = cav.irreducible_size(); // Compute SI, DI and SE, DE on the whole cavity, regardless of symmetry Eigen::MatrixXd SI = gf_i.singleLayer(cav.elements()); Eigen::MatrixXd DI = gf_i.doubleLayer(cav.elements()); Eigen::MatrixXd SE = gf_o.singleLayer(cav.elements()); Eigen::MatrixXd DE = gf_o.doubleLayer(cav.elements()); // Perform symmetry blocking // If the group is C1 avoid symmetry blocking, we will just pack the fullPCMMatrix // into "block diagonal" when all other manipulations are done. if (cav.pointGroup().nrGenerators() != 0) { symmetryBlocking(DI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(DE, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SE, cavitySize, dimBlock, nrBlocks); } Eigen::MatrixXd a = cav.elementArea().asDiagonal(); Eigen::MatrixXd aInv = a.inverse(); // 1. Form T fullPCMMatrix_ = ((2 * M_PI * aInv - DE) * a * SI + SE * a * (2 * M_PI * aInv + DI.adjoint().eval())); // 2. Invert T using LU decomposition with full pivoting // This is a rank-revealing LU decomposition, this allows us // to test if T is invertible before attempting to invert it. Eigen::FullPivLU<Eigen::MatrixXd> T_LU(fullPCMMatrix_); if (!(T_LU.isInvertible())) PCMSOLVER_ERROR("T matrix is not invertible!"); fullPCMMatrix_ = T_LU.inverse(); Eigen::FullPivLU<Eigen::MatrixXd> SI_LU(SI); if (!(SI_LU.isInvertible())) PCMSOLVER_ERROR("SI matrix is not invertible!"); fullPCMMatrix_ *= ((2 * M_PI * aInv - DE) - SE * SI_LU.inverse() * (2 * M_PI * aInv - DI)); fullPCMMatrix_ *= a; // 5. Symmetrize K := (K + K+)/2 if (hermitivitize_) { hermitivitize(fullPCMMatrix_); } // Pack into a block diagonal matrix // For the moment just packs into a std::vector<Eigen::MatrixXd> symmetryPacking(blockPCMMatrix_, fullPCMMatrix_, dimBlock, nrBlocks); std::ofstream matrixOut("PCM_matrix"); matrixOut << "fullPCMMatrix" << std::endl; matrixOut << fullPCMMatrix_ << std::endl; for (int i = 0; i < nrBlocks; ++i) { matrixOut << "Block number " << i << std::endl; matrixOut << blockPCMMatrix_[i] << std::endl; } built_ = true; }
void IEFSolver::buildIsotropicMatrix(const Cavity & cav, const IGreensFunction & gf_i, const IGreensFunction & gf_o) { // The total size of the cavity size_t cavitySize = cav.size(); // The number of irreps in the group int nrBlocks = cav.pointGroup().nrIrrep(); // The size of the irreducible portion of the cavity int dimBlock = cav.irreducible_size(); // Compute SI and DI on the whole cavity, regardless of symmetry Eigen::MatrixXd SI = gf_i.singleLayer(cav.elements()); Eigen::MatrixXd DI = gf_i.doubleLayer(cav.elements()); // Perform symmetry blocking // If the group is C1 avoid symmetry blocking, we will just pack the fullPCMMatrix // into "block diagonal" when all other manipulations are done. if (cav.pointGroup().nrGenerators() != 0) { symmetryBlocking(DI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SI, cavitySize, dimBlock, nrBlocks); } Eigen::MatrixXd a = cav.elementArea().asDiagonal(); Eigen::MatrixXd aInv = Eigen::MatrixXd::Zero(cavitySize, cavitySize); aInv = a.inverse(); // Tq = -Rv -> q = -(T^-1 * R)v = -Kv // T = (2 * M_PI * fact * aInv - DI) * a * SI; R = (2 * M_PI * aInv - DI) // fullPCMMatrix_ = K = T^-1 * R * a // 1. Form T double epsilon = profiles::epsilon(gf_o.permittivity()); double fact = (epsilon + 1.0)/(epsilon - 1.0); fullPCMMatrix_ = (2 * M_PI * fact * aInv - DI) * a * SI; // 2. Invert T using LU decomposition with full pivoting // This is a rank-revealing LU decomposition, this allows us // to test if T is invertible before attempting to invert it. Eigen::FullPivLU<Eigen::MatrixXd> T_LU(fullPCMMatrix_); if (!(T_LU.isInvertible())) PCMSOLVER_ERROR("T matrix is not invertible!"); fullPCMMatrix_ = T_LU.inverse(); // 3. Multiply T^-1 and R fullPCMMatrix_ *= (2 * M_PI * aInv - DI); // 4. Multiply by a fullPCMMatrix_ *= a; // 5. Symmetrize K := (K + K+)/2 if (hermitivitize_) { hermitivitize(fullPCMMatrix_); } // Pack into a block diagonal matrix // For the moment just packs into a std::vector<Eigen::MatrixXd> symmetryPacking(blockPCMMatrix_, fullPCMMatrix_, dimBlock, nrBlocks); std::ofstream matrixOut("PCM_matrix"); matrixOut << "fullPCMMatrix" << std::endl; matrixOut << fullPCMMatrix_ << std::endl; for (int i = 0; i < nrBlocks; ++i) { matrixOut << "Block number " << i << std::endl; matrixOut << blockPCMMatrix_[i] << std::endl; } built_ = true; }
/*! \brief Builds the **isotropic** IEFPCM matrix * \param[in] cav the discretized cavity * \param[in] gf_i Green's function inside the cavity * \param[in] epsilon permittivity outside the cavity * \return the \f$ \mathbf{K} = \mathbf{T}^{-1}\mathbf{R}\mathbf{A} \f$ matrix * * This function calculates the PCM matrix. We use the following definitions: * \f[ * \begin{align} * \mathbf{T} &= * \left(2\pi\frac{\varepsilon+1}{\varepsilon-1}\mathbf{I} - \mathbf{D}_\mathrm{i}\mathbf{A}\right)\mathbf{S}_\mathrm{i} \\ * \mathbf{R} &= * \left(2\pi\mathbf{A}^{-1} - \mathbf{D}_\mathrm{i}\right) * \end{align} * \f] * The matrix is not symmetrized and is not symmetry packed. */ inline Eigen::MatrixXd isotropicIEFMatrix(const Cavity & cav, const IGreensFunction & gf_i, double epsilon) { // The total size of the cavity size_t cavitySize = cav.size(); // The number of irreps in the group int nrBlocks = cav.pointGroup().nrIrrep(); // The size of the irreducible portion of the cavity int dimBlock = cav.irreducible_size(); // Compute SI and DI on the whole cavity, regardless of symmetry TIMER_ON("Computing SI"); Eigen::MatrixXd SI = gf_i.singleLayer(cav.elements()); TIMER_OFF("Computing SI"); TIMER_ON("Computing DI"); Eigen::MatrixXd DI = gf_i.doubleLayer(cav.elements()); TIMER_OFF("Computing DI"); // Perform symmetry blocking // If the group is C1 avoid symmetry blocking, we will just pack the fullPCMMatrix // into "block diagonal" when all other manipulations are done. if (cav.pointGroup().nrGenerators() != 0) { TIMER_ON("Symmetry blocking"); symmetryBlocking(DI, cavitySize, dimBlock, nrBlocks); symmetryBlocking(SI, cavitySize, dimBlock, nrBlocks); TIMER_OFF("Symmetry blocking"); } Eigen::MatrixXd a = cav.elementArea().asDiagonal(); Eigen::MatrixXd Id = Eigen::MatrixXd::Identity(cavitySize, cavitySize); // Tq = -Rv -> q = -(T^-1 * R)v = -Kv // T = (2 * M_PI * fact * aInv - DI) * a * SI; R = (2 * M_PI * aInv - DI) // fullPCMMatrix_ = K = T^-1 * R * a // 1. Form T double fact = (epsilon + 1.0)/(epsilon - 1.0); TIMER_ON("Assemble T matrix"); Eigen::MatrixXd fullPCMMatrix = (2 * M_PI * fact * Id - DI * a) * SI; TIMER_OFF("Assemble T matrix"); // 2. Invert T using LU decomposition with full pivoting // This is a rank-revealing LU decomposition, this allows us // to test if T is invertible before attempting to invert it. TIMER_ON("Invert T matrix"); Eigen::FullPivLU<Eigen::MatrixXd> T_LU(fullPCMMatrix); if (!(T_LU.isInvertible())) PCMSOLVER_ERROR("T matrix is not invertible!", BOOST_CURRENT_FUNCTION); fullPCMMatrix = T_LU.inverse(); TIMER_OFF("Invert T matrix"); // 3. Multiply T^-1 and R TIMER_ON("Assemble T^-1R matrix"); fullPCMMatrix *= (2 * M_PI * Id - DI * a); TIMER_OFF("Assemble T^-1R matrix"); return fullPCMMatrix; }