int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
    Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
    int rank=mpiSession.getRank();
    int numProcs=mpiSession.getNProc();
#else
    int rank = 0;
    int numProcs = 1;
#endif
    int polyOrder = 2;

    // define our manufactured solution or problem bilinear form:
    double epsilon = 1e-3;
    bool useTriangles = false;

    int pToAdd = 2;
    int nCells = 2;
    if ( argc > 1)
    {
        nCells = atoi(argv[1]);
        if (rank==0)
        {
            cout << "numCells = " << nCells << endl;
        }
    }
    int numSteps = 20;
    if ( argc > 2)
    {
        numSteps = atoi(argv[2]);
        if (rank==0)
        {
            cout << "num NR steps = " << numSteps << endl;
        }
    }
    int useHessian = 0; // defaults to "not use"
    if ( argc > 3)
    {
        useHessian = atoi(argv[3]);
        if (rank==0)
        {
            cout << "useHessian = " << useHessian << endl;
        }
    }

    int thresh = numSteps; // threshhold for when to apply linesearch/hessian
    if ( argc > 4)
    {
        thresh = atoi(argv[4]);
        if (rank==0)
        {
            cout << "thresh = " << thresh << endl;
        }
    }

    int H1Order = polyOrder + 1;

    double energyThreshold = 0.2; // for mesh refinements
    double nonlinearStepSize = 0.5;
    double nonlinearRelativeEnergyTolerance = 1e-8; // used to determine convergence of the nonlinear solution

    ////////////////////////////////////////////////////////////////////
    // DEFINE VARIABLES
    ////////////////////////////////////////////////////////////////////

    // new-style bilinear form definition
    VarFactory varFactory;
    VarPtr uhat = varFactory.traceVar("\\widehat{u}");
    VarPtr beta_n_u_minus_sigma_hat = varFactory.fluxVar("\\widehat{\\beta_n u - \\sigma_n}");
    VarPtr u = varFactory.fieldVar("u");
    VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
    VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

    VarPtr tau = varFactory.testVar("\\tau",HDIV);
    VarPtr v = varFactory.testVar("v",HGRAD);
    BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // initialize bilinear form

    ////////////////////////////////////////////////////////////////////
    // CREATE MESH
    ////////////////////////////////////////////////////////////////////

    // create a pointer to a new mesh:
    Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells, bf, H1Order, H1Order+pToAdd);
    mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));

    ////////////////////////////////////////////////////////////////////
    // INITIALIZE BACKGROUND FLOW FUNCTIONS
    ////////////////////////////////////////////////////////////////////
    BCPtr nullBC = Teuchos::rcp((BC*)NULL);
    RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
    IPPtr nullIP = Teuchos::rcp((IP*)NULL);
    SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC,
                                 nullRHS, nullIP) );

    vector<double> e1(2); // (1,0)
    e1[0] = 1;
    vector<double> e2(2); // (0,1)
    e2[1] = 1;

    FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) );
    FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) );

    ////////////////////////////////////////////////////////////////////
    // DEFINE BILINEAR FORM
    ////////////////////////////////////////////////////////////////////

    // tau parts:
    // 1/eps (sigma, tau)_K + (u, div tau)_K - (u_hat, tau_n)_dK
    bf->addTerm(sigma1 / epsilon, tau->x());
    bf->addTerm(sigma2 / epsilon, tau->y());
    bf->addTerm(u, tau->div());
    bf->addTerm( - uhat, tau->dot_normal() );

    // v:
    // (sigma, grad v)_K - (sigma_hat_n, v)_dK - (u, beta dot grad v) + (u_hat * n dot beta, v)_dK
    bf->addTerm( sigma1, v->dx() );
    bf->addTerm( sigma2, v->dy() );
    bf->addTerm( -u, beta * v->grad());
    bf->addTerm( beta_n_u_minus_sigma_hat, v);

    // ==================== SET INITIAL GUESS ==========================
    mesh->registerSolution(backgroundFlow);
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    FunctionPtr u0 = Teuchos::rcp( new U0 );

    map<int, Teuchos::RCP<Function> > functionMap;
    functionMap[u->ID()] = u0;
    functionMap[sigma1->ID()] = zero;
    functionMap[sigma2->ID()] = zero;

    backgroundFlow->projectOntoMesh(functionMap);
    // ==================== END SET INITIAL GUESS ==========================

    ////////////////////////////////////////////////////////////////////
    // DEFINE INNER PRODUCT
    ////////////////////////////////////////////////////////////////////
    // function to scale the squared guy by epsilon/h
    FunctionPtr epsilonOverHScaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    IPPtr ip = Teuchos::rcp( new IP );
    ip->addTerm( epsilonOverHScaling * (1.0/sqrt(epsilon))* tau);
    ip->addTerm( tau->div());
    //  ip->addTerm( epsilonOverHScaling * v );
    ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    ip->addTerm(v->grad());
    //  ip->addTerm( beta * v->grad() );

    ////////////////////////////////////////////////////////////////////
    // DEFINE RHS
    ////////////////////////////////////////////////////////////////////
    RHSPtr rhs = RHS::rhs();
    FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev;

    rhs->addTerm((e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad() - u_prev * tau->div());

    ////////////////////////////////////////////////////////////////////
    // DEFINE DIRICHLET BC
    ////////////////////////////////////////////////////////////////////
    FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
    SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary);
    SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) );
    BCPtr inflowBC = BC::bc();
    FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0;
    inflowBC->addDirichlet(beta_n_u_minus_sigma_hat,inflowBoundary,
                           ( e1 * u0_squared_div_2 + e2 * u0) * n );

    ////////////////////////////////////////////////////////////////////
    // CREATE SOLUTION OBJECT
    ////////////////////////////////////////////////////////////////////
    Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip));
    mesh->registerSolution(solution);

    ////////////////////////////////////////////////////////////////////
    // WARNING: UNFINISHED HESSIAN BIT
    ////////////////////////////////////////////////////////////////////
    VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL);
    VarPtr du = hessianVars.test(u->ID());
    BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form
    //  FunctionPtr e_v = Function::constant(1.0); // dummy error rep function for now - should do nothing

    FunctionPtr u_current  = Teuchos::rcp( new PreviousSolutionFunction(solution, u) );

    FunctionPtr sig1_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma1) );
    FunctionPtr sig2_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma2) );
    FunctionPtr sig_prev = (e1*sig1_prev + e2*sig2_prev);
    FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,beta_n_u_minus_sigma_hat));
    FunctionPtr uhat_prev = Teuchos::rcp(new PreviousSolutionFunction(solution,uhat));
    LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual
    residual->addTerm(fnhat*v - (e1 * (u_prev_squared_div2 - sig1_prev) + e2 * (u_prev - sig2_prev)) * v->grad());
    residual->addTerm((1/epsilon)*sig_prev * tau + u_prev * tau->div() - uhat_prev*tau->dot_normal());

    LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual
    Bdu->addTerm( u_current*tau->div() - u_current*(beta*v->grad()));

    Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual));
    Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu));
    riesz->computeRieszRep();
    FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz));
    e_v->writeValuesToMATLABFile(mesh, "e_v.m");
    FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx()));
    hessianBF->addTerm(e_v->dx()*u,du);
    //  hessianBF->addTerm(posErrPart*u,du);
    Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF));

    if (useHessian)
    {
        solution->setWriteMatrixToFile(true,"hessianStiffness.dat");
    }
    else
    {
        solution->setWriteMatrixToFile(true,"stiffness.dat");
    }

    Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz));
    ofstream out;
    out.open("Burgers.txt");
    double NL_residual = 9e99;
    for (int i = 0; i<numSteps; i++)
    {
        solution->solve(false); // do one solve to initialize things...
        double stepLength = 1.0;
        stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual);
        if (useHessian)
        {
            solution->setFilter(hessianFilter);
        }
        backgroundFlow->addSolution(solution,stepLength);
        NL_residual = LS_Step->getNLResidual();
        if (rank==0)
        {
            cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl;
            out << NL_residual << endl; // saves initial NL error
        }
    }
    out.close();


    ////////////////////////////////////////////////////////////////////
    // DEFINE REFINEMENT STRATEGY
    ////////////////////////////////////////////////////////////////////
    Teuchos::RCP<RefinementStrategy> refinementStrategy;
    refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

    int numRefs = 0;

    Teuchos::RCP<NonlinearStepSize> stepSize = Teuchos::rcp(new NonlinearStepSize(nonlinearStepSize));
    Teuchos::RCP<NonlinearSolveStrategy> solveStrategy;
    solveStrategy = Teuchos::rcp( new NonlinearSolveStrategy(backgroundFlow, solution, stepSize,
                                  nonlinearRelativeEnergyTolerance));

    ////////////////////////////////////////////////////////////////////
    // SOLVE
    ////////////////////////////////////////////////////////////////////

    for (int refIndex=0; refIndex<numRefs; refIndex++)
    {
        solveStrategy->solve(rank==0);       // print to console on rank 0
        refinementStrategy->refine(rank==0); // print to console on rank 0
    }
    //  solveStrategy->solve(rank==0);

    if (rank==0)
    {
        backgroundFlow->writeToVTK("Burgers.vtu",min(H1Order+1,4));
        solution->writeFluxesToFile(uhat->ID(), "burgers.dat");
        cout << "wrote solution files" << endl;
    }

    return 0;
}
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta_const;
  double c = sqrt(1.25);
  beta_const.push_back(1.0/c);
  beta_const.push_back(.5/c);
//  FunctionPtr beta = Teuchos::rcp(new Beta());

  double eps = 1e-3;

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(-uhat, tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( beta_const * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);
  qoptIP->addTerm( v );
  qoptIP->addTerm( tau / eps + v->grad() );
  qoptIP->addTerm( beta_const * v->grad() - tau->div() );

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(eps) );
  if (enforceLocalConservation)
  {
    robIP->addZeroMeanTerm( v );
  }
  else
  {
    robIP->addTerm( ip_scaling * v );
  }
  robIP->addTerm( sqrt(eps) * v->grad() );

  bool useNewBC = false;
  FunctionPtr weight = Teuchos::rcp( new SqrtWeight(eps) );
  if (useNewBC)
  {
    robIP->addTerm( beta_const * v->grad() );
    robIP->addTerm( tau->div() );
    robIP->addTerm( ip_scaling/sqrt(eps) * tau );
  }
  else
  {
    robIP->addTerm( weight * beta_const * v->grad() );
    robIP->addTerm( weight * tau->div() );
    robIP->addTerm( weight * ip_scaling/sqrt(eps) * tau );
  }


  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = zero;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary );

  FunctionPtr u0 = Teuchos::rcp( new U0 );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  bc->addDirichlet(uhat, outflowBoundary, zero);
  if (useNewBC)
  {
    bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta_const*n*u0);
  }
  else
  {
    SpatialFilterPtr inflowBot = Teuchos::rcp( new InflowSquareBot );
    SpatialFilterPtr inflowLeft = Teuchos::rcp( new InflowSquareLeft );

    bc->addDirichlet(beta_n_u_minus_sigma_n, inflowLeft, beta_const*n*u0);
    bc->addDirichlet(uhat, inflowBot, u0);
  }

  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints);
  // pc->addConstraint(uhat==u0,inflowBoundary);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 2, pToAdd = 2;

  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;

  int nCells = 2;
  int horizontalCells = nCells, verticalCells = nCells;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(quadPoints, horizontalCells, verticalCells,
                            confusionBF, H1Order, H1Order+pToAdd);


  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  // solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  int numRefs = 9;

  for (int refIndex=0; refIndex<numRefs; refIndex++)
  {
    solution->solve(false);
    refinementStrategy.refine(rank==0); // print to console on rank 0
  }
  // one more solve on the final refined mesh:
  solution->solve(false);

  if (rank==0)
  {
    solution->writeToVTK("Hughes.vtu",min(H1Order+1,4));
    solution->writeFluxesToFile(uhat->ID(), "uhat.dat");

    cout << "wrote files: u.m, uhat.dat\n";
  }

  return 0;
}
Example #3
0
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  choice::Args args( argc, argv );
  int rank = 0;
  int numProcs = 1;
#endif

  int nCells = args.Input<int>("--nCells", "num cells",2);  
  int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0); 
  double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2);
  double energyThreshold = args.Input<double>("--energyThreshold","adaptivity thresh",.5);
  if (rank==0){
    cout << "nCells = " << nCells << ", numRefs = " << numRefs << ", eps = " << eps << endl;
  }
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);
  
  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  
  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());
  
  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);
  
  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);  
  qoptIP->addTerm( v );
  qoptIP->addTerm( tau / eps + v->grad() );
  qoptIP->addTerm( beta * v->grad() - tau->div() );

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(eps) ); 
  FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling);

  
  robIP->addTerm( ip_scaling * v);
  robIP->addTerm( ip_scaling/sqrt(eps) * tau );
  robIP->addTerm( sqrt(eps) * v->grad() );
  robIP->addTerm( beta * v->grad() );
  robIP->addTerm( tau->div() );  
  /*
  robIP->addTerm(v);
  robIP->addTerm(v->grad());
  robIP->addTerm(tau->div());
  robIP->addTerm(invSqrtH*tau);  
  */
  FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); // see what effect this has
  //  robIP->addZeroMeanTerm( h2_scaling*v );
  
  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  //  FunctionPtr f = zero;
  //  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  //  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary(beta) );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary);

  FunctionPtr u_exact = Teuchos::rcp( new Uex(eps,0) );
  FunctionPtr sig1_exact = Teuchos::rcp( new Uex(eps,1) );
  FunctionPtr sig2_exact = Teuchos::rcp( new Uex(eps,2) );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );

  vector<double> e1(2); // (1,0)
  vector<double> e2(2); // (0,1)
  e1[0] = 1;
  e2[1] = 1;
  FunctionPtr sigma = sig1_exact*e1 + sig2_exact*e2;

  bc->addDirichlet(uhat, outflowBoundary, zero);
  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*u_exact-sigma*n);  
  //  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*u_exact);   // ignoring sigma
  FunctionPtr u_disc = Teuchos::rcp( new Udisc );
  //  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*u_disc);  

  //  bc->addDirichlet(uhat, inflowBoundary, u_exact);  

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 2, pToAdd = 3;
  
  int horizontalCells = nCells, verticalCells = nCells;
  
  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);
    
  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  //  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, qoptIP) );

  if (enforceLocalConservation) {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }
  
  RefinementStrategy refinementStrategy( solution, energyThreshold );
   
  ofstream convOut;
  stringstream convOutFile;
  convOutFile << "erickson_conv_" << round(-log(eps)/log(10.0)) <<".txt";
  convOut.open(convOutFile.str().c_str());
  for (int refIndex=0; refIndex < numRefs; refIndex++){    
    solution->condensedSolve(false);
    //    solution->solve(false);

    double quadTol = 1e-7;
    int cubEnrich = 25;
    FunctionPtr u_soln = Teuchos::rcp( new PreviousSolutionFunction(solution, u) );
    FunctionPtr sigma1_soln = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma1) );
    FunctionPtr sigma2_soln = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma2) );
    FunctionPtr u_diff = (u_soln - u_exact)*(u_soln - u_exact);
    FunctionPtr sig1_diff = (sigma1_soln - sig1_exact)*(sigma1_soln - sig1_exact);
    FunctionPtr sig2_diff = (sigma2_soln - sig2_exact)*(sigma2_soln - sig2_exact);
    double u_L2_error = u_diff->integrate(mesh,cubEnrich);
    double sigma_L2_error = sig1_diff->integrate(mesh,cubEnrich) + sig2_diff->integrate(mesh,cubEnrich);
    double L2_error = sqrt(u_L2_error + sigma_L2_error);
    double energy_error = solution->energyErrorTotal();
    u_soln->writeValuesToMATLABFile(mesh, "u_soln.m");
    u_diff->writeValuesToMATLABFile(mesh, "u_diff.m");
    u_exact->writeValuesToMATLABFile(mesh, "u_exact.m");
    sig1_exact->writeValuesToMATLABFile(mesh, "s1_exact.m");
    sig2_exact->writeValuesToMATLABFile(mesh, "s2_exact.m");

    convOut << mesh->numGlobalDofs() << " " << L2_error << " " << energy_error << endl;
    if (rank==0){
      cout << "L2 error = " << L2_error << ", energy error = " << energy_error << ", ratio = " << L2_error/energy_error << endl;
      cout << "u squared L2 error = " << u_L2_error << ", sigma squared l2 error = " << sigma_L2_error << ", num dofs = " << mesh->numGlobalDofs() << endl;
    }

    refinementStrategy.refine(rank==0); // print to console on rank 0
  }
  convOut.close();  

  // one more solve on the final refined mesh:
  solution->condensedSolve(false);

  VTKExporter exporter(solution, mesh, varFactory);
  if (rank==0){
    exporter.exportSolution("robustIP");
    cout << endl;
  }

  return 0; 
  /*
  // determine trialIDs
  vector< int > trialIDs = mesh->bilinearForm()->trialIDs();
  vector< int > fieldIDs;
  vector< int > fluxIDs;
  vector< int >::iterator idIt;

  for (idIt = trialIDs.begin();idIt!=trialIDs.end();idIt++){
    int trialID = *(idIt);
    if (!mesh->bilinearForm()->isFluxOrTrace(trialID)){ // if field
      fieldIDs.push_back(trialID);
    } else {
      fluxIDs.push_back(trialID);
    }
  } 
  int numFieldInds = 0;
  map<int,vector<int> > globalFluxInds;   // from cellID to localDofInd vector
  map<int,vector<int> > globalFieldInds;   // from cellID to localDofInd vector
  map<int,vector<int> > localFieldInds;   // from cellID to localDofInd vector
  map<int,vector<int> > localFluxInds;   // from cellID to localDofInd vector
  set<int>              allFluxInds;    // unique set of all flux inds

  mesh->getDofIndices(allFluxInds,globalFluxInds,globalFieldInds,localFluxInds,localFieldInds);

  if (rank==0){

    vector< ElementPtr > activeElems = mesh->activeElements();
    vector< ElementPtr >::iterator elemIt;

    cout << "num flux dofs = " << allFluxInds.size() << endl;
    cout << "num field dofs = " << mesh->numFieldDofs() << endl;
    cout << "num flux dofs = " << mesh->numFluxDofs() << endl;
    elemIt = activeElems.begin();
    int cellID = (*elemIt)->cellID();
    cout << "num LOCAL field dofs = " << localFieldInds[cellID].size() << endl;
  
    ofstream fieldInds; 
    fieldInds.open("fieldInds.dat");
    for (elemIt = activeElems.begin();elemIt!=activeElems.end();elemIt++){
      int cellID = (*elemIt)->cellID();
      vector<int> inds = globalFieldInds[cellID];
      vector<int> locFieldInds = localFieldInds[cellID];
      cout << "local field inds for cell ID " << cellID << endl;
      for (int i = 0;i<inds.size();++i){
	fieldInds << inds[i]+1 << endl;
	cout << locFieldInds[i] << endl;
      }
      vector<int> finds = globalFluxInds[cellID];
      vector<int> locFluxInds = localFluxInds[cellID];
      cout << "local flux inds for cell ID " << cellID << endl;
      for (int i = 0;i<finds.size();++i){
	cout << locFluxInds[i] << endl;
      }
      cout << "global flux inds for cell ID " << cellID << endl;
      for (int i = 0;i<finds.size();++i){
	cout << globalFluxInds[cellID][i] << endl;
      }
    }
    fieldInds.close();

    ofstream fluxInds;
    fluxInds.open("fluxInds.dat");
    set<int>::iterator fluxIt;
    for (fluxIt = allFluxInds.begin();fluxIt!=allFluxInds.end();fluxIt++){
      fluxInds << (*fluxIt)+1 << endl; // offset by 1 for matlab
    }
    fluxInds.close();
  }
  
  return 0;
  */
}
int main(int argc, char *argv[])
{
  // Process command line arguments
  if (argc > 1)
    numRefs = atof(argv[1]);
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif

  FunctionPtr beta = Teuchos::rcp(new Beta());

  ////////////////////////////////////////////////////////////////////
  // DEFINE VARIABLES
  ////////////////////////////////////////////////////////////////////
  // test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  ////////////////////////////////////////////////////////////////////
  // CREATE MESH
  ////////////////////////////////////////////////////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );

  FieldContainer<double> meshBoundary(4,2);

  meshBoundary(0,0) =  0.0; // x1
  meshBoundary(0,1) = -2.0; // y1
  meshBoundary(1,0) =  4.0;
  meshBoundary(1,1) = -2.0;
  meshBoundary(2,0) =  4.0;
  meshBoundary(2,1) =  2.0;
  meshBoundary(3,0) =  0.0;
  meshBoundary(3,1) =  2.0;

  int horizontalCells = 4, verticalCells = 4;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
                            confusionBF, H1Order, H1Order+pToAdd, false);

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE BACKGROUND FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////

  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );
  SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );

  FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) );

  // ==================== SET INITIAL GUESS ==========================
  double u_free = 0.0;
  double sigma1_free = 0.0;
  double sigma2_free = 0.0;
  map<int, Teuchos::RCP<Function> > functionMap;
  functionMap[u->ID()] = Teuchos::rcp( new ConstantScalarFunction(u_free) );
  functionMap[sigma1->ID()] = Teuchos::rcp( new ConstantScalarFunction(sigma1_free) );
  functionMap[sigma2->ID()] = Teuchos::rcp( new ConstantScalarFunction(sigma2_free) );

  prevTimeFlow->projectOntoMesh(functionMap);
  // ==================== END SET INITIAL GUESS ==========================

  ////////////////////////////////////////////////////////////////////
  // DEFINE BILINEAR FORM
  ////////////////////////////////////////////////////////////////////

  // tau terms:
  confusionBF->addTerm(sigma1 / epsilon, tau->x());
  confusionBF->addTerm(sigma2 / epsilon, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(-uhat, tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( beta * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////////////////////////////////////////////////////
  // TIMESTEPPING TERMS
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );

  double dt = 0.25;
  FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt));
  if (rank==0)
  {
    cout << "Timestep dt = " << dt << endl;
  }
  if (transient)
  {
    confusionBF->addTerm( u, invDt*v );
    rhs->addTerm( u_prev_time * invDt * v );
  }

  ////////////////////////////////////////////////////////////////////
  // DEFINE INNER PRODUCT
  ////////////////////////////////////////////////////////////////////

  // mathematician's norm
  IPPtr mathIP = Teuchos::rcp(new IP());
  mathIP->addTerm(tau);
  mathIP->addTerm(tau->div());

  mathIP->addTerm(v);
  mathIP->addTerm(v->grad());

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);
  qoptIP->addTerm( v );
  qoptIP->addTerm( tau / epsilon + v->grad() );
  qoptIP->addTerm( beta * v->grad() - tau->div() );

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
  if (!enforceLocalConservation)
  {
    robIP->addTerm( ip_scaling * v );
    if (transient)
      robIP->addTerm( invDt * v );
  }
  robIP->addTerm( sqrt(epsilon) * v->grad() );
  // Weight these two terms for inflow
  FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() );
  robIP->addTerm( ip_weight * beta * v->grad() );
  robIP->addTerm( ip_weight * tau->div() );
  robIP->addTerm( ip_scaling/sqrt(epsilon) * tau );
  if (enforceLocalConservation)
    robIP->addZeroMeanTerm( v );

  ////////////////////////////////////////////////////////////////////
  // DEFINE RHS
  ////////////////////////////////////////////////////////////////////

  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////////////////////////////////////////////////////
  // DEFINE BC
  ////////////////////////////////////////////////////////////////////

  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary );
  SpatialFilterPtr tbBoundary = Teuchos::rcp( new TopBottomBoundary );
  SpatialFilterPtr rBoundary = Teuchos::rcp( new RightBoundary );
  FunctionPtr u0 = Teuchos::rcp( new ZeroBC );
  FunctionPtr u_inlet = Teuchos::rcp( new InletBC );
  // FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  bc->addDirichlet(beta_n_u_minus_sigma_n, lBoundary, u_inlet);
  bc->addDirichlet(beta_n_u_minus_sigma_n, tbBoundary, u0);
  bc->addDirichlet(uhat, rBoundary, u0);
  // pc->addConstraint(beta_n_u_minus_sigma_n - uhat == u0, rBoundary);

  ////////////////////////////////////////////////////////////////////
  // CREATE SOLUTION OBJECT
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  // solution->setFilter(pc);

  // ==================== Enforce Local Conservation ==================
  if (enforceLocalConservation)
  {
    if (transient)
    {
      FunctionPtr conserved_rhs = u_prev_time * invDt;
      LinearTermPtr conserved_quantity = invDt * u;
      LinearTermPtr flux_part = Teuchos::rcp(new LinearTerm(-1.0, beta_n_u_minus_sigma_n));
      conserved_quantity->addTerm(flux_part, true);
      // conserved_quantity = conserved_quantity - beta_n_u_minus_sigma_n;
      solution->lagrangeConstraints()->addConstraint(conserved_quantity == conserved_rhs);
    }
    else
    {
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
    }
  }

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(prevTimeFlow); // u_t(i-1)
  mesh->registerSolution(flowResidual); // u_t(i-1)

  double energyThreshold = 0.25; // for mesh refinements
  Teuchos::RCP<RefinementStrategy> refinementStrategy;
  refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

  ////////////////////////////////////////////////////////////////////
  // PSEUDO-TIME SOLVE STRATEGY
  ////////////////////////////////////////////////////////////////////

  double time_tol = 1e-8;
  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2_time_residual = 1e7;
    int timestepCount = 0;
    if (!transient)
      numTimeSteps = 1;
    while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps))
    {
      solution->solve(false);
      // subtract solutions to get residual
      flowResidual->setSolution(solution); // reset previous time solution to current time sol
      flowResidual->addSolution(prevTimeFlow, -1.0);
      double L2u = flowResidual->L2NormOfSolutionGlobal(u->ID());
      double L2sigma1 = flowResidual->L2NormOfSolutionGlobal(sigma1->ID());
      double L2sigma2 = flowResidual->L2NormOfSolutionGlobal(sigma2->ID());
      L2_time_residual = sqrt(L2u*L2u + L2sigma1*L2sigma1 + L2sigma2*L2sigma2);
      cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl;

      if (rank == 0)
      {
        stringstream outfile;
        if (transient)
          outfile << "TransientConfusion_" << refIndex << "_" << timestepCount;
        else
          outfile << "TransientConfusion_" << refIndex;
        solution->writeToVTK(outfile.str(), 5);
      }

      //////////////////////////////////////////////////////////////////////////
      // Check conservation by testing against one
      //////////////////////////////////////////////////////////////////////////
      VarPtr testOne = varFactory.testVar("1", CONSTANT_SCALAR);
      // Create a fake bilinear form for the testing
      BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
      // Define our mass flux
      FunctionPtr flux_current_time = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr delta_u = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) );
      LinearTermPtr surfaceFlux = -1.0 * flux_current_time * testOne;
      LinearTermPtr volumeChange = invDt * delta_u * testOne;
      LinearTermPtr massFluxTerm;
      if (transient)
      {
        massFluxTerm = volumeChange;
        // massFluxTerm->addTerm(surfaceFlux);
      }
      else
      {
        massFluxTerm = surfaceFlux;
      }
      // cout << "surface case = " << surfaceFlux->summands()[0].first->boundaryValueOnly() << " volume case = " << volumeChange->summands()[0].first->boundaryValueOnly() << endl;

      // FunctionPtr massFlux= Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      // LinearTermPtr massFluxTerm = massFlux * testOne;

      Teuchos::RCP<shards::CellTopology> quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
      DofOrderingFactory dofOrderingFactory(fakeBF);
      int fakeTestOrder = H1Order;
      DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr);

      int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0);
      vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types
      map<int, double> massFluxIntegral; // cellID -> integral
      double maxMassFluxIntegral = 0.0;
      double totalMassFlux = 0.0;
      double totalAbsMassFlux = 0.0;
      for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++)
      {
        ElementTypePtr elemType = *elemTypeIt;
        vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType);
        vector<int> cellIDs;
        for (int i=0; i<elems.size(); i++)
        {
          cellIDs.push_back(elems[i]->cellID());
        }
        FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType);
        BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh) );
        basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches
        FieldContainer<double> cellMeasures = basisCache->getCellMeasures();
        FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs());
        massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation
        for (int i=0; i<elems.size(); i++)
        {
          int cellID = cellIDs[i];
          // pick out the ones for testOne:
          massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex);
        }
        // find the largest:
        for (int i=0; i<elems.size(); i++)
        {
          int cellID = cellIDs[i];
          maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
        }
        for (int i=0; i<elems.size(); i++)
        {
          int cellID = cellIDs[i];
          maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
          totalMassFlux += massFluxIntegral[cellID];
          totalAbsMassFlux += abs( massFluxIntegral[cellID] );
        }
      }

      // Print results from processor with rank 0
      if (rank == 0)
      {
        cout << "largest mass flux: " << maxMassFluxIntegral << endl;
        cout << "total mass flux: " << totalMassFlux << endl;
        cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl;
      }

      prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol
      timestepCount++;
    }

    if (refIndex < numRefs)
    {
      if (rank==0)
      {
        cout << "Performing refinement number " << refIndex << endl;
      }
      refinementStrategy->refine(rank==0);
      // RESET solution every refinement - make sure discretization error doesn't creep in
      // prevTimeFlow->projectOntoMesh(functionMap);
    }
  }

  return 0;
}
Example #5
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  int polyOrder = 3;
  int pToAdd = 2; // for tests

  // define our manufactured solution or problem bilinear form:
  bool useTriangles = false;

  FieldContainer<double> meshPoints(4,2);

  meshPoints(0,0) = 0.0; // x1
  meshPoints(0,1) = 0.0; // y1
  meshPoints(1,0) = 1.0;
  meshPoints(1,1) = 0.0;
  meshPoints(2,0) = 1.0;
  meshPoints(2,1) = 1.0;
  meshPoints(3,0) = 0.0;
  meshPoints(3,1) = 1.0;

  int H1Order = polyOrder + 1;
  int horizontalCells = 4, verticalCells = 4;

  double energyThreshold = 0.2; // for mesh refinements
  double nonlinearStepSize = 0.5;
  double nonlinearRelativeEnergyTolerance = 1e-8; // used to determine convergence of the nonlinear solution

  ////////////////////////////////////////////////////////////////////
  // DEFINE VARIABLES
  ////////////////////////////////////////////////////////////////////

  // new-style bilinear form definition
  VarFactory varFactory;
  VarPtr fhat = varFactory.fluxVar("\\widehat{f}");
  VarPtr u = varFactory.fieldVar("u");

  VarPtr v = varFactory.testVar("v",HGRAD);
  BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // initialize bilinear form

  ////////////////////////////////////////////////////////////////////
  // CREATE MESH
  ////////////////////////////////////////////////////////////////////

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshPoints, horizontalCells,
                            verticalCells, bf, H1Order,
                            H1Order+pToAdd, useTriangles);
  mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE BACKGROUND FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////
  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC,
                               nullRHS, nullIP) );

  vector<double> e1(2); // (1,0)
  e1[0] = 1;
  vector<double> e2(2); // (0,1)
  e2[1] = 1;

  FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) );
  FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) );

  ////////////////////////////////////////////////////////////////////
  // DEFINE BILINEAR FORM
  ////////////////////////////////////////////////////////////////////

  // v:
  // (sigma, grad v)_K - (sigma_hat_n, v)_dK - (u, beta dot grad v) + (u_hat * n dot beta, v)_dK
  bf->addTerm( -u, beta * v->grad());
  bf->addTerm( fhat, v);

  // ==================== SET INITIAL GUESS ==========================
  mesh->registerSolution(backgroundFlow);
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr u0 = Teuchos::rcp( new U0 );

  map<int, Teuchos::RCP<Function> > functionMap;
  functionMap[u->ID()] = u0;

  backgroundFlow->projectOntoMesh(functionMap);
  // ==================== END SET INITIAL GUESS ==========================

  ////////////////////////////////////////////////////////////////////
  // DEFINE INNER PRODUCT
  ////////////////////////////////////////////////////////////////////
  IPPtr ip = Teuchos::rcp( new IP );
  ip->addTerm( v );
  ip->addTerm( beta * v->grad() );

  ////////////////////////////////////////////////////////////////////
  // DEFINE RHS
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev;
  rhs->addTerm( (e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad());

  ////////////////////////////////////////////////////////////////////
  // DEFINE DIRICHLET BC
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<BCEasy> inflowBC = Teuchos::rcp( new BCEasy );

  // Create spatial filters
  SpatialFilterPtr bottomBoundary = Teuchos::rcp( new BottomBoundary );
  SpatialFilterPtr leftBoundary = Teuchos::rcp( new LeftBoundary );
  SpatialFilterPtr rightBoundary = Teuchos::rcp( new LeftBoundary );

  // Create BCs
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0;
  SimpleFunction* u0Ptr = static_cast<SimpleFunction *>(u0.get());
  double u0Left = u0Ptr->value(0,0);
  double u0Right = u0Ptr->value(1.0,0);
  FunctionPtr leftVal = Teuchos::rcp( new ConstantScalarFunction( -0.5*u0Left*u0Left ) );
  FunctionPtr rightVal = Teuchos::rcp( new ConstantScalarFunction( 0.5*u0Right*u0Right ) );
  inflowBC->addDirichlet(fhat, bottomBoundary, -u0 );
  inflowBC->addDirichlet(fhat, leftBoundary, leftVal );
  inflowBC->addDirichlet(fhat, rightBoundary, rightVal );

  ////////////////////////////////////////////////////////////////////
  // CREATE SOLUTION OBJECT
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip));
  mesh->registerSolution(solution);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(fhat == zero);
  }

  ////////////////////////////////////////////////////////////////////
  // DEFINE REFINEMENT STRATEGY
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<RefinementStrategy> refinementStrategy;
  refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

  ////////////////////////////////////////////////////////////////////
  // SOLVE
  ////////////////////////////////////////////////////////////////////

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2Update = 1e7;
    int iterCount = 0;
    while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations)
    {
      solution->solve();
      L2Update = solution->L2NormOfSolutionGlobal(u->ID());
      cout << "L2 Norm of Update = " << L2Update << endl;
      // backgroundFlow->clear();
      backgroundFlow->addSolution(solution, newtonStepSize);
      iterCount++;
    }
    cout << endl;

    // check conservation
    VarPtr testOne = varFactory.testVar("1", CONSTANT_SCALAR);
    // Create a fake bilinear form for the testing
    BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
    // Define our mass flux
    FunctionPtr massFlux = Teuchos::rcp( new PreviousSolutionFunction(solution, fhat) );
    LinearTermPtr massFluxTerm = massFlux * testOne;

    Teuchos::RCP<shards::CellTopology> quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
    DofOrderingFactory dofOrderingFactory(fakeBF);
    int fakeTestOrder = H1Order;
    DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr);

    int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0);
    vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types
    map<int, double> massFluxIntegral; // cellID -> integral
    double maxMassFluxIntegral = 0.0;
    double totalMassFlux = 0.0;
    double totalAbsMassFlux = 0.0;
    for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++)
    {
      ElementTypePtr elemType = *elemTypeIt;
      vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType);
      vector<int> cellIDs;
      for (int i=0; i<elems.size(); i++)
      {
        cellIDs.push_back(elems[i]->cellID());
      }
      FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType);
      BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh) );
      basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches
      FieldContainer<double> cellMeasures = basisCache->getCellMeasures();
      FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs());
      massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation
      for (int i=0; i<elems.size(); i++)
      {
        int cellID = cellIDs[i];
        // pick out the ones for testOne:
        massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex);
      }
      // find the largest:
      for (int i=0; i<elems.size(); i++)
      {
        int cellID = cellIDs[i];
        maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
      }
      for (int i=0; i<elems.size(); i++)
      {
        int cellID = cellIDs[i];
        maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
        totalMassFlux += massFluxIntegral[cellID];
        totalAbsMassFlux += abs( massFluxIntegral[cellID] );
      }
    }
    if (rank==0)
    {
      cout << endl;
      cout << "largest mass flux: " << maxMassFluxIntegral << endl;
      cout << "total mass flux: " << totalMassFlux << endl;
      cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl;
      cout << endl;

      stringstream outfile;
      outfile << "burgers_" << refIndex;
      backgroundFlow->writeToVTK(outfile.str(), 5);
    }

    if (refIndex < numRefs)
      refinementStrategy->refine(rank==0); // print to console on rank 0
  }

  return 0;
}
int main(int argc, char *argv[]) {
  int rank = 0;
#ifdef HAVE_MPI
  // TODO: figure out the right thing to do here...
  // may want to modify argc and argv before we make the following call:
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  rank=mpiSession.getRank();
#else
#endif
  bool useLineSearch = false;
  
  int pToAdd = 2; // for optimal test function approximation
  int pToAddForStreamFunction = 2;
  double nonlinearStepSize = 1.0;
  double dt = 0.5;
  double nonlinearRelativeEnergyTolerance = 0.015; // used to determine convergence of the nonlinear solution
  //  double nonlinearRelativeEnergyTolerance = 0.15; // used to determine convergence of the nonlinear solution
  double eps = 1.0/64.0; // width of ramp up to 1.0 for top BC;  eps == 0 ==> soln not in H1
  // epsilon above is chosen to match our initial 16x16 mesh, to avoid quadrature errors.
  //  double eps = 0.0; // John Evans's problem: not in H^1
  bool enforceLocalConservation = false;
  bool enforceOneIrregularity = true;
  bool reportPerCellErrors  = true;
  bool useMumps = true;
  
  int horizontalCells, verticalCells;
  
  int maxIters = 50; // for nonlinear steps
  
  vector<double> ReValues;
  
  // usage: polyOrder [numRefinements]
  // parse args:
  if (argc < 6) {
    cout << "Usage: NavierStokesCavityFlowContinuationFixedMesh fieldPolyOrder hCells vCells energyErrorGoal Re0 [Re1 ...]\n";
    return -1;
  }
  int polyOrder = atoi(argv[1]);
  horizontalCells = atoi(argv[2]);
  verticalCells = atoi(argv[3]);
  double energyErrorGoal = atof(argv[4]);
  for (int i=5; i<argc; i++) {
    ReValues.push_back(atof(argv[i]));
  }
  if (rank == 0) {
    cout << "L^2 order: " << polyOrder << endl;
    cout << "initial mesh size: " << horizontalCells << " x " << verticalCells << endl;
    cout << "energy error goal: " << energyErrorGoal << endl;
    cout << "Reynolds number values for continuation:\n";
    for (int i=0; i<ReValues.size(); i++) {
      cout << ReValues[i] << ", ";
    }
    cout << endl;
  }
  
  FieldContainer<double> quadPoints(4,2);
  
  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;
  
  // define meshes:
  int H1Order = polyOrder + 1;
  bool useTriangles = false;
  bool meshHasTriangles = useTriangles;
  
  double minL2Increment = 1e-8;
  
  // get variable definitions:
  VarFactory varFactory = VGPStokesFormulation::vgpVarFactory();
  u1 = varFactory.fieldVar(VGP_U1_S);
  u2 = varFactory.fieldVar(VGP_U2_S);
  sigma11 = varFactory.fieldVar(VGP_SIGMA11_S);
  sigma12 = varFactory.fieldVar(VGP_SIGMA12_S);
  sigma21 = varFactory.fieldVar(VGP_SIGMA21_S);
  sigma22 = varFactory.fieldVar(VGP_SIGMA22_S);
  p = varFactory.fieldVar(VGP_P_S);
  
  u1hat = varFactory.traceVar(VGP_U1HAT_S);
  u2hat = varFactory.traceVar(VGP_U2HAT_S);
  t1n = varFactory.fluxVar(VGP_T1HAT_S);
  t2n = varFactory.fluxVar(VGP_T2HAT_S);
  
  v1 = varFactory.testVar(VGP_V1_S, HGRAD);
  v2 = varFactory.testVar(VGP_V2_S, HGRAD);
  tau1 = varFactory.testVar(VGP_TAU1_S, HDIV);
  tau2 = varFactory.testVar(VGP_TAU2_S, HDIV);
  q = varFactory.testVar(VGP_Q_S, HGRAD);
  
  FunctionPtr u1_0 = Teuchos::rcp( new U1_0(eps) );
  FunctionPtr u2_0 = Teuchos::rcp( new U2_0 );
  FunctionPtr zero = Function::zero();
  ParameterFunctionPtr Re_param = ParameterFunction::parameterFunction(1);
  VGPNavierStokesProblem problem = VGPNavierStokesProblem(Re_param,quadPoints,
                                                          horizontalCells,verticalCells,
                                                          H1Order, pToAdd,
                                                          u1_0, u2_0,  // BC for u
                                                          zero, zero); // zero forcing function
  SolutionPtr solution = problem.backgroundFlow();
  SolutionPtr solnIncrement = problem.solutionIncrement();
  
  Teuchos::RCP<Mesh> mesh = problem.mesh();
  mesh->registerSolution(solution);
  mesh->registerSolution(solnIncrement);
  
  ///////////////////////////////////////////////////////////////////////////
  
  // define bilinear form for stream function:
  VarFactory streamVarFactory;
  VarPtr phi_hat = streamVarFactory.traceVar("\\widehat{\\phi}");
  VarPtr psin_hat = streamVarFactory.fluxVar("\\widehat{\\psi}_n");
  VarPtr psi_1 = streamVarFactory.fieldVar("\\psi_1");
  VarPtr psi_2 = streamVarFactory.fieldVar("\\psi_2");
  VarPtr phi = streamVarFactory.fieldVar("\\phi");
  VarPtr q_s = streamVarFactory.testVar("q_s", HGRAD);
  VarPtr v_s = streamVarFactory.testVar("v_s", HDIV);
  BFPtr streamBF = Teuchos::rcp( new BF(streamVarFactory) );
  streamBF->addTerm(psi_1, q_s->dx());
  streamBF->addTerm(psi_2, q_s->dy());
  streamBF->addTerm(-psin_hat, q_s);
  
  streamBF->addTerm(psi_1, v_s->x());
  streamBF->addTerm(psi_2, v_s->y());
  streamBF->addTerm(phi, v_s->div());
  streamBF->addTerm(-phi_hat, v_s->dot_normal());
  
  Teuchos::RCP<Mesh> streamMesh, overkillMesh;
  
  streamMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells,
                                   streamBF, H1Order+pToAddForStreamFunction,
                                   H1Order+pToAdd+pToAddForStreamFunction, useTriangles);
  
  mesh->registerObserver(streamMesh); // will refine streamMesh in the same way as mesh.
  
  map<int, double> dofsToL2error; // key: numGlobalDofs, value: total L2error compared with overkill
  vector< VarPtr > fields;
  fields.push_back(u1);
  fields.push_back(u2);
  fields.push_back(sigma11);
  fields.push_back(sigma12);
  fields.push_back(sigma21);
  fields.push_back(sigma22);
  fields.push_back(p);
  
  if (rank == 0) {
    cout << "Starting mesh has " << horizontalCells << " x " << verticalCells << " elements and ";
    cout << mesh->numGlobalDofs() << " total dofs.\n";
    cout << "polyOrder = " << polyOrder << endl; 
    cout << "pToAdd = " << pToAdd << endl;
    cout << "eps for top BC = " << eps << endl;
    
    if (useTriangles) {
      cout << "Using triangles.\n";
    }
    if (enforceLocalConservation) {
      cout << "Enforcing local conservation.\n";
    } else {
      cout << "NOT enforcing local conservation.\n";
    }
    if (enforceOneIrregularity) {
      cout << "Enforcing 1-irregularity.\n";
    } else {
      cout << "NOT enforcing 1-irregularity.\n";
    }
  }
  
  ////////////////////   CREATE BCs   ///////////////////////
  SpatialFilterPtr entireBoundary = Teuchos::rcp( new SpatialFilterUnfiltered );
  
  FunctionPtr u1_prev = Function::solution(u1,solution);
  FunctionPtr u2_prev = Function::solution(u2,solution);
  
  FunctionPtr u1hat_prev = Function::solution(u1hat,solution);
  FunctionPtr u2hat_prev = Function::solution(u2hat,solution);
  
  
  ////////////////////   SOLVE & REFINE   ///////////////////////
  
  FunctionPtr vorticity = Teuchos::rcp( new PreviousSolutionFunction(solution, - u1->dy() + u2->dx() ) );
  //  FunctionPtr vorticity = Teuchos::rcp( new PreviousSolutionFunction(solution,sigma12 - sigma21) );
  RHSPtr streamRHS = RHS::rhs();
  streamRHS->addTerm(vorticity * q_s);
  ((PreviousSolutionFunction*) vorticity.get())->setOverrideMeshCheck(true);
  ((PreviousSolutionFunction*) u1_prev.get())->setOverrideMeshCheck(true);
  ((PreviousSolutionFunction*) u2_prev.get())->setOverrideMeshCheck(true);
  
  BCPtr streamBC = BC::bc();
  //  streamBC->addDirichlet(psin_hat, entireBoundary, u0_cross_n);
  streamBC->addDirichlet(phi_hat, entireBoundary, zero);
  //  streamBC->addZeroMeanConstraint(phi);
  
  IPPtr streamIP = Teuchos::rcp( new IP );
  streamIP->addTerm(q_s);
  streamIP->addTerm(q_s->grad());
  streamIP->addTerm(v_s);
  streamIP->addTerm(v_s->div());
  SolutionPtr streamSolution = Teuchos::rcp( new Solution( streamMesh, streamBC, streamRHS, streamIP ) );
  
  if (enforceLocalConservation) {
    FunctionPtr zero = Function::zero();
    solution->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y()==zero);
    solnIncrement->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y()==zero);
  }
      
  if (true) {    
    FunctionPtr u1_incr = Function::solution(u1, solnIncrement);
    FunctionPtr u2_incr = Function::solution(u2, solnIncrement);
    FunctionPtr sigma11_incr = Function::solution(sigma11, solnIncrement);
    FunctionPtr sigma12_incr = Function::solution(sigma12, solnIncrement);
    FunctionPtr sigma21_incr = Function::solution(sigma21, solnIncrement);
    FunctionPtr sigma22_incr = Function::solution(sigma22, solnIncrement);
    FunctionPtr p_incr = Function::solution(p, solnIncrement);
    
    FunctionPtr l2_incr = u1_incr * u1_incr + u2_incr * u2_incr + p_incr * p_incr
    + sigma11_incr * sigma11_incr + sigma12_incr * sigma12_incr
    + sigma21_incr * sigma21_incr + sigma22_incr * sigma22_incr;

    double energyThreshold = 0.20;
    Teuchos::RCP< RefinementStrategy > refinementStrategy = Teuchos::rcp( new RefinementStrategy( solnIncrement, energyThreshold ));

    for (int i=0; i<ReValues.size(); i++) {
      double Re = ReValues[i];
      Re_param->setValue(Re);
      if (rank==0) cout << "Solving with Re = " << Re << ":\n";
      double energyErrorTotal;
      do {
        double incr_norm;
        do {
          problem.iterate(useLineSearch);
          incr_norm = sqrt(l2_incr->integrate(problem.mesh()));
          if (rank==0) {
            cout << "\x1B[2K"; // Erase the entire current line.
            cout << "\x1B[0E"; // Move to the beginning of the current line.
            cout << "Iteration: " << problem.iterationCount() << "; L^2(incr) = " << incr_norm;
            flush(cout);
          }
        } while ((incr_norm > minL2Increment ) && (problem.iterationCount() < maxIters));
        if (rank==0) cout << endl;
        problem.setIterationCount(1); // 1 means reuse background flow (which we must, given that we want continuation in Re...)
        energyErrorTotal = solnIncrement->energyErrorTotal(); //solution->energyErrorTotal();
        if (energyErrorTotal > energyErrorGoal) {
          refinementStrategy->refine(false);
        }
        if (rank==0) {
          cout << "Energy error: " << energyErrorTotal << endl;
        }
      } while (energyErrorTotal > energyErrorGoal);
    }
  }
  
  double energyErrorTotal = solution->energyErrorTotal();
  double incrementalEnergyErrorTotal = solnIncrement->energyErrorTotal();
  if (rank == 0) {
    cout << "final mesh has " << mesh->numActiveElements() << " elements and " << mesh->numGlobalDofs() << " dofs.\n";
    cout << "energy error: " << energyErrorTotal << endl;
    cout << "  (Incremental solution's energy error is " << incrementalEnergyErrorTotal << ".)\n";
  }
  
  FunctionPtr u1_sq = u1_prev * u1_prev;
  FunctionPtr u_dot_u = u1_sq + (u2_prev * u2_prev);
  FunctionPtr u_mag = Teuchos::rcp( new SqrtFunction( u_dot_u ) );
  FunctionPtr u_div = Teuchos::rcp( new PreviousSolutionFunction(solution, u1->dx() + u2->dy() ) );
  FunctionPtr massFlux = Teuchos::rcp( new PreviousSolutionFunction(solution, u1hat->times_normal_x() + u2hat->times_normal_y()) );
  
  // check that the zero mean pressure is being correctly imposed:
  FunctionPtr p_prev = Teuchos::rcp( new PreviousSolutionFunction(solution,p) );
  double p_avg = p_prev->integrate(mesh);
  if (rank==0)
    cout << "Integral of pressure: " << p_avg << endl;
  
  // integrate massFlux over each element (a test):
  // fake a new bilinear form so we can integrate against 1 
  VarPtr testOne = varFactory.testVar("1",CONSTANT_SCALAR);
  BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
  LinearTermPtr massFluxTerm = massFlux * testOne;
  
  CellTopoPtrLegacy quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
  DofOrderingFactory dofOrderingFactory(fakeBF);
  int fakeTestOrder = H1Order;
  DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr);
  
  int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0);
  vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types
  map<int, double> massFluxIntegral; // cellID -> integral
  double maxMassFluxIntegral = 0.0;
  double totalMassFlux = 0.0;
  double totalAbsMassFlux = 0.0;
  double maxCellMeasure = 0;
  double minCellMeasure = 1;
  for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++) {
    ElementTypePtr elemType = *elemTypeIt;
    vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType);
    vector<GlobalIndexType> cellIDs;
    for (int i=0; i<elems.size(); i++) {
      cellIDs.push_back(elems[i]->cellID());
    }
    FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType);
    BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh,polyOrder) ); // enrich by trial space order
    basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches
    FieldContainer<double> cellMeasures = basisCache->getCellMeasures();
    FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs());
    massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation
    //      cout << "fakeRHSIntegrals:\n" << fakeRHSIntegrals;
    for (int i=0; i<elems.size(); i++) {
      int cellID = cellIDs[i];
      // pick out the ones for testOne:
      massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex);
    }
    // find the largest:
    for (int i=0; i<elems.size(); i++) {
      int cellID = cellIDs[i];
      maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
    }
    for (int i=0; i<elems.size(); i++) {
      int cellID = cellIDs[i];
      maxCellMeasure = max(maxCellMeasure,cellMeasures(i));
      minCellMeasure = min(minCellMeasure,cellMeasures(i));
      maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
      totalMassFlux += massFluxIntegral[cellID];
      totalAbsMassFlux += abs( massFluxIntegral[cellID] );
    }
  }
  if (rank==0) {
    cout << "largest mass flux: " << maxMassFluxIntegral << endl;
    cout << "total mass flux: " << totalMassFlux << endl;
    cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl;
    cout << "largest h: " << sqrt(maxCellMeasure) << endl;
    cout << "smallest h: " << sqrt(minCellMeasure) << endl;
    cout << "ratio of largest / smallest h: " << sqrt(maxCellMeasure) / sqrt(minCellMeasure) << endl;
  }
  if (rank == 0) {
    cout << "phi ID: " << phi->ID() << endl;
    cout << "psi1 ID: " << psi_1->ID() << endl;
    cout << "psi2 ID: " << psi_2->ID() << endl;
    
    cout << "streamMesh has " << streamMesh->numActiveElements() << " elements.\n";
    cout << "solving for approximate stream function...\n";
  }
  
  streamSolution->solve(useMumps);
  energyErrorTotal = streamSolution->energyErrorTotal();
  if (rank == 0) {  
    cout << "...solved.\n";
    cout << "Stream mesh has energy error: " << energyErrorTotal << endl;
  }
  
  if (rank==0){
    solution->writeToVTK("nsCavitySoln.vtk");
    if (! meshHasTriangles ) {
      massFlux->writeBoundaryValuesToMATLABFile(solution->mesh(), "massFlux.dat");
      u_mag->writeValuesToMATLABFile(solution->mesh(), "u_mag.m");
      u_div->writeValuesToMATLABFile(solution->mesh(), "u_div.m");
      solution->writeFieldsToFile(u1->ID(), "u1.m");
      solution->writeFluxesToFile(u1hat->ID(), "u1_hat.dat");
      solution->writeFieldsToFile(u2->ID(), "u2.m");
      solution->writeFluxesToFile(u2hat->ID(), "u2_hat.dat");
      solution->writeFieldsToFile(p->ID(), "p.m");
      streamSolution->writeFieldsToFile(phi->ID(), "phi.m");
      
      streamSolution->writeFluxesToFile(phi_hat->ID(), "phi_hat.dat");
      streamSolution->writeFieldsToFile(psi_1->ID(), "psi1.m");
      streamSolution->writeFieldsToFile(psi_2->ID(), "psi2.m");
      vorticity->writeValuesToMATLABFile(streamMesh, "vorticity.m");
      
      FunctionPtr ten = Teuchos::rcp( new ConstantScalarFunction(10) );
      ten->writeBoundaryValuesToMATLABFile(solution->mesh(), "skeleton.dat");
      cout << "wrote files: u_mag.m, u_div.m, u1.m, u1_hat.dat, u2.m, u2_hat.dat, p.m, phi.m, vorticity.m.\n";
    } else {
      solution->writeToFile(u1->ID(), "u1.dat");
      solution->writeToFile(u2->ID(), "u2.dat");
      solution->writeToFile(u2->ID(), "p.dat");
      cout << "wrote files: u1.dat, u2.dat, p.dat\n";
    }
    
    FieldContainer<double> points = pointGrid(0, 1, 0, 1, 100);
    FieldContainer<double> pointData = solutionData(points, streamSolution, phi);
    GnuPlotUtil::writeXYPoints("phi_patch_navierStokes_cavity.dat", pointData);
    set<double> patchContourLevels = diagonalContourLevels(pointData,1);
    vector<string> patchDataPath;
    patchDataPath.push_back("phi_patch_navierStokes_cavity.dat");
    GnuPlotUtil::writeContourPlotScript(patchContourLevels, patchDataPath, "lidCavityNavierStokes.p");
    
    GnuPlotUtil::writeExactMeshSkeleton("lid_navierStokes_continuation_adaptive", mesh, 2);
    
    writePatchValues(0, 1, 0, 1, streamSolution, phi, "phi_patch.m");
    writePatchValues(0, .1, 0, .1, streamSolution, phi, "phi_patch_detail.m");
    writePatchValues(0, .01, 0, .01, streamSolution, phi, "phi_patch_minute_detail.m");
    writePatchValues(0, .001, 0, .001, streamSolution, phi, "phi_patch_minute_minute_detail.m");
  }
  
  return 0;
}
Example #7
0
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  double epsilon = args.Input<double>("--epsilon", "diffusion parameter");
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = modified robust");

  // Optional arguments (have defaults)
  halfwidth = args.Input("--halfwidth", "half the width of the wedge", 0.5);
  bool allQuads = args.Input("--allQuads", "use only quads in mesh", false);
  bool zeroL2 = args.Input("--zeroL2", "take L2 term on v in robust norm to zero", enforceLocalConservation);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);
  
  // define trial variables
  VarPtr uhat = varFactory.traceVar("uhat");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("fhat");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  
  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma / epsilon, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());
  
  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( beta_n_u_minus_sigma_n, v);
  
  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  // Graph norm
  if (norm == 0)
  {
    ip = bf->graphNorm();
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); 
    ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Robust norm
  else if (norm == 1)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); 
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); 
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    // Weight these two terms for inflow
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Modified robust norm
  else if (norm == 2)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); 
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); 
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    ip->addTerm( tau->div() - beta*v->grad() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }
  
  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );

  SpatialFilterPtr inflow = Teuchos::rcp( new Inflow );
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  bc->addDirichlet(beta_n_u_minus_sigma_n, inflow, zero);

  SpatialFilterPtr leadingWedge = Teuchos::rcp( new LeadingWedge );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  bc->addDirichlet(uhat, leadingWedge, one);

  SpatialFilterPtr trailingWedge = Teuchos::rcp( new TrailingWedge );
  bc->addDirichlet(beta_n_u_minus_sigma_n, trailingWedge, beta*n*one);
  // bc->addDirichlet(uhat, trailingWedge, one);

  SpatialFilterPtr top = Teuchos::rcp( new Top );
  bc->addDirichlet(uhat, top, zero);
  // bc->addDirichlet(beta_n_u_minus_sigma_n, top, zero);

  SpatialFilterPtr outflow = Teuchos::rcp( new Outflow );
  pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == zero, outflow);
  
  ////////////////////   BUILD MESH   ///////////////////////
  int H1Order = 3, pToAdd = 2;
  // define nodes for mesh
  vector< FieldContainer<double> > vertices;
  FieldContainer<double> pt(2);
  vector< vector<int> > elementIndices;
  vector<int> q(4);
  vector<int> t(3);

  if (allQuads)
  {
    pt(0) = -halfwidth; pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  0;         pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) =  0;         pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth; pt(1) =  halfwidth;
    vertices.push_back(pt);

    q[0] = 0; q[1] = 1; q[2] = 4; q[3] = 5;
    elementIndices.push_back(q);
    q[0] = 1; q[1] = 2; q[2] = 3; q[3] = 4;
    elementIndices.push_back(q);
  }
  else
  {
    pt(0) = -halfwidth; pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  0;         pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) =  0;         pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth; pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth; pt(1) =  0;
    vertices.push_back(pt);

    t[0] = 0; t[1] = 1; t[2] = 7;
    elementIndices.push_back(t);
    t[0] = 1; t[1] = 2; t[2] = 3;
    elementIndices.push_back(t);
    q[0] = 1; q[1] = 3; q[2] = 4; q[3] = 5;
    elementIndices.push_back(q);
    q[0] = 7; q[1] = 1; q[2] = 5; q[3] = 6;
    elementIndices.push_back(q);
  }

  Teuchos::RCP<Mesh> mesh = Teuchos::rcp( new Mesh(vertices, elementIndices, bf, H1Order, pToAdd) );  
  
  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->setFilter(pc);

  if (enforceLocalConservation) {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }
  
  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(solution, mesh, varFactory);
  ofstream errOut;
  if (commRank == 0)
    errOut.open("singularwedge_err.txt");
  
  for (int refIndex=0; refIndex<=numRefs; refIndex++){    
    solution->solve(false);

    double energy_error = solution->energyErrorTotal();
    if (commRank==0){
      stringstream outfile;
      outfile << "singularwedge_" << refIndex;
      exporter.exportSolution(outfile.str());

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0] 
        << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;

      errOut << mesh->numGlobalDofs() << " " << energy_error << " "
        << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }
  if (commRank == 0)
    errOut.close();
  
  return 0;
}
Example #8
0
bool ScratchPadTests::testResidualMemoryError()
{

  int rank = Teuchos::GlobalMPISession::getRank();

  double tol = 1e-11;
  bool success = true;

  int nCells = 2;
  double eps = 1e-2;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  robIP->addTerm(tau);
  robIP->addTerm(tau->div());
  robIP->addTerm(v->grad());
  robIP->addTerm(v);

  ////////////////////   SPECIFY RHS   ///////////////////////

  FunctionPtr zero = Function::constant(0.0);
  FunctionPtr one = Function::constant(1.0);
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = zero;
  //  FunctionPtr f = one;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new LRInflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new LROutflowSquareBoundary);

  FunctionPtr n = Function::normal();

  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);

  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*one);
  bc->addDirichlet(uhat, outflowBoundary, zero);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int order = 2;
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);
  //  mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));

  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  solution->solve(false);
  mesh->registerSolution(solution);
  double energyErr1 = solution->energyErrorTotal();

  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution));
  RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, robIP, residual));
  rieszResidual->computeRieszRep();
  FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual);
  FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual);

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  refinementStrategy.refine();
  solution->solve(false);
  double energyErr2 = solution->energyErrorTotal();

  // if energy error rises
  if (energyErr1 < energyErr2)
  {
    if (rank==0)
      cout << "energy error increased from " << energyErr1 << " to " << energyErr2 << " after refinement.\n";
    success = false;
  }

  return success;
}
Example #9
0
// tests whether a mixed type LT
bool ScratchPadTests::testLinearTermEvaluationConsistency()
{
  bool success = true;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr v = varFactory->testVar("v", HGRAD);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(1.0);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr ip = Teuchos::rcp(new IP);
  ip->addTerm(v);
  ip->addTerm(beta*v->grad());

  // define trial variables
  VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }");
  VarPtr u = varFactory->fieldVar("u");

  ////////////////////   BUILD MESH   ///////////////////////

  BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) );

  // v terms:
  convectionBF->addTerm( -u, beta * v->grad() );
  convectionBF->addTerm( beta_n_u, v);

  // define nodes for mesh
  int order = 1;
  int H1Order = order+1;
  int pToAdd = 1;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(1, convectionBF, H1Order, H1Order+pToAdd);

  ////////////////////   get fake residual   ///////////////////////

  LinearTermPtr lt = Teuchos::rcp(new LinearTerm);
  FunctionPtr edgeFxn = Teuchos::rcp(new EdgeFunction);
  FunctionPtr Xsq = Function::xn(2);
  FunctionPtr Ysq = Function::yn(2);
  FunctionPtr XYsq = Xsq*Ysq;
  lt->addTerm(edgeFxn*v + (beta*XYsq)*v->grad());

  Teuchos::RCP<RieszRep> ltRiesz = Teuchos::rcp(new RieszRep(mesh, ip, lt));
  ltRiesz->computeRieszRep();
  FunctionPtr repFxn = RieszRep::repFunction(v,ltRiesz);
  map<int,FunctionPtr> rep_map;
  rep_map[v->ID()] = repFxn;

  FunctionPtr edgeLt = lt->evaluate(rep_map, true) ;
  FunctionPtr elemLt = lt->evaluate(rep_map, false);

  double edgeVal = edgeLt->integrate(mesh,10);
  double elemVal = elemLt->integrate(mesh,10);
  LinearTermPtr edgeOnlyLt = Teuchos::rcp(new LinearTerm);// residual
  edgeOnlyLt->addTerm(edgeFxn*v);
  FunctionPtr edgeOnly = edgeOnlyLt->evaluate(rep_map,true);
  double edgeOnlyVal = edgeOnly->integrate(mesh,10);

  double diff = edgeOnlyVal-edgeVal;
  if (abs(diff)>1e-11)
  {
    success = false;
    cout << "Failed testLinearTermEvaluationConsistency() with diff = " << diff << endl;
  }

  return success;
}
Example #10
0
// tests residual computation on simple convection
bool ScratchPadTests::testLTResidualSimple()
{
  double tol = 1e-11;
  int rank = Teuchos::GlobalMPISession::getRank();

  bool success = true;

  int nCells = 2;

  ////////////////////   DECLARE VARIABLES   ///////////////////////

  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(1.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // v terms:
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr ip = Teuchos::rcp(new IP);

  // choose the mesh-independent norm even though it may have BLs
  ip->addTerm(v->grad());
  ip->addTerm(v);

  ////////////////////   SPECIFY RHS AND HELPFUL FUNCTIONS   ///////////////////////

  FunctionPtr n = Function::normal();
  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);
  FunctionPtr one = Function::constant(1.0);

  FunctionPtr zero = Function::constant(0.0);
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = one;
  rhs->addTerm( f * v );

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr boundary = Teuchos::rcp( new InflowSquareBoundary );
  FunctionPtr u_in = Teuchos::rcp(new Uinflow);
  bc->addDirichlet(beta_n_u, boundary, beta*n*u_in);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int order = 2;
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////

  int cubEnrich = 0;

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->solve(false);
  double energyError = solution->energyErrorTotal();

  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution),true);

  Teuchos::RCP<RieszRep> rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual));
  rieszResidual->computeRieszRep(cubEnrich);
  double energyErrorLT = rieszResidual->getNorm();

  bool testVsTest = true;
  FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual);
  map<int,FunctionPtr> errFxns;
  errFxns[v->ID()] = e_v;
  FunctionPtr err = (ip->evaluate(errFxns,false))->evaluate(errFxns,false); // don't need boundary terms unless they're in IP
  double energyErrorIntegrated = sqrt(err->integrate(mesh,cubEnrich,testVsTest));
  // check that energy error computed thru Solution and through rieszRep are the same
  success = abs(energyError-energyErrorLT) < tol;
  if (success==false)
  {
    if (rank==0)
      cout << "Failed testLTResidualSimple; energy error = " << energyError << ", while linearTerm error is computed to be " << energyErrorLT << endl;
    return success;
  }
  // checks that matrix-computed and integrated errors are the same
  success = abs(energyErrorLT-energyErrorIntegrated)<tol;
  if (success==false)
  {
    if (rank==0)
      cout << "Failed testLTResidualSimple; energy error = " << energyError << ", while error computed via integration is " << energyErrorIntegrated << endl;
    return success;
  }
  return success;
}
Example #11
0
// tests to make sure the energy error calculated thru direct integration works for vector valued test functions too
bool ScratchPadTests::testLTResidual()
{
  double tol = 1e-11;
  int rank = Teuchos::GlobalMPISession::getRank();

  bool success = true;

  int nCells = 2;
  double eps = .1;

  ////////////////////   DECLARE VARIABLES   ///////////////////////

  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr ip = Teuchos::rcp(new IP);

  // choose the mesh-independent norm even though it may have boundary layers
  ip->addTerm(v->grad());
  ip->addTerm(v);
  ip->addTerm(tau);
  ip->addTerm(tau->div());

  ////////////////////   SPECIFY RHS AND HELPFUL FUNCTIONS   ///////////////////////

  FunctionPtr n = Function::normal();
  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);
  FunctionPtr one = Function::constant(1.0);

  FunctionPtr zero = Function::constant(0.0);
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = one; // if this is set to zero instead, we pass the test (a clue?)
  rhs->addTerm( f * v );

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary );

  bc->addDirichlet(uhat, squareBoundary, one);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int order = 2;
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->solve(false);
  double energyError = solution->energyErrorTotal();

  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution),true);

//  FunctionPtr uh = Function::solution(uhat,solution);
//  FunctionPtr fn = Function::solution(beta_n_u_minus_sigma_n,solution);
//  FunctionPtr uF = Function::solution(u,solution);
//  FunctionPtr sigma = e1*Function::solution(sigma1,solution)+e2*Function::solution(sigma2,solution);
//  residual->addTerm(- (fn*v - uh*tau->dot_normal()));
//  residual->addTerm(- (uF*(tau->div() - beta*v->grad()) + sigma*((1/eps)*tau + v->grad())));
//  residual->addTerm(-(fn*v - uF*beta*v->grad() + sigma*v->grad())); // just v portion
//  residual->addTerm(uh*tau->dot_normal() - uF*tau->div() - sigma*((1/eps)*tau)); // just tau portion

  Teuchos::RCP<RieszRep> rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual));
  rieszResidual->computeRieszRep();
  double energyErrorLT = rieszResidual->getNorm();

  int cubEnrich = 0;
  bool testVsTest = true;
  FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual);
  FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual);
  // experiment by Nate: manually specify the error (this appears to produce identical results, as it should)
//  FunctionPtr err = e_v * e_v + e_tau * e_tau + e_v->grad() * e_v->grad() + e_tau->div() * e_tau->div();
  map<int,FunctionPtr> errFxns;
  errFxns[v->ID()] = e_v;
  errFxns[tau->ID()] = e_tau;
  LinearTermPtr ipAtErrFxns = ip->evaluate(errFxns);
  FunctionPtr err = ip->evaluate(errFxns)->evaluate(errFxns);
  double energyErrorIntegrated = sqrt(err->integrate(mesh,cubEnrich,testVsTest));

  // check that energy error computed thru Solution and through rieszRep are the same
  bool success1 = abs(energyError-energyErrorLT)<tol;
  // checks that matrix-computed and integrated errors are the same
  bool success2 = abs(energyErrorLT-energyErrorIntegrated)<tol;
  success = success1==true && success2==true;
  if (!success)
  {
    if (rank==0)
      cout << "Failed testLTResidual; energy error = " << energyError << ", while linearTerm error is computed to be " << energyErrorLT << ", and when computing through integration of the Riesz rep function, error = " << energyErrorIntegrated << endl;
  }
  //  VTKExporter exporter(solution, mesh, varFactory);
  //  exporter.exportSolution("testLTRes");
  //  cout << endl;

  return success;
}
Example #12
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  int polyOrder = 0;

  // define our manufactured solution or problem bilinear form:
  bool useTriangles = false;

  int pToAdd = 1;
  int nCells = 2;
  if ( argc > 1)
  {
    nCells = atoi(argv[1]);
    if (rank==0)
    {
      cout << "numCells = " << nCells << endl;
    }
  }
  int numSteps = 20;
  if ( argc > 2)
  {
    numSteps = atoi(argv[2]);
    if (rank==0)
    {
      cout << "num NR steps = " << numSteps << endl;
    }
  }
  int useHessian = 0; // defaults to "not use"
  if ( argc > 3)
  {
    useHessian = atoi(argv[3]);
    if (rank==0)
    {
      cout << "useHessian = " << useHessian << endl;
    }
  }

  int H1Order = polyOrder + 1;

  double energyThreshold = 0.2; // for mesh refinements
  double nonlinearStepSize = 0.5;
  double nonlinearRelativeEnergyTolerance = 1e-8; // used to determine convergence of the nonlinear solution

  ////////////////////////////////////////////////////////////////////
  // DEFINE VARIABLES
  ////////////////////////////////////////////////////////////////////

  // new-style bilinear form definition
  VarFactory varFactory;
  VarPtr fn = varFactory.fluxVar("\\widehat{\\beta_n_u}");
  VarPtr u = varFactory.fieldVar("u");

  VarPtr v = varFactory.testVar("v",HGRAD);
  BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // initialize bilinear form

  ////////////////////////////////////////////////////////////////////
  // CREATE MESH
  ////////////////////////////////////////////////////////////////////

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildUnitQuadMesh(2,1 , bf, H1Order, H1Order+pToAdd);

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE BACKGROUND FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////
  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC,
                               nullRHS, nullIP) );
  SolutionPtr solnPerturbation = Teuchos::rcp(new Solution(mesh, nullBC,
                                 nullRHS, nullIP) );

  vector<double> e1(2); // (1,0)
  e1[0] = 1;
  vector<double> e2(2); // (0,1)
  e2[1] = 1;

  FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) );
  FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) );

  ////////////////////////////////////////////////////////////////////
  // DEFINE BILINEAR FORM
  ////////////////////////////////////////////////////////////////////

  // v:
  bf->addTerm( -u, beta * v->grad());
  bf->addTerm( fn, v);

  ////////////////////////////////////////////////////////////////////
  // DEFINE RHS
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev;
  rhs->addTerm((e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad());

  // ==================== SET INITIAL GUESS ==========================
  mesh->registerSolution(backgroundFlow);
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr u0 = Teuchos::rcp( new U0 );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  FunctionPtr parity = Teuchos::rcp(new SideParityFunction);

  FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0;

  map<int, Teuchos::RCP<Function> > functionMap;
  functionMap[u->ID()] = u0;
  //  functionMap[fn->ID()] = -(e1 * u0_squared_div_2 + e2 * u0) * n * parity;
  backgroundFlow->projectOntoMesh(functionMap);

  // ==================== END SET INITIAL GUESS ==========================

  ////////////////////////////////////////////////////////////////////
  // DEFINE INNER PRODUCT
  ////////////////////////////////////////////////////////////////////

  IPPtr ip = Teuchos::rcp( new IP );
  ip->addTerm( v );
  ip->addTerm(v->grad());
  //  ip->addTerm( beta * v->grad() );

  ////////////////////////////////////////////////////////////////////
  // DEFINE DIRICHLET BC
  ////////////////////////////////////////////////////////////////////
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary);
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) );
  Teuchos::RCP<BCEasy> inflowBC = Teuchos::rcp( new BCEasy );
  inflowBC->addDirichlet(fn,inflowBoundary,
                         ( e1 * u0_squared_div_2 + e2 * u0) * n );
  //  inflowBC->addDirichlet(fn,inflowBoundary,zero);

  ////////////////////////////////////////////////////////////////////
  // CREATE SOLUTION OBJECT
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip));
  mesh->registerSolution(solution);
  solution->setCubatureEnrichmentDegree(10);

  ////////////////////////////////////////////////////////////////////
  // HESSIAN BIT + CHECKS ON GRADIENT + HESSIAN
  ////////////////////////////////////////////////////////////////////

  VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL);
  VarPtr du = hessianVars.test(u->ID());
  BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form

  FunctionPtr du_current  = Teuchos::rcp( new PreviousSolutionFunction(solution, u) );

  FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,fn));
  LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual
  residual->addTerm(fnhat*v,true);
  residual->addTerm( - (e1 * (u_prev_squared_div2) + e2 * (u_prev)) * v->grad(),true);

  LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual
  Bdu->addTerm( - du_current*(beta*v->grad()));

  Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual));
  Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu));
  riesz->computeRieszRep();
  FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz));
  e_v->writeValuesToMATLABFile(mesh, "e_v.m");
  FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx()));
  hessianBF->addTerm(e_v->dx()*u,du);
  //  hessianBF->addTerm(posErrPart*u,du);
  Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF));

  if (useHessian)
  {
    solution->setWriteMatrixToFile(true,"hessianStiffness.dat");
  }
  else
  {
    solution->setWriteMatrixToFile(true,"stiffness.dat");
  }

  Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz));

  double NL_residual = 9e99;
  for (int i = 0; i<numSteps; i++)
  {
    solution->solve(false); // do one solve to initialize things...
    double stepLength = 1.0;
    stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual);
    if (useHessian)
    {
      solution->setFilter(hessianFilter);
    }
    backgroundFlow->addSolution(solution,stepLength);
    NL_residual = LS_Step->getNLResidual();
    if (rank==0)
    {
      cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl;
    }

    int numGlobalDofs = mesh->numGlobalDofs();
    double fd_gradient;
    for (int dofIndex = 0; dofIndex<numGlobalDofs; dofIndex++)
    {

      TestingUtilities::initializeSolnCoeffs(solnPerturbation);
      TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,1.0,dofIndex);

      fd_gradient = FiniteDifferenceUtilities::finiteDifferenceGradient(mesh, riesz, backgroundFlow, dofIndex);

      // CHECK GRADIENT
      LinearTermPtr b_u =  bf->testFunctional(solnPerturbation);
      map<int,FunctionPtr> NL_err_rep_map;

      NL_err_rep_map[v->ID()] = Teuchos::rcp(new RepFunction(v,riesz));
      FunctionPtr gradient = b_u->evaluate(NL_err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)); // use boundary part only if flux or trace
      double grad;
      if (TestingUtilities::isFluxOrTraceDof(mesh,dofIndex))
      {
        grad = gradient->integralOfJump(mesh,10);
      }
      else
      {
        grad = gradient->integrate(mesh,10);
      }
      double fdgrad = fd_gradient;
      double diff = grad-fdgrad;
      if (abs(diff)>1e-6 && i>0)
      {
        cout << "Found difference of " << diff << ", " << " with fd val = " << fdgrad << " and gradient = " << grad << " in dof " << dofIndex << ", isTraceDof = " << TestingUtilities::isFluxOrTraceDof(mesh,dofIndex) << endl;
      }
    }
  }

  if (rank==0)
  {
    backgroundFlow->writeToVTK("BurgersTest.vtu",min(H1Order+1,4));
    solution->writeFluxesToFile(fn->ID(),"fn.dat");
    cout << "wrote solution files" << endl;
  }

  return 0;
}
Example #13
0
int main(int argc, char *argv[])
{
  Teuchos::GlobalMPISession mpiSession(&argc, &argv, NULL); // initialize MPI
  
  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options
  
  int numElements = 3;
  vector<vector<double>> domainDim(3,vector<double>{0.0,1.0}); // first index: spaceDim; second: 0/1 for x0, x1, etc.
  int polyOrder = 2, delta_k = 1;
  int spaceDim = 2;
  
  cmdp.setOption("numElements", &numElements );
  cmdp.setOption("polyOrder", &polyOrder );
  cmdp.setOption("delta_k", &delta_k );
  cmdp.setOption("x0", &domainDim[0][0] );
  cmdp.setOption("x1", &domainDim[0][1] );
  cmdp.setOption("y0", &domainDim[1][0] );
  cmdp.setOption("y1", &domainDim[1][1] );
  cmdp.setOption("z0", &domainDim[2][0] );
  cmdp.setOption("z1", &domainDim[2][1] );
  cmdp.setOption("spaceDim", &spaceDim);
  
  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }
  
  vector<double> x0(spaceDim);
  vector<double> domainSize(spaceDim);
  vector<int> elementCounts(spaceDim);
  for (int d=0; d<spaceDim; d++)
  {
    x0[d] = domainDim[d][0];
    domainSize[d] = domainDim[d][1] - x0[d];
    elementCounts[d] = numElements;
  }
  
  bool conformingTraces = true; // no difference for primal/continuous formulations
  PoissonFormulation formCG(spaceDim, conformingTraces, PoissonFormulation::CONTINUOUS_GALERKIN);
  VarPtr q = formCG.q();
  VarPtr phi = formCG.phi();
  BFPtr bf = formCG.bf();
  
  MeshPtr bubnovMesh = MeshFactory::rectilinearMesh(bf, domainSize, elementCounts, polyOrder, 0, x0);

  // Right now, hanging nodes don't work with continuous field variables
  // there is a GDAMinimumRule test demonstrating the failure, SolvePoisson2DContinuousGalerkinHangingNode.
  // make a mesh with hanging nodes (when spaceDim > 1)
//  {
//    set<GlobalIndexType> cellsToRefine = {0};
//    bubnovMesh->hRefine(cellsToRefine);
//  }

  RHSPtr rhs = RHS::rhs();
  rhs->addTerm(1.0 * q); // unit forcing
  
  IPPtr ip = Teuchos::null; // will give Bubnov-Galerkin
  BCPtr bc = BC::bc();
  bc->addDirichlet(phi, SpatialFilter::allSpace(), Function::zero());
  
  SolutionPtr solution = Solution::solution(bf, bubnovMesh, bc, rhs, ip);
  solution->solve();
  
  HDF5Exporter exporter(bubnovMesh, "PoissonContinuousGalerkin");
  exporter.exportSolution(solution);

  /**** Sort-of-primal experiment ****/
  // an experiment: try doing "primal" DPG with IBP to the boundary
//  ip = IP::ip();
//  ip->addTerm(q->grad());
//  ip->addTerm(q);
//
//  solution = Solution::solution(bf, bubnovMesh, bc, rhs, ip);
//  solution->solve();
//  
//  HDF5Exporter primalNoFluxExporter(bubnovMesh, "PoissonPrimalNoFlux");
//  primalNoFluxExporter.exportSolution(solution);
  
  //*** Primal Formulation ***//
  PoissonFormulation form(spaceDim, conformingTraces, PoissonFormulation::PRIMAL);
  q = form.q();
  phi = form.phi();
  bf = form.bf();
  
  bc = BC::bc();
  bc->addDirichlet(phi, SpatialFilter::allSpace(), Function::zero());
  
  rhs = RHS::rhs();
  rhs->addTerm(1.0 * q); // unit forcing
  
  MeshPtr primalMesh = MeshFactory::rectilinearMesh(bf, domainSize, elementCounts, polyOrder, delta_k, x0);
  
  ip = IP::ip();
  ip->addTerm(q->grad());
  ip->addTerm(q);

  // Right now, hanging nodes don't work with continuous field variables
  // there is a GDAMinimumRule test demonstrating the failure, SolvePoisson2DContinuousGalerkinHangingNode.
  // make a mesh with hanging nodes (when spaceDim > 1)
//  {
//    set<GlobalIndexType> cellsToRefine = {0};
//    primalMesh->hRefine(cellsToRefine);
//  }
  
  solution = Solution::solution(bf, primalMesh, bc, rhs, ip);
  solution->solve();
 
  HDF5Exporter primalExporter(primalMesh, "PoissonPrimal");
  primalExporter.exportSolution(solution);
  
  return 0;
}
Example #14
0
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = coupled robust");

  // Optional arguments (have defaults)
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation", false);
  double Re = args.Input("--Re", "Reynolds number", 40);
  double nu = 1./Re;
  double lambda = Re/2.-sqrt(Re*Re/4+4*pi*pi);
  int maxNewtonIterations = args.Input("--maxIterations", "maximum number of Newton iterations", 20);
  int polyOrder = args.Input("--polyOrder", "polynomial order for field variables", 2);
  int deltaP = args.Input("--deltaP", "how much to enrich test space", 2);
  // string saveFile = args.Input<string>("--meshSaveFile", "file to which to save refinement history", "");
  // string replayFile = args.Input<string>("--meshLoadFile", "file with refinement history to replay", "");
  args.Process();

  // if (commRank==0)
  // {
  //   cout << "saveFile is " << saveFile << endl;
  //   cout << "loadFile is " << replayFile << endl;
  // }

  ////////////////////   PROBLEM DEFINITIONS   ///////////////////////
  int H1Order = polyOrder+1;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau11 = varFactory.testVar("tau11", HGRAD);
  VarPtr tau12 = varFactory.testVar("tau12", HGRAD);
  VarPtr tau22 = varFactory.testVar("tau22", HGRAD);
  VarPtr v1 = varFactory.testVar("v1", HGRAD);
  VarPtr v2 = varFactory.testVar("v2", HGRAD);

  // define trial variables
  VarPtr u1 = varFactory.fieldVar("u1");
  VarPtr u2 = varFactory.fieldVar("u2");
  VarPtr sigma11 = varFactory.fieldVar("sigma11");
  VarPtr sigma12 = varFactory.fieldVar("sigma12");
  VarPtr sigma22 = varFactory.fieldVar("sigma22");
  VarPtr u1hat = varFactory.traceVar("u1hat");
  VarPtr u2hat = varFactory.traceVar("u2hat");
  VarPtr t1hat = varFactory.fluxVar("t1hat");
  VarPtr t2hat = varFactory.fluxVar("t2hat");

  ////////////////////   BUILD MESH   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );

  // define nodes for mesh
  FieldContainer<double> meshBoundary(4,2);
  double xmin = -0.5;
  double xmax =  1.0;
  double ymin = -0.5;
  double ymax =  1.5;

  meshBoundary(0,0) =  xmin; // x1
  meshBoundary(0,1) =  ymin; // y1
  meshBoundary(1,0) =  xmax;
  meshBoundary(1,1) =  ymin;
  meshBoundary(2,0) =  xmax;
  meshBoundary(2,1) =  ymax;
  meshBoundary(3,0) =  xmin;
  meshBoundary(3,1) =  ymax;

  int horizontalCells = 6, verticalCells = 8;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshFactory::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
                                                bf, H1Order, H1Order+deltaP);

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE BACKGROUND FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////

  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );

  vector<double> e1(2); // (1,0)
  e1[0] = 1;
  vector<double> e2(2); // (0,1)
  e2[1] = 1;

  FunctionPtr u1_prev = Function::solution(u1, backgroundFlow);
  FunctionPtr u2_prev = Function::solution(u2, backgroundFlow);
  // FunctionPtr sigma11_prev = Function::solution(sigma11, backgroundFlow);
  // FunctionPtr sigma12_prev = Function::solution(sigma12, backgroundFlow);
  // FunctionPtr sigma22_prev = Function::solution(sigma22, backgroundFlow);

  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  FunctionPtr u1Exact     = Teuchos::rcp( new ExactU1(lambda) );
  FunctionPtr u2Exact     = Teuchos::rcp( new ExactU2(lambda) );

  // ==================== SET INITIAL GUESS ==========================
  map<int, Teuchos::RCP<Function> > functionMap;
  // functionMap[u1->ID()] = u1Exact;
  // functionMap[u2->ID()] = u2Exact;
  functionMap[u1->ID()] = zero;
  functionMap[u2->ID()] = zero;

  backgroundFlow->projectOntoMesh(functionMap);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  // stress equation
  bf->addTerm( 1./nu*sigma11, tau11 );
  bf->addTerm( 1./nu*sigma12, tau12 );
  bf->addTerm( 1./nu*sigma12, tau12 );
  bf->addTerm( 1./nu*sigma22, tau22 );
  bf->addTerm( -0.5/nu*sigma11, tau11 );
  bf->addTerm( -0.5/nu*sigma22, tau11 );
  bf->addTerm( -0.5/nu*sigma11, tau22 );
  bf->addTerm( -0.5/nu*sigma22, tau22 );
  bf->addTerm( 2*u1, tau11->dx() );
  bf->addTerm( 2*u1, tau12->dy() );
  bf->addTerm( 2*u2, tau12->dx() );
  bf->addTerm( 2*u2, tau22->dy() );
  bf->addTerm( -2*u1hat, tau11->times_normal_x() );
  bf->addTerm( -2*u1hat, tau12->times_normal_y() );
  bf->addTerm( -2*u2hat, tau12->times_normal_x() );
  bf->addTerm( -2*u2hat, tau22->times_normal_y() );

  // momentum equation
  bf->addTerm( -2.*u1_prev*u1, v1->dx() );
  bf->addTerm( -u2_prev*u1, v1->dy() );
  bf->addTerm( -u1_prev*u2, v1->dy() );
  bf->addTerm( -u2_prev*u1, v2->dx() );
  bf->addTerm( -u1_prev*u2, v2->dx() );
  bf->addTerm( -2.*u2_prev*u2, v2->dy() );
  bf->addTerm( sigma11, v1->dx() );
  bf->addTerm( sigma12, v1->dy() );
  bf->addTerm( sigma12, v2->dx() );
  bf->addTerm( sigma22, v2->dy() );
  bf->addTerm( t1hat, v1);
  bf->addTerm( t2hat, v2);

  ////////////////////   SPECIFY RHS   ///////////////////////
  RHSPtr rhs = RHS::rhs();

  // stress equation
  rhs->addTerm( -2*u1_prev * tau11->dx() );
  rhs->addTerm( -2*u1_prev * tau12->dy() );
  rhs->addTerm( -2*u2_prev * tau12->dx() );
  rhs->addTerm( -2*u2_prev * tau22->dy() );

  // momentum equation
  rhs->addTerm( u1_prev*u1_prev * v1->dx() );
  rhs->addTerm( u2_prev*u1_prev * v1->dy() );
  rhs->addTerm( u2_prev*u1_prev * v2->dx() );
  rhs->addTerm( u2_prev*u2_prev * v2->dy() );

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (norm == 0)
  {
    ip = bf->graphNorm();
  }
  else if (norm == 1)
  {
    ip->addTerm( 0.5/nu*tau11-0.5/nu*tau22 + v1->dx() );
    ip->addTerm( 1./nu*tau12 + v1->dy() );
    ip->addTerm( 1./nu*tau12 + v2->dx() );
    ip->addTerm( 0.5/nu*tau22-0.5/nu*tau11 + v2->dy() );

    ip->addTerm( 2*tau11->dx() + 2*tau12->dy() - 2*u1_prev*v1->dx() - u2_prev*v1->dy() - u2_prev*v2->dx() );
    ip->addTerm( 2*tau12->dx() + 2*tau22->dy() - 2*u2_prev*v2->dy() - u1_prev*v1->dy() - u1_prev*v2->dx() );

    ip->addTerm( v1 );
    ip->addTerm( v2 );
    ip->addTerm( tau11 );
    ip->addTerm( tau12 );
    ip->addTerm( tau12 );
    ip->addTerm( tau22 );
  }
  else if (norm == 2)
  {
    // ip->addTerm( 0.5/sqrt(nu)*tau11-0.5/nu*tau22 );
    // ip->addTerm( 1./sqrt(nu)*tau12 );
    // ip->addTerm( 1./sqrt(nu)*tau12 );
    // ip->addTerm( 0.5/sqrt(nu)*tau22-0.5/nu*tau11 );
    ip->addTerm( tau11 );
    ip->addTerm( tau12 );
    ip->addTerm( tau12 );
    ip->addTerm( tau22 );

    ip->addTerm( 2*tau11->dx() + 2*tau12->dy() - 2*u1_prev*v1->dx() - u2_prev*v1->dy() - u2_prev*v2->dx() );
    ip->addTerm( 2*tau12->dx() + 2*tau22->dy() - 2*u2_prev*v2->dy() - u1_prev*v1->dy() - u1_prev*v2->dx() );

    ip->addTerm( 2*u1_prev*v1->dx() + u2_prev*v1->dy() + u2_prev*v2->dx() );
    ip->addTerm( 2*u2_prev*v2->dy() + u1_prev*v1->dy() + u1_prev*v2->dx() );

    ip->addTerm( sqrt(nu)*v1->grad() );
    ip->addTerm( sqrt(nu)*v2->grad() );

    ip->addTerm( v1 );
    ip->addTerm( v2 );
  }

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  SpatialFilterPtr left = Teuchos::rcp( new ConstantXBoundary(-0.5) );
  SpatialFilterPtr right = Teuchos::rcp( new ConstantXBoundary(1) );
  SpatialFilterPtr top = Teuchos::rcp( new ConstantYBoundary(-0.5) );
  SpatialFilterPtr bottom = Teuchos::rcp( new ConstantYBoundary(1.5) );
  bc->addDirichlet(u1hat, left, u1Exact);
  bc->addDirichlet(u2hat, left, u2Exact);
  bc->addDirichlet(u1hat, right, u1Exact);
  bc->addDirichlet(u2hat, right, u2Exact);
  bc->addDirichlet(u1hat, top, u1Exact);
  bc->addDirichlet(u2hat, top, u2Exact);
  bc->addDirichlet(u1hat, bottom, u1Exact);
  bc->addDirichlet(u2hat, bottom, u2Exact);
  // bc->addDirichlet(u1hat, left, zero);
  // bc->addDirichlet(u2hat, left, zero);
  // bc->addDirichlet(u1hat, right, zero);
  // bc->addDirichlet(u2hat, right, zero);
  // bc->addDirichlet(u1hat, top, zero);
  // bc->addDirichlet(u2hat, top, zero);
  // bc->addDirichlet(u1hat, bottom, zero);
  // bc->addDirichlet(u2hat, bottom, zero);

  // pc->addConstraint(u1hat*u2hat-t1hat == zero, top);
  // pc->addConstraint(u2hat*u2hat-t2hat == zero, top);

  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  // solution->setFilter(pc);

  // if (enforceLocalConservation) {
  //   solution->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y() == zero);
  // }

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(backgroundFlow);

  // Teuchos::RCP< RefinementHistory > refHistory = Teuchos::rcp( new RefinementHistory );
  // mesh->registerObserver(refHistory);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  HDF5Exporter exporter(mesh, "Kovasznay_np");

  ofstream convOut;
  stringstream convOutFile;
  convOutFile << "Kovasznay_conv_" << Re <<".txt";
  if (commRank == 0)
    convOut.open(convOutFile.str().c_str());

  set<int> nonlinearVars;
  nonlinearVars.insert(u1->ID());
  nonlinearVars.insert(u2->ID());

  double nonlinearRelativeEnergyTolerance = 1e-5; // used to determine convergence of the nonlinear solution
  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2Update = 1e10;
    int iterCount = 0;
    while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations)
    {
      solution->solve(false);
      double u1L2Update = solution->L2NormOfSolutionGlobal(u1->ID());
      double u2L2Update = solution->L2NormOfSolutionGlobal(u2->ID());
      L2Update = sqrt(u1L2Update*u1L2Update + u2L2Update*u2L2Update);

      // Check local conservation
      if (commRank == 0)
      {
        cout << "L2 Norm of Update = " << L2Update << endl;

        // if (saveFile.length() > 0) {
        //   std::ostringstream oss;
        //   oss << string(saveFile) << refIndex ;
        //   cout << "on refinement " << refIndex << " saving mesh file to " << oss.str() << endl;
        //   refHistory->saveToFile(oss.str());
        // }
      }

      // line search algorithm
      double alpha = 1.0;
      backgroundFlow->addSolution(solution, alpha, nonlinearVars);
      iterCount++;
    }

    exporter.exportSolution(backgroundFlow, varFactory, refIndex, 2, cellIDToSubdivision(mesh, 4));

    FunctionPtr u1Soln = Function::solution(u1, backgroundFlow);
    FunctionPtr u2Soln = Function::solution(u2, backgroundFlow);
    FunctionPtr u1Sqr = (u1Soln-u1Exact)*(u1Soln-u1Exact);
    FunctionPtr u2Sqr = (u2Soln-u2Exact)*(u2Soln-u2Exact);
    double u1L2Error = u1Sqr->integrate(mesh, 1e-5);
    double u2L2Error = u2Sqr->integrate(mesh, 1e-5);
    double l2Error = sqrt(u1L2Error+u2L2Error);
    double energyError = solution->energyErrorTotal();
    cout << "L2 Error: " << l2Error << " Energy Error: " << energyError << endl;

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }

  return 0;
}
Example #15
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta_const;
  beta_const.push_back(1.0);
  beta_const.push_back(0.0);
//  FunctionPtr beta = Teuchos::rcp(new Beta());

  double eps = 1e-2;

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(-uhat, tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( beta_const * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  // mathematician's norm
  IPPtr mathIP = Teuchos::rcp(new IP());
  mathIP->addTerm(tau);
  mathIP->addTerm(tau->div());

  mathIP->addTerm(v);
  mathIP->addTerm(v->grad());

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);
  qoptIP->addTerm( v );
  qoptIP->addTerm( tau / eps + v->grad() );
  qoptIP->addTerm( beta_const * v->grad() - tau->div() );

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(eps) );
  if (enforceLocalConservation)
  {
    robIP->addZeroMeanTerm( v );
  }
  else
  {
    robIP->addTerm( ip_scaling * v );
  }

  robIP->addTerm( sqrt(eps) * v->grad() );
  robIP->addTerm( beta_const * v->grad() );
  robIP->addTerm( tau->div() );
  robIP->addTerm( ip_scaling/sqrt(eps) * tau );

  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = zero;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  //  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  //  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary );

  SpatialFilterPtr inflowTop = Teuchos::rcp(new InflowLshapeTop);
  SpatialFilterPtr inflowBot = Teuchos::rcp(new InflowLshapeBottom);
  SpatialFilterPtr LshapeBot1 = Teuchos::rcp(new LshapeBottom1);
  SpatialFilterPtr LshapeBot2 = Teuchos::rcp(new LshapeBottom2);
  SpatialFilterPtr Top = Teuchos::rcp(new LshapeTop);
  SpatialFilterPtr Out = Teuchos::rcp(new LshapeOutflow);

  FunctionPtr u0 = Teuchos::rcp( new U0 );
  bc->addDirichlet(uhat, LshapeBot1, u0);
  bc->addDirichlet(uhat, LshapeBot2, u0);
  bc->addDirichlet(uhat, Top, u0);
  bc->addDirichlet(uhat, Out, u0);

  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  //  bc->addDirichlet(uhat, inflowBot, u0);
  FunctionPtr u0Top = Teuchos::rcp(new ParabolicProfile);
  FunctionPtr u0Bot = Teuchos::rcp(new LinearProfile);
  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowTop, beta_const*n*u0Top);
  //  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBot, beta_const*n*u0Bot);
  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBot, beta_const*n*zero);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 2, pToAdd = 2;
  /*
  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;

  int horizontalCells = 1, verticalCells = 1;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(quadPoints, horizontalCells, verticalCells,
                                                confusionBF, H1Order, H1Order+pToAdd);
  */

  Teuchos::RCP<Mesh> mesh;
  // L-shaped domain for double ramp problem
  FieldContainer<double> A(2), B(2), C(2), D(2), E(2), F(2), G(2), H(2);
  A(0) = 0.0;
  A(1) = 0.5;
  B(0) = 0.0;
  B(1) = 1.0;
  C(0) = 0.5;
  C(1) = 1.0;
  D(0) = 1.0;
  D(1) = 1.0;
  E(0) = 1.0;
  E(1) = 0.5;
  F(0) = 1.0;
  F(1) = 0.0;
  G(0) = 0.5;
  G(1) = 0.0;
  H(0) = 0.5;
  H(1) = 0.5;
  vector<FieldContainer<double> > vertices;
  vertices.push_back(A);
  int A_index = 0;
  vertices.push_back(B);
  int B_index = 1;
  vertices.push_back(C);
  int C_index = 2;
  vertices.push_back(D);
  int D_index = 3;
  vertices.push_back(E);
  int E_index = 4;
  vertices.push_back(F);
  int F_index = 5;
  vertices.push_back(G);
  int G_index = 6;
  vertices.push_back(H);
  int H_index = 7;
  vector< vector<int> > elementVertices;
  vector<int> el1, el2, el3, el4, el5;
  // left patch:
  el1.push_back(A_index);
  el1.push_back(H_index);
  el1.push_back(C_index);
  el1.push_back(B_index);
  // top right:
  el2.push_back(H_index);
  el2.push_back(E_index);
  el2.push_back(D_index);
  el2.push_back(C_index);
  // bottom right:
  el3.push_back(G_index);
  el3.push_back(F_index);
  el3.push_back(E_index);
  el3.push_back(H_index);

  elementVertices.push_back(el1);
  elementVertices.push_back(el2);
  elementVertices.push_back(el3);

  mesh = Teuchos::rcp( new Mesh(vertices, elementVertices, confusionBF, H1Order, pToAdd) );

  ////////////////////   SOLVE & REFINE   ///////////////////////
  // Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, qoptIP) );
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  // solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  int numRefs = 8;

  for (int refIndex=0; refIndex<numRefs; refIndex++)
  {
    solution->solve(false);
    refinementStrategy.refine(rank==0); // print to console on rank 0
  }
  // one more solve on the final refined mesh:
  solution->solve(false);

  if (rank==0)
  {
    solution->writeToVTK("step.vtu",min(H1Order+1,4));
    solution->writeFluxesToFile(uhat->ID(), "uhat.dat");

    cout << "wrote files: u.m, uhat.dat\n";
  }

  return 0;
}
Example #16
0
// tests whether a mixed type LT
bool ScratchPadTests::testIntegrateDiscontinuousFunction()
{
  bool success = true;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr v = varFactory->testVar("v", HGRAD);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(1.0);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr ip = Teuchos::rcp(new IP);
  ip->addTerm(v);
  ip->addTerm(beta*v->grad());

  // for projections
  IPPtr ipL2 = Teuchos::rcp(new IP);
  ipL2->addTerm(v);

  // define trial variables
  VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }");
  VarPtr u = varFactory->fieldVar("u");

  ////////////////////   BUILD MESH   ///////////////////////

  BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) );

  // v terms:
  convectionBF->addTerm( -u, beta * v->grad() );
  convectionBF->addTerm( beta_n_u, v);

  // define nodes for mesh
  int order = 1;
  int H1Order = order+1;
  int pToAdd = 1;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(2, 1, convectionBF, H1Order, H1Order+pToAdd);

  ////////////////////   integrate discontinuous function - cellIDFunction   ///////////////////////

  //  FunctionPtr cellIDFxn = Teuchos::rcp(new CellIDFunction); // should be 0 on cellID 0, 1 on cellID 1
  set<int> cellIDs;
  cellIDs.insert(1); // 0 on cell 0, 1 on cell 1
  FunctionPtr indicator = Teuchos::rcp(new IndicatorFunction(cellIDs)); // should be 0 on cellID 0, 1 on cellID 1
  double jumpWeight = 13.3; // some random number
  FunctionPtr edgeRestrictionFxn = Teuchos::rcp(new EdgeFunction);
  FunctionPtr X = Function::xn(1);
  LinearTermPtr integrandLT = Function::constant(1.0)*v + Function::constant(jumpWeight)*X*edgeRestrictionFxn*v;

  // make riesz representation function to more closely emulate the error rep
  LinearTermPtr indicatorLT = Teuchos::rcp(new LinearTerm);// residual
  indicatorLT->addTerm(indicator*v);
  Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ipL2, indicatorLT));
  riesz->computeRieszRep();
  map<int,FunctionPtr> vmap;
  vmap[v->ID()] = RieszRep::repFunction(v,riesz); // SHOULD BE L2 projection = same thing!!!

  FunctionPtr volumeIntegrand = integrandLT->evaluate(vmap,false);
  FunctionPtr edgeRestrictedIntegrand = integrandLT->evaluate(vmap,true);

  double edgeRestrictedValue = volumeIntegrand->integrate(mesh,10) + edgeRestrictedIntegrand->integrate(mesh,10);

  double expectedValue = .5 + .5*jumpWeight;
  double diff = abs(expectedValue-edgeRestrictedValue);
  if (abs(diff)>1e-11)
  {
    success = false;
    cout << "Failed testIntegrateDiscontinuousFunction() with expectedValue = " << expectedValue << " and actual value = " << edgeRestrictedValue << endl;
  }
  return success;
}
Example #17
0
int main(int argc, char *argv[])
{

#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int rank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  int nCells = args.Input<int>("--nCells", "num cells",2);
  int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0);
  int numPreRefs = args.Input<int>("--numPreRefs","num preemptive adaptive refinements",0);
  int order = args.Input<int>("--order","order of approximation",2);
  double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2);
  double energyThreshold = args.Input<double>("-energyThreshold","energy thresh for adaptivity", .5);
  double rampHeight = args.Input<double>("--rampHeight","ramp height at x = 2", 0.0);
  bool useAnisotropy = args.Input<bool>("--useAnisotropy","aniso flag ", false);

  FunctionPtr zero = Function::constant(0.0);
  FunctionPtr one = Function::constant(1.0);
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  // first order term with magnitude alpha
  double alpha = 0.0;
  confusionBF->addTerm(alpha * u, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) );
  FunctionPtr invH = Teuchos::rcp(new InvHScaling);
  FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling);
  FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling);
  robIP->addTerm(v*alpha);
  robIP->addTerm(invSqrtH*v);
  //  robIP->addTerm(v);
  robIP->addTerm(sqrt(eps) * v->grad() );
  robIP->addTerm(beta * v->grad() );
  robIP->addTerm(tau->div() );
  robIP->addTerm(C_h/sqrt(eps) * tau );

  LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm);
  LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm);
  vVecLT->addTerm(sqrt(eps)*v->grad());
  tauVecLT->addTerm(C_h/sqrt(eps)*tau);

  LinearTermPtr restLT = Teuchos::rcp(new LinearTerm);
  restLT->addTerm(alpha*v);
  restLT->addTerm(invSqrtH*v);
  restLT = restLT + beta * v->grad();
  restLT = restLT + tau->div();

  ////////////////////   SPECIFY RHS   ///////////////////////

  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = zero;
  //  f = one;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );

  //  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  //  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary);
  //  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, zero);
  //  bc->addDirichlet(uhat, outflowBoundary, zero);

  SpatialFilterPtr rampInflow = Teuchos::rcp(new LeftInflow);
  SpatialFilterPtr rampBoundary = MeshUtilities::rampBoundary(rampHeight);
  SpatialFilterPtr freeStream = Teuchos::rcp(new FreeStreamBoundary);
  SpatialFilterPtr outflowBoundary = Teuchos::rcp(new OutflowBoundary);
  bc->addDirichlet(uhat, rampBoundary, one);
  //  bc->addDirichlet(uhat, outflowBoundary, one);
  bc->addDirichlet(beta_n_u_minus_sigma_n, rampInflow, zero);
  bc->addDirichlet(beta_n_u_minus_sigma_n, freeStream, zero);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  //  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildRampMesh(rampHeight,confusionBF, H1Order, H1Order+pToAdd);
  mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));

  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  //  solution->solve(false);
  solution->condensedSolve();

  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution));
  RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, robIP, residual));
  rieszResidual->computeRieszRep();
  FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,rieszResidual));
  FunctionPtr e_tau = Teuchos::rcp(new RepFunction(tau,rieszResidual));
  map<int,FunctionPtr> errRepMap;
  errRepMap[v->ID()] = e_v;
  errRepMap[tau->ID()] = e_tau;
  FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false);
  FunctionPtr errV = vVecLT->evaluate(errRepMap,false);
  FunctionPtr errRest = restLT->evaluate(errRepMap,false);
  FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx());
  FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy());
  FunctionPtr restErr = errRest*errRest;

  RefinementStrategy refinementStrategy( solution, energyThreshold );

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  //                     PRE REFINEMENTS
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

  if (rank==0)
  {
    cout << "Number of pre-refinements = " << numPreRefs << endl;
  }
  for (int i =0; i<=numPreRefs; i++)
  {
    vector<ElementPtr> elems = mesh->activeElements();
    vector<ElementPtr>::iterator elemIt;
    vector<int> wallCells;
    for (elemIt=elems.begin(); elemIt != elems.end(); elemIt++)
    {
      int cellID = (*elemIt)->cellID();
      int numSides = mesh->getElement(cellID)->numSides();
      FieldContainer<double> vertices(numSides,2); //for quads

      mesh->verticesForCell(vertices, cellID);
      bool cellIDset = false;
      for (int j = 0; j<numSides; j++)
      {
        if ((abs(vertices(j,0)-1.0)<1e-7) && (abs(vertices(j,1))<1e-7) && !cellIDset)  // if at singularity, i.e. if a vertex is (1,0)
        {
          wallCells.push_back(cellID);
          cellIDset = true;
        }
      }
    }
    if (i<numPreRefs)
    {
      refinementStrategy.refineCells(wallCells);
    }
  }

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  VTKExporter exporter(solution, mesh, varFactory);

  for (int refIndex=0; refIndex<numRefs; refIndex++)
  {
    if (rank==0)
    {
      cout << "on ref index " << refIndex << endl;
    }
    rieszResidual->computeRieszRep(); // in preparation to get anisotropy

    vector<int> cellIDs;
    refinementStrategy.getCellsAboveErrorThreshhold(cellIDs);

    map<int,double> energyError = solution->energyError();

    map<int,double> xErrMap = xErr->cellIntegrals(cellIDs,mesh,5,true);
    map<int,double> yErrMap = yErr->cellIntegrals(cellIDs,mesh,5,true);
    map<int,double> restErrMap = restErr->cellIntegrals(cellIDs,mesh,5,true);
    for (vector<ElementPtr>::iterator elemIt = mesh->activeElements().begin(); elemIt!=mesh->activeElements().end(); elemIt++)
    {
      int cellID = (*elemIt)->cellID();
      double err = xErrMap[cellID]+ yErrMap[cellID] + restErrMap[cellID];
      if (rank==0)
        cout << "err thru LT = " << sqrt(err) << ", while energy err = " << energyError[cellID] << endl;
    }

    map<int,double> ratio,xErr,yErr;
    vector<ElementPtr> elems = mesh->activeElements();
    for (vector<ElementPtr>::iterator elemIt = elems.begin(); elemIt!=elems.end(); elemIt++)
    {
      int cellID = (*elemIt)->cellID();
      ratio[cellID] = 0.0;
      xErr[cellID] = 0.0;
      yErr[cellID] = 0.0;
      if (std::find(cellIDs.begin(),cellIDs.end(),cellID)!=cellIDs.end())  // if this cell is above energy thresh
      {
        ratio[cellID] = yErrMap[cellID]/xErrMap[cellID];
        xErr[cellID] = xErrMap[cellID];
        yErr[cellID] = yErrMap[cellID];
      }
    }
    FunctionPtr ratioFxn = Teuchos::rcp(new EnergyErrorFunction(ratio));
    FunctionPtr xErrFxn = Teuchos::rcp(new EnergyErrorFunction(xErr));
    FunctionPtr yErrFxn = Teuchos::rcp(new EnergyErrorFunction(yErr));
    std::ostringstream oss;
    oss << refIndex;
    exporter.exportFunction(ratioFxn, string("ratio")+oss.str());
    exporter.exportFunction(xErrFxn, string("xErr")+oss.str());
    exporter.exportFunction(yErrFxn, string("yErr")+oss.str());

    if (useAnisotropy)
    {
      refinementStrategy.refine(rank==0,xErrMap,yErrMap); //anisotropic refinements
    }
    else
    {
      refinementStrategy.refine(rank==0); // no anisotropy
    }

    solution->condensedSolve();
  }

  // final solve on final mesh
  solution->condensedSolve();

  ////////////////////   print to file   ///////////////////////

  FunctionPtr orderFxn = Teuchos::rcp(new MeshPolyOrderFunction(mesh));
  std::ostringstream oss;
  oss << nCells;
  if (rank==0)
  {
    exporter.exportSolution(string("robustIP")+oss.str());
    exporter.exportFunction(orderFxn, "meshOrder");
    cout << endl;
  }

  return 0;
}
Example #18
0
bool ScratchPadTests::testGalerkinOrthogonality()
{

  double tol = 1e-11;
  bool success = true;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr v = varFactory->testVar("v", HGRAD);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(1.0);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr ip = Teuchos::rcp(new IP);
  ip->addTerm(v);
  ip->addTerm(beta*v->grad());

  // define trial variables
  VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }");
  VarPtr u = varFactory->fieldVar("u");

  ////////////////////   BUILD MESH   ///////////////////////

  BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) );

  FunctionPtr n = Function::normal();
  // v terms:
  convectionBF->addTerm( -u, beta * v->grad() );
  convectionBF->addTerm( beta_n_u, v);

  // define nodes for mesh
  int order = 2;
  int H1Order = order+1;
  int pToAdd = 1;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(4, convectionBF, H1Order, H1Order+pToAdd);

  ////////////////////   SOLVE   ///////////////////////

  RHSPtr rhs = RHS::rhs();
  BCPtr bc = BC::bc();
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(inflowBoundary) );

  FunctionPtr uIn;
  uIn = Teuchos::rcp(new Uinflow); // uses a discontinuous piecewise-constant basis function on left and bottom sides of square
  bc->addDirichlet(beta_n_u, inflowBoundary, beta*n*uIn);

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->solve(false);
  FunctionPtr uFxn = Function::solution(u, solution);
  FunctionPtr fnhatFxn = Function::solution(beta_n_u,solution);

  // make residual for riesz representation function
  LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual
  FunctionPtr parity = Function::sideParity();
  residual->addTerm(-fnhatFxn*v + (beta*uFxn)*v->grad());
  Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual));
  riesz->computeRieszRep();
  map<int,FunctionPtr> err_rep_map;
  err_rep_map[v->ID()] = RieszRep::repFunction(v,riesz);

  ////////////////////   GET BOUNDARY CONDITION DATA    ///////////////////////

  FieldContainer<GlobalIndexType> bcGlobalIndices;
  FieldContainer<double> bcGlobalValues;
  mesh->boundary().bcsToImpose(bcGlobalIndices,bcGlobalValues,*(solution->bc()), NULL);
  set<int> bcInds;
  for (int i=0; i<bcGlobalIndices.dimension(0); i++)
  {
    bcInds.insert(bcGlobalIndices(i));
  }

  ////////////////////   CHECK GALERKIN ORTHOGONALITY   ///////////////////////

  BCPtr nullBC;
  RHSPtr nullRHS;
  IPPtr nullIP;
  SolutionPtr solnPerturbation = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );

  map< int, vector<DofInfo> > infoMap = constructGlobalDofToLocalDofInfoMap(mesh);

  for (map< int, vector<DofInfo> >::iterator mapIt = infoMap.begin();
       mapIt != infoMap.end(); mapIt++)
  {
    int dofIndex = mapIt->first;
    vector< DofInfo > dofInfoVector = mapIt->second; // all the local dofs that map to dofIndex
    // create perturbation in direction du
    solnPerturbation->clear(); // clear all solns
    // set each corresponding local dof to 1.0
    for (vector< DofInfo >::iterator dofInfoIt = dofInfoVector.begin();
         dofInfoIt != dofInfoVector.end(); dofInfoIt++)
    {
      DofInfo info = *dofInfoIt;
      FieldContainer<double> solnCoeffs(info.basisCardinality);
      solnCoeffs(info.basisOrdinal) = 1.0;
      solnPerturbation->setSolnCoeffsForCellID(solnCoeffs, info.cellID, info.trialID, info.sideIndex);
    }
    //    solnPerturbation->setSolnCoeffForGlobalDofIndex(1.0,dofIndex);

    LinearTermPtr b_du =  convectionBF->testFunctional(solnPerturbation);
    FunctionPtr gradient = b_du->evaluate(err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)); // use boundary part only if flux
    double grad = gradient->integrate(mesh,10);
    if (!TestingUtilities::isFluxOrTraceDof(mesh,dofIndex) && abs(grad)>tol)  // if we're not single-precision zero FOR FIELDS
    {
      //      int cellID = mesh->getGlobalToLocalMap()[dofIndex].first;
      cout << "Failed testGalerkinOrthogonality() for fields with diff " << abs(grad) << " at dof " << dofIndex << "; info:" << endl;
      cout << dofInfoString(infoMap[dofIndex]);
      success = false;
    }
  }
  FieldContainer<double> errorJumps(mesh->numGlobalDofs()); //initialized to zero
  // just test fluxes ON INTERNAL SKELETON here
  set<GlobalIndexType> activeCellIDs = mesh->getActiveCellIDsGlobal();
  for (GlobalIndexType activeCellID : activeCellIDs)
  {
    ElementPtr elem = mesh->getElement(activeCellID);
    for (int sideIndex = 0; sideIndex < 4; sideIndex++)
    {
      ElementTypePtr elemType = elem->elementType();
      vector<int> localDofIndices = elemType->trialOrderPtr->getDofIndices(beta_n_u->ID(), sideIndex);
      for (int i = 0; i<localDofIndices.size(); i++)
      {
        int globalDofIndex = mesh->globalDofIndex(elem->cellID(), localDofIndices[i]);
        vector< DofInfo > dofInfoVector = infoMap[globalDofIndex];

        solnPerturbation->clear();
        TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,1.0,globalDofIndex);
        // also add in BCs
        for (int i = 0; i<bcGlobalIndices.dimension(0); i++)
        {
          TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,bcGlobalValues(i),bcGlobalIndices(i));
        }

        LinearTermPtr b_du =  convectionBF->testFunctional(solnPerturbation);
        FunctionPtr gradient = b_du->evaluate(err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,globalDofIndex)); // use boundary part only if flux
        double jump = gradient->integrate(mesh,10);
        errorJumps(globalDofIndex) += jump;
      }
    }
  }
  for (int i = 0; i<mesh->numGlobalDofs(); i++)
  {
    if (abs(errorJumps(i))>tol)
    {
      cout << "Failing Galerkin orthogonality test for fluxes with diff " << errorJumps(i) << " at dof " << i << endl;
      cout << dofInfoString(infoMap[i]);
      success = false;
    }
  }

  return success;
}
Example #19
0
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  bool useCompliantGraphNorm = false;
  bool enforceOneIrregularity = true;
  bool writeStiffnessMatrices = false;
  bool writeWorstCaseGramMatrices = false;
  int numRefs = 10;
  
  // problem parameters:
  double eps = 1e-8;
  vector<double> beta_const;
  beta_const.push_back(2.0);
  beta_const.push_back(1.0);
  
  int k = 2, delta_k = 2;
  
  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options
  
  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");
  cmdp.setOption("numRefs",&numRefs,"number of refinements");
  cmdp.setOption("eps", &eps, "epsilon");
  
  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }
  
  int H1Order = k + 1;
  
  if (rank==0) {
    string normChoice = useCompliantGraphNorm ? "unit-compliant graph norm" : "standard graph norm";
    cout << "Using " << normChoice << "." << endl;
    cout << "eps = " << eps << endl;
    cout << "numRefs = " << numRefs << endl;
    cout << "p = " << k << endl;
  }
  
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);
  
  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u;
  if (useCompliantGraphNorm) {
    u = varFactory.fieldVar("u",HGRAD);
  } else {
    u = varFactory.fieldVar("u");
  }
  
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");
  
  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(-uhat, tau->dot_normal());
  
  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( beta_const * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);
  
  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  // mathematician's norm
  IPPtr mathIP = Teuchos::rcp(new IP());
  mathIP->addTerm(tau);
  mathIP->addTerm(tau->div());

  mathIP->addTerm(v);
  mathIP->addTerm(v->grad());

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);
  
  if (!useCompliantGraphNorm) {
    qoptIP->addTerm( tau / eps + v->grad() );
    qoptIP->addTerm( beta_const * v->grad() - tau->div() );
    
    qoptIP->addTerm( v );
  } else {
    FunctionPtr h = Teuchos::rcp( new hFunction );
    
    // here, we're aiming at optimality in 1/h^2 |u|^2 + 1/eps^2 |sigma|^2
    
    qoptIP->addTerm( tau + eps * v->grad() );
    qoptIP->addTerm( h * beta_const * v->grad() - tau->div() );
    qoptIP->addTerm(v);
    qoptIP->addTerm(tau);
  }
  
  ////////////////////   SPECIFY RHS   ///////////////////////
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary );
  FunctionPtr u0 = Teuchos::rcp( new U0 );
  bc->addDirichlet(uhat, outflowBoundary, u0);

  bc->addDirichlet(uhat, inflowBoundary, u0);
  
//  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints);
//  pc->addConstraint(uhat==u0,inflowBoundary);

  ////////////////////   BUILD MESH   ///////////////////////
  // create a new mesh on a single-cell, unit square domain
  Teuchos::RCP<Mesh> mesh = MeshFactory::quadMeshMinRule(confusionBF, H1Order, delta_k);
  
  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, qoptIP) );
//  solution->setFilter(pc);
  
  double energyThreshold = 0.2; // for mesh refinements
  
  bool useRieszRepBasedRefStrategy = true;
  
  if (rank==0) {
    if (useRieszRepBasedRefStrategy) {
      cout << "using RieszRep-based refinement strategy.\n";
    } else {
      cout << "using solution-based refinement strategy.\n";
    }
  }
  Teuchos::RCP<RefinementStrategy> refinementStrategy;
  if (!useRieszRepBasedRefStrategy) {
    refinementStrategy = Teuchos::rcp( new RefinementStrategy( solution, energyThreshold ) );
  } else {
    LinearTermPtr residual = confusionBF->testFunctional(solution) - rhs->linearTerm();
    refinementStrategy = Teuchos::rcp( new RefinementStrategy( mesh, residual, qoptIP, energyThreshold ) );
  }
  
  refinementStrategy->setReportPerCellErrors(true);
  refinementStrategy->setEnforceOneIrregularity(enforceOneIrregularity);
  
  for (int refIndex=0; refIndex<numRefs; refIndex++){
    if (writeStiffnessMatrices) {
      string stiffnessFile = fileNameForRefinement("confusion_stiffness", refIndex);
      solution->setWriteMatrixToFile(true, stiffnessFile);
    }
    solution->solve();
    if (writeWorstCaseGramMatrices) {
      string gramFile = fileNameForRefinement("confusion_gram", refIndex);
      bool jacobiScaling = true;
      double condNum = MeshUtilities::computeMaxLocalConditionNumber(qoptIP, mesh, jacobiScaling, gramFile);
      if (rank==0) {
        cout << "estimated worst-case Gram matrix condition number: " << condNum << endl;
        cout << "putative worst-case Gram matrix written to file " << gramFile << endl;
      }
    }
    if (refIndex == numRefs-1) { // write out second-to-last mesh
      if (rank==0)
        GnuPlotUtil::writeComputationalMeshSkeleton("confusionMesh", mesh, true);
    }
    refinementStrategy->refine(rank==0); // print to console on rank 0
  }
  if (writeStiffnessMatrices) {
    string stiffnessFile = fileNameForRefinement("confusion_stiffness", numRefs);
    solution->setWriteMatrixToFile(true, stiffnessFile);
  }
  if (writeWorstCaseGramMatrices) {
    string gramFile = fileNameForRefinement("confusion_gram", numRefs);
    bool jacobiScaling = true;
    double condNum = MeshUtilities::computeMaxLocalConditionNumber(qoptIP, mesh, jacobiScaling, gramFile);
    if (rank==0) {
      cout << "estimated worst-case Gram matrix condition number: " << condNum << endl;
      cout << "putative worst-case Gram matrix written to file " << gramFile << endl;
    }
  }
  // one more solve on the final refined mesh:
  solution->solve();
  
#ifdef HAVE_EPETRAEXT_HDF5
  ostringstream dir_name;
  dir_name << "confusion_eps" << eps;
  HDF5Exporter exporter(mesh,dir_name.str());
  exporter.exportSolution(solution, varFactory, 0);
  if (rank==0) cout << "wrote solution to " << dir_name.str() << endl;
#endif

  
  return 0;
}
Example #20
0
// tests to make sure that the rieszNorm computed via matrices is the same as the one computed thru direct integration
bool ScratchPadTests::testRieszIntegration()
{
  double tol = 1e-11;
  bool success = true;

  int nCells = 2;
  double eps = .25;

  ////////////////////   DECLARE VARIABLES   ///////////////////////

  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr ip = Teuchos::rcp(new IP);

  // just H1 projection
  ip->addTerm(v->grad());
  ip->addTerm(v);
  ip->addTerm(tau);
  ip->addTerm(tau->div());

  ////////////////////   SPECIFY RHS AND HELPFUL FUNCTIONS   ///////////////////////

  FunctionPtr n = Function::normal();
  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);
  FunctionPtr one = Function::constant(1.0);

  FunctionPtr zero = Function::constant(0.0);
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = one;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary );

  bc->addDirichlet(uhat, squareBoundary, zero);

  ////////////////////   BUILD MESH   ///////////////////////

  // define nodes for mesh
  int order = 2;
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////

  LinearTermPtr lt = Teuchos::rcp(new LinearTerm);
  FunctionPtr fxn = Function::xn(1); // fxn = x
  lt->addTerm(fxn*v + fxn->grad()*v->grad());
  lt->addTerm(fxn*tau->x() + fxn*tau->y() + (fxn->dx() + fxn->dy())*tau->div());
  Teuchos::RCP<RieszRep> rieszLT = Teuchos::rcp(new RieszRep(mesh, ip, lt));
  rieszLT->computeRieszRep();
  double rieszNorm = rieszLT->getNorm();
  FunctionPtr e_v = RieszRep::repFunction(v,rieszLT);
  FunctionPtr e_tau = RieszRep::repFunction(tau,rieszLT);
  map<int,FunctionPtr> repFxns;
  repFxns[v->ID()] = e_v;
  repFxns[tau->ID()] = e_tau;

  double integratedNorm = sqrt((lt->evaluate(repFxns,false))->integrate(mesh,5,true));
  success = abs(rieszNorm-integratedNorm)<tol;
  if (success==false)
  {
    cout << "Failed testRieszIntegration; riesz norm is computed to be = " << rieszNorm << ", while using integration it's computed to be " << integratedNorm << endl;
    return success;
  }
  return success;
}
Example #21
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  double epsilon = args.Input<double>("--epsilon", "diffusion parameter");
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = modified robust");

  // Optional arguments (have defaults)
  bool zeroL2 = args.Input("--zeroL2", "take L2 term on v in robust norm to zero", false);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma / epsilon, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (norm == 0)
  {
    ip = bf->graphNorm();
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Robust norm
  else if (norm == 1)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    // Weight these two terms for inflow
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Modified robust norm
  else if (norm == 2)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    // FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() );
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() - beta*v->grad() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }

  // // robust test norm
  // IPPtr robIP = Teuchos::rcp(new IP);
  // FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
  // if (!enforceLocalConservation)
  //   robIP->addTerm( ip_scaling * v );
  // robIP->addTerm( sqrt(epsilon) * v->grad() );
  // // Weight these two terms for inflow
  // FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() );
  // robIP->addTerm( ip_weight * beta * v->grad() );
  // robIP->addTerm( ip_weight * tau->div() );
  // robIP->addTerm( ip_scaling/sqrt(epsilon) * tau );
  // if (enforceLocalConservation)
  //   robIP->addZeroMeanTerm( v );

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );

  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );

  SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary );
  SpatialFilterPtr tbBoundary = Teuchos::rcp( new TopBottomBoundary );
  SpatialFilterPtr rBoundary = Teuchos::rcp( new RightBoundary );
  // SpatialFilterPtr leftCircleBoundary = Teuchos::rcp( new LeftCircleBoundary );
  // SpatialFilterPtr rightCircleBoundary = Teuchos::rcp( new RightCircleBoundary );
  SpatialFilterPtr circleBoundary = Teuchos::rcp( new CircleBoundary );

  bc->addDirichlet(beta_n_u_minus_sigma_n, lBoundary, zero);
  bc->addDirichlet(beta_n_u_minus_sigma_n, tbBoundary, zero);
  pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == zero, rBoundary);
  // bc->addDirichlet(uhat, leftCircleBoundary, one);
  // bc->addDirichlet(beta_n_u_minus_sigma_n, rightCircleBoundary, beta*n*one);
  bc->addDirichlet(uhat, circleBoundary, one);


  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 3, pToAdd = 2;
  Teuchos::RCP<Mesh> mesh;
  mesh = MeshFactory::shiftedHemkerMesh(-3, 9, 6, 1, bf, H1Order, pToAdd);
  // mesh = BuildHemkerMesh(bf, nseg, circleMesh, triangulateMesh, H1Order, pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }

  double energyThreshold = 0.25; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  Teuchos::RCP<RefinementHistory> refHistory = Teuchos::rcp( new RefinementHistory );
  mesh->registerObserver(refHistory);
#ifdef saveVTK
  VTKExporter exporter(solution, mesh, varFactory);
#endif
  ofstream errOut;
  if (commRank == 0)
    errOut.open("hemker_err.txt");

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    solution->solve(false);

    double energy_error = solution->energyErrorTotal();
    if (commRank==0)
    {
      stringstream outfile;
      outfile << "hemker_" << refIndex;
#ifdef saveVTK
      exporter.exportSolution(outfile.str());
#endif

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
           << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;

      errOut << mesh->numGlobalDofs() << " " << energy_error << " "
             << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }
  if (commRank == 0)
    errOut.close();

  return 0;
}
Example #22
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  double epsilon = args.Input<double>("--epsilon", "diffusion parameter");
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  bool graphNorm = args.Input<bool>("--graphNorm", "use the graph norm rather than robust test norm");

  // Optional arguments (have defaults)
  bool highLiftAirfoil = args.Input("--highLift", "use high lift airfoil rather than NACA0012", false);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("uhat");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("fhat");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.25);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma / epsilon, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (graphNorm)
  {
    ip = bf->graphNorm();
  }
  else
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    if (!enforceLocalConservation)
      ip->addTerm( ip_scaling * v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    // Weight these two terms for inflow
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (enforceLocalConservation)
      ip->addZeroMeanTerm( v );
  }

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary );
  SpatialFilterPtr tBoundary = Teuchos::rcp( new TopBoundary );
  SpatialFilterPtr bBoundary = Teuchos::rcp( new BottomBoundary );
  SpatialFilterPtr rBoundary = Teuchos::rcp( new RightBoundary );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  SpatialFilterPtr airfoilInflowBoundary = Teuchos::rcp( new AirfoilInflowBoundary(beta) );
  SpatialFilterPtr airfoilOutflowBoundary = Teuchos::rcp( new AirfoilOutflowBoundary(beta) );
  FunctionPtr u0 = Teuchos::rcp( new ZeroBC );
  FunctionPtr u1 = Teuchos::rcp( new OneBC );
  bc->addDirichlet(beta_n_u_minus_sigma_n, lBoundary, u0);
  bc->addDirichlet(beta_n_u_minus_sigma_n, bBoundary, u0);
  // bc->addDirichlet(uhat, airfoilInflowBoundary, u1);
  // bc->addDirichlet(uhat, tBoundary, u0);

  bc->addDirichlet(beta_n_u_minus_sigma_n, airfoilInflowBoundary, beta*n*u1);
  bc->addDirichlet(uhat, airfoilOutflowBoundary, u1);

  // pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == u0, rBoundary);
  // pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == u0, tBoundary);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 3, pToAdd = 2;
  Teuchos::RCP<Mesh> mesh;
  if (highLiftAirfoil)
    mesh = Mesh::readTriangle(Camellia_MeshDir+"HighLift/HighLift.1", bf, H1Order, pToAdd);
  else
    mesh = Mesh::readTriangle(Camellia_MeshDir+"NACA0012/NACA0012.1", bf, H1Order, pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  // solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(solution, mesh, varFactory);

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    solution->solve(false);

    if (commRank == 0)
    {
      stringstream outfile;
      if (highLiftAirfoil)
        outfile << "highlift_" << refIndex;
      else
        outfile << "naca0012_" << refIndex;
      exporter.exportSolution(outfile.str());

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
           << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
    {
      // refinementStrategy.refine(commRank==0); // print to console on commRank 0
      // Try pseudo-hp adaptive
      vector<int> cellsToRefine;
      vector<int> cells_h;
      vector<int> cells_p;
      refinementStrategy.getCellsAboveErrorThreshhold(cellsToRefine);
      for (int i=0; i < cellsToRefine.size(); i++)
        if (sqrt(mesh->getCellMeasure(cellsToRefine[i])) < epsilon)
        {
          int pOrder = mesh->cellPolyOrder(cellsToRefine[i]);
          if (pOrder < 8)
            cells_p.push_back(cellsToRefine[i]);
          else
            cells_h.push_back(cellsToRefine[i]);
        }
        else
          cells_h.push_back(cellsToRefine[i]);
      refinementStrategy.pRefineCells(mesh, cells_p);
      refinementStrategy.hRefineCells(mesh, cells_h);
    }
  }

  return 0;
}
Example #23
0
void Projector::projectFunctionOntoBasis(FieldContainer<double> &basisCoefficients, FunctionPtr fxn, 
                                         BasisPtr basis, BasisCachePtr basisCache) {
  VarFactory varFactory;
  VarPtr var;
  if (! basisCache->isSideCache()) {
    if (fxn->rank()==0) {
      var = varFactory.fieldVar("dummyField");
    } else if (fxn->rank()==1) {
      var = varFactory.fieldVar("dummyField",VECTOR_L2);
    } else {
      TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "projectFunctionOntoBasis does not yet support functions of rank > 1.");
    }
  } else {
    // for present purposes, distinction between trace and flux doesn't really matter,
    // except that parities come into the IP computation for fluxes (even though they'll cancel),
    // and since basisCache doesn't necessarily have parities defined (especially in tests),
    // it's simpler all around to use traces.
    var = varFactory.traceVar("dummyTrace");
  }
  IPPtr ip = Teuchos::rcp( new IP );
  ip->addTerm(var); // simple L^2 IP
  projectFunctionOntoBasis(basisCoefficients, fxn, basis, basisCache, ip, var);
  
  /*
  // TODO: rewrite this to use the version above (define L2 inner product for a dummy variable, then pass in this ip and varPtr)
  shards::CellTopology cellTopo = basis->domainTopology();
  DofOrderingPtr dofOrderPtr = Teuchos::rcp(new DofOrdering());

  // assume only L2 projections
  IntrepidExtendedTypes::EOperatorExtended op =  IntrepidExtendedTypes::OP_VALUE;
  
  // have information, build inner product matrix
  int numDofs = basis->getCardinality();
  const FieldContainer<double> *cubPoints = &(basisCache->getPhysicalCubaturePoints());
  
  constFCPtr basisValues = basisCache->getTransformedValues(basis, op);
  constFCPtr testBasisValues = basisCache->getTransformedWeightedValues(basis, op);
  
  int numCells = cubPoints->dimension(0);
  int numPts = cubPoints->dimension(1);
  FieldContainer<double> functionValues(numCells,numPts);
  fxn->values(functionValues, basisCache);  
  
  FieldContainer<double> gramMatrix(numCells,numDofs,numDofs);
  FieldContainer<double> ipVector(numCells,numDofs);
  FunctionSpaceTools::integrate<double>(gramMatrix,*basisValues,*testBasisValues,COMP_BLAS);
  FunctionSpaceTools::integrate<double>(ipVector,functionValues,*testBasisValues,COMP_BLAS); 
  
  basisCoefficients.resize(numCells,numDofs);
  for (int cellIndex=0; cellIndex<numCells; cellIndex++){
    
    Epetra_SerialDenseSolver solver;
    
    Epetra_SerialDenseMatrix A(Copy,
                               &gramMatrix(cellIndex,0,0),
                               gramMatrix.dimension(2), 
                               gramMatrix.dimension(2),  
                               gramMatrix.dimension(1)); // stride -- fc stores in row-major order (a.o.t. SDM)
    
    Epetra_SerialDenseVector b(Copy,
                               &ipVector(cellIndex,0),
                               ipVector.dimension(1));
    
    Epetra_SerialDenseVector x(gramMatrix.dimension(1));
        
    if (cellIndex==0) {
      cout << "legacy projectFunctionOntoBasis: matrix A for cellIndex 0 = " << endl;
      for (int i=0;i<gramMatrix.dimension(2);i++){
        for (int j=0;j<gramMatrix.dimension(1);j++){
          cout << A(i,j) << " ";
        }
        cout << endl;
      }
      cout << endl;
      
      cout << "legacy projectFunctionOntoBasis: vector B for cellIndex 0 = " << endl;
      for (int i=0;i<ipVector.dimension(1);i++){
        cout << b(i) << endl;
      }
    }
    
    solver.SetMatrix(A);
    int info = solver.SetVectors(x,b);
    if (info!=0){
      cout << "projectFunctionOntoBasis: failed to SetVectors with error " << info << endl;
    }
    
    bool equilibrated = false;
    if (solver.ShouldEquilibrate()){
      solver.EquilibrateMatrix();
      solver.EquilibrateRHS();      
      equilibrated = true;
    }   
    
    info = solver.Solve();
    if (info!=0){
      cout << "projectFunctionOntoBasis: failed to solve with error " << info << endl;
    }
    
    if (equilibrated) {
      int successLocal = solver.UnequilibrateLHS();
      if (successLocal != 0) {
        cout << "projection: unequilibration FAILED with error: " << successLocal << endl;
      }
    }
    
    for (int i=0;i<numDofs;i++){
      basisCoefficients(cellIndex,i) = x(i);
    }
  }*/
}
Example #24
0
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  double epsilon = args.Input<double>("--epsilon", "diffusion parameter");
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = modified robust");

  // Optional arguments (have defaults)
  bool zeroL2 = args.Input("--zeroL2", "take L2 term on v in robust norm to zero", true);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("uhat");
  VarPtr fhat = varFactory.fluxVar("fhat");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

  ////////////////////   BUILD MESH   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  int H1Order = 3, pToAdd = 2;
  // define nodes for mesh
  FieldContainer<double> meshBoundary(4,2);

  meshBoundary(0,0) = 0.0; // x1
  meshBoundary(0,1) = 0.0; // y1
  meshBoundary(1,0) = 1.0;
  meshBoundary(1,1) = 0.0;
  meshBoundary(2,0) = 1.0;
  meshBoundary(2,1) = 1.0;
  meshBoundary(3,0) = 0.0;
  meshBoundary(3,1) = 1.0;

  int horizontalCells = 4, verticalCells = 4;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
      bf, H1Order, H1Order+pToAdd, false);

  vector<double> beta;
  beta.push_back(2.0);
  beta.push_back(1.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  // tau terms:
  bf->addTerm(sigma / epsilon, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( fhat, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (norm == 0)
  {
    ip = bf->graphNorm();
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Robust norm
  else if (norm == 1)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    // Weight these two terms for inflow
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Modified robust norm
  else if (norm == 2)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    // FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() );
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() - beta*v->grad() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowBoundary );
  FunctionPtr u0 = Teuchos::rcp( new U0 );
  bc->addDirichlet(uhat, outflowBoundary, u0);

  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  bc->addDirichlet(fhat, inflowBoundary, beta*n*u0);

  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints);
  // pc->addConstraint(uhat==u0,inflowBoundary);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  // solution->setFilter(pc);

  if (enforceLocalConservation) {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(fhat == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(solution, mesh, varFactory);
  ofstream errOut;
  if (commRank == 0)
    errOut.open("confusion_err.txt");

  for (int refIndex=0; refIndex<=numRefs; refIndex++){
    solution->solve(false);

    double energy_error = solution->energyErrorTotal();
    if (commRank==0){
      stringstream outfile;
      outfile << "confusion_" << refIndex;
      exporter.exportSolution(outfile.str());
      // solution->writeToVTK(outfile.str());

      // Check local conservation
      FunctionPtr flux = Function::solution(fhat, solution);
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
        << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;

      errOut << mesh->numGlobalDofs() << " " << energy_error << " "
        << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }
  if (commRank == 0)
    errOut.close();

  return 0;
}