bool VTerrainSectorRenderer::SaveToFile(VTerrainSector *pSector)
{
  if (pSector)
    SetSector(pSector);
  if (!m_pSector)
    return false;

  // render into the context, readback results and save to file
  Vision::Game.SetUpdateSceneCount(Vision::Game.GetUpdateSceneCount() + 1);
  m_spContext->GetCamera()->Update();
  IVisVisibilityCollector_cl *pVisColl = m_spContext->GetVisibilityCollector();
  pVisColl->SetPropertiesFromRenderContext(m_spContext);
  pVisColl->OnDoVisibilityDetermination(m_spContext->GetRenderFilterMask());

  m_spContext->SetRecentlyRendered(true);
  m_spContext->Activate();
  VisRenderContext_cl::GlobalTick();
    
  Vision::Renderer.BeginRendering();
  Vision::RenderSceneHelper();

  // get the snapshot from the render target and write it to disk
  char szRelativePathname[FS_MAX_PATH];
  if (pSector->m_Config.GetSectorDiffuseReplacementFilename (szRelativePathname, pSector->m_iIndexX, pSector->m_iIndexY))
  {
    VASSERT_MSG (m_spContext->GetRenderTarget(0)->IsRenderable(), "Render-Target must be a renderable texture object.");
    SaveRenderTarget(m_pSector, (VisRenderableTexture_cl*) m_spContext->GetRenderTarget(0), szRelativePathname);
  }

  Vision::Renderer.EndRendering();

  VisRenderContext_cl::GetMainRenderContext()->Activate();

  return true;
}
void VMobileForwardRenderLoop::DetermineRelevantLights()
{
  m_DynamicLightCollection.Clear();
  m_pBasePassLight = NULL;
  m_iBasePassLightPriority = 0;

  // Get all visible light sources
  IVisVisibilityCollector_cl *pVisColl = VisRenderContext_cl::GetCurrentContext()->GetVisibilityCollector();
  if (pVisColl == NULL)
    return;
  const VisLightSrcCollection_cl *pLightSourceCollection = pVisColl->GetVisibleLights();
  if (pLightSourceCollection == NULL)
    return;

  unsigned int iNumLights = pLightSourceCollection->GetNumEntries();
  if (iNumLights == 0)
    return;
  
  VisRenderContext_cl *pContext = VisRenderContext_cl::GetCurrentContext();
  const hkvVec3 &vCamPos = pContext->GetCamera()->GetPosition();

  for (unsigned i=0;i<iNumLights;i++)
  {
    VisLightSource_cl *pLight = pLightSourceCollection->GetEntry(i);

    // We are only interested in dynamic lights or static lights with attached shadow map component
    if ((!pLight->IsDynamic() && !GetCompatibleShadowMapComponent(pLight)) || pLight->GetRadius()<=HKVMATH_LARGE_EPSILON)  
      continue;

    const float fFade = pLight->GetMultiplier()*pLight->GetFadeWeight(vCamPos);
    if (fFade <= HKVMATH_LARGE_EPSILON)
      continue;

    // See which geometry types have to cast shadows
    int iReceiverFlags = GetLightReceiverFlags(pLight);

    // If nothing receives light from this light source, we can proceed to the next light.
    if (!iReceiverFlags)
      continue;

    // Find light with highest priority. This light will be rendered in the base pass, in contrast to all 
    // additional lights that are rendered additively after the base pass. The search ignores lights with 
    // attached light clipping volume, since light clipping volumes can't be rendered before the base pass.
    if (!pLight->HasClipVolumeComponent())
    {
      // get the light with highest priority (largest influence area in screen space combined with weighting factor)
      int iLightPriority = GetLightPriority(pLight);
      if (iLightPriority > m_iBasePassLightPriority)
      {
        m_pBasePassLight = pLight;
        m_iBasePassLightPriority = iLightPriority;
      }
    } 
   
    if (pLight->IsDynamic())
      m_DynamicLightCollection.AppendEntry(pLight); 
  }
}
void VPostProcessTranslucencies::Execute()
{
  INSERT_PERF_MARKER_SCOPE("VPostProcessTranslucencies");

  VisRenderContext_cl *pContext = VisRenderContext_cl::GetCurrentContext();
  IVisVisibilityCollector_cl *pVisCollector = pContext->GetVisibilityCollector();
  VASSERT(pVisCollector != NULL);

  const VisEntityCollection_cl *pVisibleForeGroundEntities = pVisCollector->GetVisibleForeGroundEntities();

  m_VisibilityObjectCollector.HandleVisibleVisibilityObjects();

#ifndef _VISION_MOBILE
  RenderingOptimizationHelpers_cl::SetShaderPreference(96);
#endif

  // Get a pointer to the collection of visible mesh buffer objects
  const VisMeshBufferObjectCollection_cl *pVisibleMeshBuffer = &m_VisibilityObjectCollector.GetMeshBufferObjectCollection();

  // Get a pointer to the collection of visible particle groups
  const VisParticleGroupCollection_cl *pVisibleParticleGroups = &m_VisibilityObjectCollector.GetParticleGroupCollection();

  // Mask out entities which are "always in foreground"
  MaskOutForegroundEntities(*pVisibleForeGroundEntities);

  if (pVisCollector->GetInterleavedTranslucencySorter() == NULL)
  {
    // --- Traditional transparency sorting (default)
    const VisStaticGeometryInstanceCollection_cl *pVisibleTransparentGeoInstances = pVisCollector->GetVisibleStaticGeometryInstancesForPass(VPT_TransparentPass);
    const VisEntityCollection_cl *pVisibleEntities = pVisCollector->GetVisibleEntitiesForPass(VPT_TransparentPass);

    VisionRenderLoop_cl::RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_TRANSPARENT_PASS_GEOMETRY, true);

    // render transparent pass surface shaders on translucent static geometry instances
    Vision::RenderLoopHelper.RenderStaticGeometrySurfaceShaders(*pVisibleTransparentGeoInstances, VPT_TransparentPass);

    VisionRenderLoop_cl::RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_TRANSPARENT_PASS_ENTITIES, true);

    // Render transparent pass shaders on entities
    DrawEntitiesShaders(*pVisibleEntities, VPT_TransparentPass);

    VisionRenderLoop_cl::RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_POST_TRANSPARENT_PASS_GEOMETRY, true);

    VisionRenderLoop_cl::RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_DECALS, true);

    RenderParticles(pVisibleMeshBuffer, pVisibleParticleGroups);
  }
  else
  {
    // --- Interleaved transparency sorting
    pVisCollector->GetInterleavedTranslucencySorter()->OnRender(pVisCollector, true);
  }

  // Render visible foreground entities (see DrawForegroundEntities)
  DrawTransparentForegroundEntities(*pVisibleForeGroundEntities);

  // Coronas and flares will be still rendered after the other interleaved sorted objects were rendered (lensflare and coronas don't must be always rendered "on top") 
  VisionRenderLoop_cl::RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_CORONAS_AND_FLARES, true);
}
/////////////////////////////////////////////////////////////////////////////
// RenderAllShadows : render all shadow instances
/////////////////////////////////////////////////////////////////////////////
void VBlobShadowManager::RenderAllShadows()
{
    // if enabled, a 2D bounding box is additionally used for clipping, which saves a lot of fillrate!

    // TODO: PSP2 - fix 2d clipping
#if defined(_VISION_PSP2)
    static bool bClipScissor = false;
#else
    static bool bClipScissor = true;
#endif
    VisFrustum_cl viewFrustum;
    IVisVisibilityCollector_cl *pVisColl = VisRenderContext_cl::GetCurrentContext()->GetVisibilityCollector();
    if (pVisColl==NULL || pVisColl->GetBaseFrustum()==NULL)
        return;
    viewFrustum.CopyFrom((VisFrustum_cl&)*pVisColl->GetBaseFrustum());

    // render all shadows
    VISION_PROFILE_FUNCTION(PROFILING_BS_OVERALL);

    // get the collection of visible (opaque) primitives. For each shadow instance determine
    // the primitives in this list, which intersect with the shadow box
    // (we do not want to render primitives that are not visible)
    const VisStaticGeometryInstanceCollection_cl *pVisibleGeom = pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_PrimaryOpaquePass);

    VRectanglef clipRect(false);
    VRectanglef screenRect(0.f,0.f,(float)Vision::Video.GetXRes(),(float)Vision::Video.GetYRes());
    hkvVec3 vBoxCorner[8];
    hkvVec2 vCorner2D(false);

    // now render the shadows:
    FOR_ALL_SHADOWS

    if (pShadow->GetOwner())
        pShadow->SetBoundingBoxFromOwnerProperties();

    // shadow box visible?
    if (!viewFrustum.Overlaps(pShadow->m_ShadowBox))
        continue;

    // build 2D bounding box for scissor clipping
    if (bClipScissor)
    {
        VISION_PROFILE_FUNCTION(PROFILING_BS_SCISSORRECT);
        clipRect.Reset();
        pShadow->m_ShadowBox.getCorners(vBoxCorner);
        for (int i=0; i<8; i++)
        {
            // if one vertex is behind camera, do not use clipping
            if (!Vision::Contexts.GetCurrentContext()->Project2D(vBoxCorner[i],vCorner2D.x,vCorner2D.y))
            {
                Vision::RenderLoopHelper.SetScissorRect(NULL);
                goto render_shadow;
            }
            clipRect.Add(vCorner2D);
        }
        VASSERT(clipRect.IsValid());
        clipRect = clipRect.GetIntersection(screenRect);
        if (!clipRect.IsValid())
            continue; // do not render shadows at all if rect is outside the screen
        Vision::RenderLoopHelper.SetScissorRect(&clipRect);
    }

render_shadow:

    // get the visible primitives in the shadow bounding box
    {
        VISION_PROFILE_FUNCTION(PROFILING_BS_DETERMINE_PRIMS);
        // affected static geometry:
        shadowGeom.Clear();
        pVisibleGeom->DetermineEntriesTouchingBox(pShadow->m_ShadowBox,shadowGeom);
    }

    // split into geometry types:
    if (!shadowGeom.GetNumEntries())
        continue;

    const VisStaticGeometryType_e relevantTypes[2] = {STATIC_GEOMETRY_TYPE_MESHINSTANCE,STATIC_GEOMETRY_TYPE_TERRAIN};

    // two relevant geometry types:
    for (int iType=0; iType<2; iType++)
    {
        shadowGeomOfType.Clear();
        shadowGeom.GetEntriesOfType(shadowGeomOfType,relevantTypes[iType]);
        VCompiledTechnique *pFX = GetDefaultTechnique(relevantTypes[iType]);
        if (shadowGeomOfType.GetNumEntries()==0 || pFX==NULL)
            continue;

        // for all the shader in the projection effect (usually 1 shader), render the primitive collection
        const int iShaderCount = pFX->GetShaderCount();

        for (int j=0; j<iShaderCount; j++)
        {
            VBlobShadowShader *pShader = (VBlobShadowShader *)pFX->GetShader(j);

            {   // code block for easier profiling
                VISION_PROFILE_FUNCTION(PROFILING_BS_PREPARE_SHADER);
                // prepare the shader, i.e. setup shadow specific projection planes, colors etc.
                pShader->UpdateShadow(pShadow);
            }
            {   // code block for easier profiling
                VISION_PROFILE_FUNCTION(PROFILING_BS_RENDER_PRIMS);
                Vision::RenderLoopHelper.RenderStaticGeometryWithShader(shadowGeomOfType,*pShader);
            }
        }
    }


}
// TODO: This doesn't handle opaque fullbright surfaces correctly yet, and translucent fullbright surfaces are simply ignored.
void MirrorRenderLoop_cl::OnDoRenderLoop(void *pUserData)
{
  INSERT_PERF_MARKER_SCOPE("MirrorRenderLoop_cl::OnDoRenderLoop");

#if defined (WIN32) || defined (_VISION_XENON) || defined (_VISION_PS3) || defined(_VISION_PSP2) || defined(_VISION_WIIU)
  if (Vision::Editor.GetIgnoreAdvancedEffects())
  {
    // force a black reflection because it won't work with orthographic views
    Vision::RenderLoopHelper.ClearScreen(VisRenderLoopHelper_cl::VCTF_All, V_RGBA_BLACK);
    return;
  }
#endif

  VisRenderContext_cl *pContext = Vision::Contexts.GetCurrentContext();

  const int iRenderFlags = pContext->GetRenderFlags();

  const float fFarClipDist = m_pMirror->GetActualFarClipDistance();

  const VFogParameters &fog = Vision::World.GetFogParameters();
  VColorRef clearColor = (fog.depthMode != VFogParameters::Off) ? fog.iDepthColor : Vision::Renderer.GetDefaultClearColor();
  Vision::RenderLoopHelper.ClearScreen(VisRenderLoopHelper_cl::VCTF_All, clearColor);

  // set the oblique clipping plane...
  pContext->SetCustomProjectionMatrix (m_pMirror->GetObliqueClippingProjection().getPointer ());

  const VisStaticGeometryInstanceCollection_cl *pVisibleGeoInstancesPrimaryOpaquePass;
  const VisStaticGeometryInstanceCollection_cl *pVisibleGeoInstancesSecondaryOpaquePass;
  const VisStaticGeometryInstanceCollection_cl *pVisibleGeoInstancesTransparentPass;
  const VisEntityCollection_cl *pVisEntities;


  // === Visibility Determination ===

  IVisVisibilityCollector_cl *pVisColl = VisRenderContext_cl::GetCurrentContext()->GetVisibilityCollector();
  if (pVisColl == NULL)
    return;
  const VisVisibilityObjectCollection_cl *pVisObjectCollection = pVisColl->GetVisibleVisObjects();

  hkvAlignedBBox box;
  int iVoCount = m_pMirror->GetVisibilityObjectCount();
  int iFrustumCount = 0;
  bool bUseCommonFrustum = false;

  // === Determine Scissor Rect ===
  hkvVec2 vMinScreenSpace, vMaxScreenSpace;
  const hkvAlignedBBox &worldSpaceBox = m_pMirror->GetBoundingBox();

  hkvVec3 vCorners[8];
  worldSpaceBox.getCorners (vCorners);

  VRectanglef scissorRect;
  bool bUseScissorRect = true;
  for (int i=0; i<8; i++)
  {
    float x2d, y2d;
    BOOL bInFrontOfCamera = pContext->Project2D(vCorners[i], x2d, y2d);
    if (bInFrontOfCamera)
    {
      scissorRect.Add(hkvVec2(x2d, y2d));
    }
    else
    {
      bUseScissorRect = false;
      break;
    }
  }

  if (bUseScissorRect)
    Vision::RenderLoopHelper.SetScissorRect(&scissorRect);

  for (int iVo = 0; iVo < iVoCount; iVo++)
  {
    VisVisibilityObject_cl *pVisObj = m_pMirror->GetVisibilityObject(iVo);
    if (pVisObj != NULL && pVisObj->WasVisibleInAnyLastFrame())
    {
      if (iFrustumCount <= MAX_SEPARATE_FRUSTA)
      {
        const hkvAlignedBBox &voBox = pVisObj->GetWorldSpaceBoundingBox();
        box.expandToInclude(voBox);
        if (m_Frustum[iFrustumCount].Set(pContext->GetCamera()->GetPosition(), voBox, true, fFarClipDist))
        {
          iFrustumCount++;
        }
        else
        {
          bUseCommonFrustum = true;
        }
      }
      else
      {
        const hkvAlignedBBox &voBox = pVisObj->GetWorldSpaceBoundingBox();
        box.expandToInclude(voBox);
        bUseCommonFrustum = true;
      }
    }
  }

  if (bUseCommonFrustum)
  {
    iFrustumCount = 1;
    if (!m_Frustum[0].Set(pContext->GetCamera()->GetPosition(), box, true, fFarClipDist))
      iFrustumCount = 0;
  }

  if (iFrustumCount>0)
  {
    for (int i=0; i<iFrustumCount; i++)
    {
      m_visiblePrimaryOpaquePassGeoInstances.Clear();
      m_visibleSecondaryOpaquePassGeoInstances.Clear();
      m_visibleTransparentOpaquePassGeoInstances.Clear();
      m_visEntities.Clear();
      pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_PrimaryOpaquePass)->DetermineEntriesTouchingFrustum(m_Frustum[i], m_visiblePrimaryOpaquePassGeoInstances);
      pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_SecondaryOpaquePass)->DetermineEntriesTouchingFrustum(m_Frustum[i], m_visibleSecondaryOpaquePassGeoInstances);
      pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_TransparentPass)->DetermineEntriesTouchingFrustum(m_Frustum[i], m_visibleTransparentOpaquePassGeoInstances);
      pVisColl->GetVisibleEntities()->DetermineEntriesTouchingFrustum(m_Frustum[i], m_visEntities);
      if (iFrustumCount == 1)
        break;
      m_visiblePrimaryOpaquePassGeoInstances.TagEntries();
      m_visibleSecondaryOpaquePassGeoInstances.TagEntries();
      m_visibleTransparentOpaquePassGeoInstances.TagEntries();
      m_visEntities.TagEntries();
    }
    if (iFrustumCount > 1)
    {
      m_visiblePrimaryOpaquePassGeoInstances.Clear();
      m_visibleSecondaryOpaquePassGeoInstances.Clear();
      m_visibleTransparentOpaquePassGeoInstances.Clear();
      m_visEntities.Clear();
      pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_PrimaryOpaquePass)->GetTaggedEntries(m_visiblePrimaryOpaquePassGeoInstances);
      pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_SecondaryOpaquePass)->GetTaggedEntries(m_visibleSecondaryOpaquePassGeoInstances);
      pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_TransparentPass)->GetTaggedEntries(m_visibleTransparentOpaquePassGeoInstances);
      pVisColl->GetVisibleEntities()->GetTaggedEntries(m_visEntities);
    }
    pVisibleGeoInstancesPrimaryOpaquePass = &m_visiblePrimaryOpaquePassGeoInstances;
    pVisibleGeoInstancesSecondaryOpaquePass = &m_visibleSecondaryOpaquePassGeoInstances;
    pVisibleGeoInstancesTransparentPass = &m_visibleTransparentOpaquePassGeoInstances;
    pVisEntities = &m_visEntities;
  }
  else
  {
    pVisibleGeoInstancesPrimaryOpaquePass = pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_PrimaryOpaquePass);
    pVisibleGeoInstancesSecondaryOpaquePass = pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_SecondaryOpaquePass);
    pVisibleGeoInstancesTransparentPass = pVisColl->GetVisibleStaticGeometryInstancesForPass(VPT_TransparentPass);
    pVisEntities = pVisColl->GetVisibleEntities();
  }

  // === End Visibility Determination ===

  if (m_pMirror->GetExecuteRenderHooks())
  {
    VisRenderHookDataObject_cl data(&Vision::Callbacks.OnRenderHook,VRH_PRE_PRIMARY_OPAQUE_PASS_GEOMETRY);
    Vision::Callbacks.OnRenderHook.TriggerCallbacks(&data);
  }

  // Render opaque static geometry
  VASSERT(m_spDefaultLightMapping->m_Shaders.Count()==1);

  TRIGGER_MIRROR_HOOK(VRH_PRE_PRIMARY_OPAQUE_PASS_GEOMETRY)
  VisMirror_cl::VReflectionShaderSets_e shaderMode = m_pMirror->m_eReflectionShaderMode;
  DrawStaticGeometry(*pVisibleGeoInstancesPrimaryOpaquePass, VPT_PrimaryOpaquePass);
  DrawStaticGeometry(*pVisibleGeoInstancesSecondaryOpaquePass, VPT_SecondaryOpaquePass);

  // Render entities
  const VisEntityCollection_cl *pEntities = pVisEntities;
  int iCount = pEntities->GetNumEntries();
  VASSERT(m_spDefaultLightGrid->m_Shaders.Count()==1);
  //VCompiledShaderPass *pLightgridShader = m_spDefaultLightGrid->m_Shaders.GetAt(0);
  int i;
  //bool bUseSimpleShader = shaderMode==VisMirror_cl::AlwaysSimple;

  Vision::RenderLoopHelper.BeginEntityRendering();

  for (i=0;i<iCount;i++)
  { 
    VisBaseEntity_cl *pEnt = pEntities->GetEntry(i);

//    Vision::RenderLoopHelper.TrackLightGridInfo(pEnt);  // important: need to be done in RenderEntityWithSurfaceShaderList

    //if (bUseSimpleShader)
    //{
    //  Vision::RenderLoopHelper.RenderEntityWithShaders(pEnt,1,&pLightgridShader);
    //}
    //else
    {
      VisDrawCallInfo_t surfaceShaderList[RLP_MAX_ENTITY_SURFACES];
      VDynamicMesh *pMesh = pEnt->GetMesh();
      VisSurface_cl **ppSurfaces = pEnt->GetSurfaceArray();
      int iNumSubmeshes = pMesh->GetSubmeshCount();
      for (int j=0; j<iNumSubmeshes; j++)
      {
        VisDrawCallInfo_t &info(surfaceShaderList[j]);
        VBaseSubmesh* pSubmesh = pMesh->GetSubmesh(j);
        VisSurface_cl* pSurface = ppSurfaces[pSubmesh->m_iMaterialIndex];
        info.Set(pSubmesh, pSurface, GetMirrorShader (pSurface, shaderMode));
      }

      Vision::RenderLoopHelper.RenderEntityWithSurfaceShaderList(pEnt, iNumSubmeshes, surfaceShaderList);
    }
  }

  Vision::RenderLoopHelper.EndEntityRendering();

  // Render Sky
  if (VSky::IsVisible())
  {
    // The sky has to be rendered without oblique clipping
    pContext->SetCustomProjectionMatrix(NULL);
    Vision::RenderLoopHelper.RenderSky();
    // set the oblique clipping plane after sky...
    pContext->SetCustomProjectionMatrix (m_pMirror->GetObliqueClippingProjection().getPointer ());
  }

  if (m_pMirror->GetExecuteRenderHooks())
  {
    VisRenderHookDataObject_cl data(&Vision::Callbacks.OnRenderHook,VRH_PRE_OCCLUSION_TESTS);
    Vision::Callbacks.OnRenderHook.TriggerCallbacks(&data);
  }

  // Render Coronas / Lens Flares
  VisRenderHookDataObject_cl data(&Vision::Callbacks.OnRenderHook,VRH_CORONAS_AND_FLARES);
  Vision::Callbacks.OnRenderHook.TriggerCallbacks(&data);
  TRIGGER_MIRROR_HOOK(VRH_PRE_OCCLUSION_TESTS)  

  if (iRenderFlags&VIS_RENDERCONTEXT_FLAG_USE_OCCLUSIONQUERY)
    Vision::RenderLoopHelper.PerformHardwareOcclusionQuery();

  if (iRenderFlags&VIS_RENDERCONTEXT_FLAG_USE_PIXELCOUNTER)
    Vision::RenderLoopHelper.PerformHardwarePixelCounterQuery();

  DrawDynamicLight();

  TRIGGER_MIRROR_HOOK(VRH_DECALS)
  TRIGGER_MIRROR_HOOK(VRH_CORONAS_AND_FLARES)

  TRIGGER_MIRROR_HOOK(VRH_PRE_TRANSPARENT_PASS_GEOMETRY)
  DrawStaticGeometry(*pVisibleGeoInstancesTransparentPass, VPT_TransparentPass);
  TRIGGER_MIRROR_HOOK(VRH_POST_TRANSPARENT_PASS_GEOMETRY)

  if (bUseScissorRect)
    Vision::RenderLoopHelper.SetScissorRect(NULL);
}
// Simplified version of dynamic light rendering for mirrors
void MirrorRenderLoop_cl::DrawDynamicLight()
{
  INSERT_PERF_MARKER_SCOPE("MirrorRenderLoop_cl::DrawDynamicLight");

  // Some local variables for storing surfaces, shaders, surface shaders, and the like.
  VisDrawCallInfo_t SurfaceShaderList[RLP_MAX_ENTITY_SURFACESHADERS];
  VCompiledTechnique *pTechnique = NULL;

  VisMirror_cl::VReflectionShaderSets_e shaderMode = m_pMirror->m_eReflectionShaderMode;

  // Get all visible light sources
  IVisVisibilityCollector_cl *pVisColl = VisRenderContext_cl::GetCurrentContext()->GetVisibilityCollector();
  if (pVisColl == NULL)
    return;

  const VisLightSrcCollection_cl *pLightSourceCollection = pVisColl->GetVisibleLights();
  unsigned int i;
  unsigned int iNumLights = pLightSourceCollection->GetNumEntries();
  if (iNumLights == 0)
    return;

  // Set depth-stencil state
  VisRenderStates_cl::SetDepthStencilState(m_dynLightDefaultState);
  
  // For all visible lights...
  for (i=0; i<iNumLights; i++)
  {
    VisLightSource_cl *pLight = pLightSourceCollection->GetEntry(i);
    // We're only interested in dynamic lights
    if (!pLight->IsDynamic()) 
      continue;

    // Clear the collections of geo instances and entities, since we want to build them from scratch for each light
    s_LitEntityCollection.Clear();
    s_LitGeoInstanceCollection.Clear();

    // See which geometry types have to cast shadows
    int iReceiverFlags = GetLightReceiverFlags(pLight);

    // If nothing receives light from this light source, we can proceed to the next light.
    if (!iReceiverFlags)
      continue;

    // ***************** Create lists of illuminated scene elements *****************

    // If no shadows are cast, we simply illuminate all visible geometry within the range (spherical) of the light.
    VisEntityCollection_cl *pEntColl = NULL;
    if (iReceiverFlags & VIS_LIGHTSRCVIS_MODELS)
      pEntColl = &s_LitEntityCollection;
    VisStaticGeometryInstanceCollection_cl *pGeoInstanceColl = NULL;
    if (iReceiverFlags & VIS_LIGHTSRCVIS_PRIMITIVES)
    {
      pGeoInstanceColl = &s_LitGeoInstanceCollection;
    }

    Vision::RenderLoopHelper.GetVisibleGeometryInLightsourceRange(pGeoInstanceColl, pEntColl, NULL, *pLight);

    // For all illuminated entities: Render a dynamic lighting pass now.
    if (pLight->GetLightInfluenceBitMaskEntity())
    {
      int j;
      
      int iNumLitEntities = s_LitEntityCollection.GetNumEntries();

      Vision::RenderLoopHelper.BeginEntityRendering();

      for (j=0; j<iNumLitEntities; j++)
      {
        VisBaseEntity_cl *pEntity = s_LitEntityCollection.GetEntry(j);
        // Ignore foreground entities (they don't trivially support additive lighting)
        if (pEntity->IsObjectAlwaysInForegroundEnabled())
          continue;
        if (!(pEntity->GetLightInfluenceBitMask() & pLight->GetLightInfluenceBitMaskEntity()))
          continue;
        if (!pVisColl->IsEntityVisible(pEntity))
          continue;
          
        VDynamicMesh *pMesh = pEntity->GetMesh();
          
        // Get list of all the surfaces in the model
        int iNumSubmeshes = pMesh->GetSubmeshCount();
        int iNumSurfaceShaders = 0;
        VisSurface_cl **ppSurfaceArray = pEntity->GetSurfaceArray();

        // For all the surfaces...
        for (int k=0; k<iNumSubmeshes; k++)
        {
          VDynamicSubmesh *pSubmesh = pMesh->GetSubmesh(k);
          VASSERT(pSubmesh != NULL);
          VisSurface_cl* pSurface = &m_dummySurface; 
          VisSurface_cl* pMeshSurface = pSubmesh->m_pSurface;
          VASSERT(pMeshSurface != NULL);

          bool bHasManualTemplateShaderAssignment = pMeshSurface->GetShaderMode() == VisSurface_cl::VSM_Template 
            && pMeshSurface->GetMaterialTemplate() != NULL && pMeshSurface->GetMaterialTemplate()->HasManualAssignment();

          if (shaderMode == VisMirror_cl::AlwaysSurfaceShaders || 
            (shaderMode == VisMirror_cl::SimpleForAUTO && ( (pMeshSurface->GetShaderMode() == VisSurface_cl::VSM_Manual) || bHasManualTemplateShaderAssignment) ) )
          {
            pSurface = ppSurfaceArray[pSubmesh->m_iMaterialIndex]; // use the real surface
          }
          pTechnique = Vision::GetApplication()->GetShaderProvider()->GetDynamicLightShader(pLight, pSurface, true);
          if (pTechnique==NULL)
            continue;
            
          VisDrawCallInfo_t &info(SurfaceShaderList[iNumSurfaceShaders++]);
          info.Set(pSubmesh, pSurface, pTechnique->m_Shaders.GetAt(0));
        }
        // Finally, render the entity with a surface shader list.
        if (iNumSurfaceShaders>0)
          Vision::RenderLoopHelper.RenderEntityWithSurfaceShaderList(pEntity, iNumSurfaceShaders, SurfaceShaderList);
      }

      Vision::RenderLoopHelper.EndEntityRendering();
    }

    // For all illuminated world primitives: Render a dynamic lighting pass now
    if (pLight->GetLightInfluenceBitMaskWorld() > 0)
    {
      // For all illuminated static geometry instances: Render a dynamic lighting pass now.
      int iNumLitGeoInstances = s_LitGeoInstanceCollection.GetNumEntries();

      s_RenderGeoInstanceCollection.Clear();

      // Render illuminated geometry instances. 
      for (int j=0; j < iNumLitGeoInstances; j++)
      {
        VisStaticGeometryInstance_cl *pGI = s_LitGeoInstanceCollection.GetEntry(j);

        if (pGI->GetSurface()==NULL || pGI->GetSurface()->IsFullbright())
          continue;
       
        // We have to append the primitive to our collection
        s_RenderGeoInstanceCollection.AppendEntry(pGI);
      }

      // render the collection
      const int iLitGeoCount = s_RenderGeoInstanceCollection.GetNumEntries();
      if (iLitGeoCount > 0)
      {
        VCompiledTechnique *pLastTech = NULL;
        VisSurface_cl* pLastSurface = NULL;
        m_CustomGeoInstances.EnsureSize(iLitGeoCount);
        m_CustomGeoInstances.Clear();

        for (int j=0; j < iLitGeoCount; j++)
        {
          VisStaticGeometryInstance_cl *pGI = s_RenderGeoInstanceCollection.GetEntry(j);

          GetLightShader (pLight, pGI, m_pMirror->m_eReflectionShaderMode, pLastSurface, pLastTech, pLastSurface, pTechnique);
          
          // The current technique has changed, so we have to render the previously gathered geometry.
          if (pLastTech != pTechnique)
          {
            if ((m_CustomGeoInstances.GetNumEntries() > 0) && (pLastTech != NULL) && (pLastTech->GetShaderCount() > 0))
            {
              Vision::RenderLoopHelper.RenderStaticGeometryWithShader(m_CustomGeoInstances, *pLastTech->m_Shaders.GetAt(0) );
              m_CustomGeoInstances.Clear();
            }
            pLastTech = pTechnique;
          }
          m_CustomGeoInstances.AppendEntryFast(pGI);
        }
        // Render remaining geometry
        if ((m_CustomGeoInstances.GetNumEntries() > 0) && (pLastTech != NULL) && (pLastTech->GetShaderCount() > 0))
        {
          Vision::RenderLoopHelper.RenderStaticGeometryWithShader(m_CustomGeoInstances, *pTechnique->m_Shaders.GetAt(0) );
        }

        s_RenderGeoInstanceCollection.Clear();
      }
    }
  }

  // Restore default render state
  VisRenderStates_cl::SetDepthStencilState(*VisRenderStates_cl::GetDepthStencilDefaultState());
}
// renders visible wallmarks of specified pass type (pre or post, which is relevant in deferred context)
void VWallmarkManager::RenderProjectedWallmarks(VPassType_e ePassType)
{
  INSERT_PERF_MARKER_SCOPE("Wallmark Rendering (VWallmarkManager::RenderProjectedWallmarks)");

  const int iWallmarkCount = m_AllProjectedWallmarks.Count();
  IVisVisibilityCollector_cl *pVisCollector = Vision::Contexts.GetCurrentContext()->GetVisibilityCollector();
  if (!pVisCollector || !iWallmarkCount)
    return;

  const VisStaticGeometryInstanceCollection_cl *pGeoInstances = pVisCollector->GetVisibleStaticGeometryInstances();

  VisStaticGeometryInstance_cl::ResetTags();
  pGeoInstances->TagEntries();
  VisStaticGeometryInstanceCollection_cl &targetGiCollection = m_TempGeoInstanceCollection;

  VisRenderContext_cl *pContext = Vision::Contexts.GetCurrentContext();
  VisRenderContext_cl *pLODContext = pContext->GetLODReferenceContext();
  hkvVec3 vLODPos = pLODContext ? pLODContext->GetCamera()->GetPosition() : pContext->GetCamera()->GetPosition();

  unsigned int iContextFilter = pContext->GetRenderFilterMask();
  const VisFrustum_cl *pFrustum = pVisCollector->GetBaseFrustum();

  int i;
  for (i=0;i<iWallmarkCount;i++)
  {
    VProjectedWallmark *pProjWallmark = m_AllProjectedWallmarks.GetAt(i);
    if ((pProjWallmark->GetVisibleBitmask() & iContextFilter)==0 || (ePassType & pProjWallmark->m_ePassType) == 0)
      continue;
    pProjWallmark->PrepareForRendering();
    const VisStaticGeometryInstanceCollection_cl &wmGiList = pProjWallmark->GetStaticGeometryCollection();  

#ifdef HK_DEBUG
    const int iNum = wmGiList.GetNumEntries();
    for (int j=0;j<iNum;j++)
    {
      VisStaticGeometryInstance_cl *pInst = wmGiList.GetEntry(j);
      VASSERT_MSG(pInst && (pInst->GetGeometryType()==STATIC_GEOMETRY_TYPE_MESHINSTANCE || pInst->GetGeometryType()==STATIC_GEOMETRY_TYPE_TERRAIN), "The wallmark conains invalid primitive references")
    }
#endif

    // clip against its bounding box (primitive visibility might overestimate visible parts)
    const hkvAlignedBBox &bbox = pProjWallmark->GetBoundingBox();
    if (pProjWallmark->m_fFarClipDistance>0.f && pProjWallmark->m_fFarClipDistance<bbox.getDistanceTo(vLODPos))
      continue;
    if (pFrustum && !pFrustum->Overlaps(bbox))
      continue;

    const int iGeomFilter = pProjWallmark->GetGeometryTypeFilterMask();
    if (iGeomFilter&PROJECTOR_AFFECTS_STATICMESHES)
    {
      // standard geometry
      targetGiCollection.Clear();
      wmGiList.GetTaggedEntriesOfType(targetGiCollection,STATIC_GEOMETRY_TYPE_MESHINSTANCE);
      if (targetGiCollection.GetNumEntries())
      {
        // render the static geometry instances using lightmapped or non-lightmapped shader
        VProjectorShaderPass *pShader = GetWallmarkShader(pProjWallmark,STATIC_GEOMETRY_TYPE_MESHINSTANCE);
        Vision::RenderLoopHelper.RenderStaticGeometryWithShader(targetGiCollection, *pShader);
      }
    }

    if (iGeomFilter&PROJECTOR_AFFECTS_TERRAIN)
    {
      // terrain geometry (different shader)
      targetGiCollection.Clear();
      wmGiList.GetTaggedEntriesOfType(targetGiCollection,STATIC_GEOMETRY_TYPE_TERRAIN);
      if (targetGiCollection.GetNumEntries()>0)
      {
        // render the static geometry instances using lightmapped or non-lightmapped shader
        VProjectorShaderPass *pShader = GetWallmarkShader(pProjWallmark,STATIC_GEOMETRY_TYPE_TERRAIN);
        if (pShader)
          Vision::RenderLoopHelper.RenderStaticGeometryWithShader(targetGiCollection, *pShader);
      }
    }

    // entities
    if (iGeomFilter&PROJECTOR_AFFECTS_ENTITIES)
    {
      const VisEntityCollection_cl *pVisibleEntities = pVisCollector->GetVisibleEntities();
      const unsigned int iInfluenceMask = pProjWallmark->GetInfluenceBitmask();
      m_TempEntityCollection.Clear();
      const int iEntCount = pVisibleEntities->GetNumEntries();
      for (int j=0;j<iEntCount;j++)
      {
        VisBaseEntity_cl *pEntity = pVisibleEntities->GetEntry(j);
        if (pEntity==NULL || (pEntity->GetVisibleBitmask()&iInfluenceMask)==0)
          continue;
        const hkvAlignedBBox &entityBox(*pEntity->GetCurrentVisBoundingBoxPtr());
        if (!entityBox.overlaps(bbox))
          continue;
        m_TempEntityCollection.AppendEntry(pEntity);
      }
      if (m_TempEntityCollection.GetNumEntries()>0)
      {
        VProjectorShaderPass *pShader = GetWallmarkShader(pProjWallmark,STATIC_GEOMETRY_TYPE_MESHINSTANCE); // we can use this shader - VS skinning is used implicitly
        Vision::RenderLoopHelper.RenderEntitiesWithShader(m_TempEntityCollection, *pShader);
      }
    }

  }
}
void VMobileForwardRenderLoop::OnDoRenderLoop(void *pUserData)
{
  INSERT_PERF_MARKER_SCOPE("VMobileForwardRenderLoop::OnDoRenderLoop");

  m_iFrameCounter++; // just for arbitrary custom purposes

#ifdef WIN32
  // vForge specific:
  if (Vision::RenderLoopHelper.GetReplacementRenderLoop())
  {
    // render with this render-loop instead
    Vision::RenderLoopHelper.GetReplacementRenderLoop()->OnDoRenderLoop(pUserData);
    return;
  }
#endif

  m_pShaderProvider = Vision::GetApplication()->GetShaderProvider();
  VASSERT(m_pShaderProvider);
  m_pShaderProvider->ResetCache();

  VisRenderContext_cl *pContext = VisRenderContext_cl::GetCurrentContext();
  IVisVisibilityCollector_cl *pVisCollector = pContext->GetVisibilityCollector();
  if (pVisCollector==NULL)
    return; 

  const int iRenderFlags = pContext->GetRenderFlags();
  m_pCameraFrustum = pVisCollector->GetBaseFrustum(); 

  const VisStaticGeometryInstanceCollection_cl *pVisibleGeoInstancesPrimaryOpaquePass = pVisCollector->GetVisibleStaticGeometryInstancesForPass(VPT_PrimaryOpaquePass);
  const VisStaticGeometryInstanceCollection_cl *pVisibleGeoInstancesSecondaryOpaquePass = pVisCollector->GetVisibleStaticGeometryInstancesForPass(VPT_SecondaryOpaquePass);
  const VisStaticGeometryInstanceCollection_cl *pVisibleGeoInstancesTransparentPass = pVisCollector->GetVisibleStaticGeometryInstancesForPass(VPT_TransparentPass);
  const VisEntityCollection_cl *pVisibleEntitiesPrimaryOpaquePass = pVisCollector->GetVisibleEntitiesForPass(VPT_PrimaryOpaquePass);
  const VisEntityCollection_cl *pVisibleEntitiesSecondaryOpaquePass = pVisCollector->GetVisibleEntitiesForPass(VPT_SecondaryOpaquePass);
  const VisEntityCollection_cl *pVisibleEntitiesTransparentPass = pVisCollector->GetVisibleEntitiesForPass(VPT_TransparentPass);
  const VisEntityCollection_cl *pVisibleForeGroundEntities = pVisCollector->GetVisibleForeGroundEntities();
  HandleVisibleVisibilityObjects();

  // Clear the screen
  if ((iRenderFlags&VIS_RENDERCONTEXT_FLAG_NO_CLEARSCREEN)==0)
  {
    const VFogParameters &fog = Vision::World.GetFogParameters();
    VColorRef clearColor = fog.depthMode != VFogParameters::Off ? fog.iDepthColor : Vision::Renderer.GetDefaultClearColor();
    Vision::RenderLoopHelper.ClearScreen(VisRenderLoopHelper_cl::VCTF_All, clearColor);
  }

  m_bHasRenderHookCallbacks = m_bTriggerCallbacks && Vision::Callbacks.OnRenderHook.HasCallbacks();

  // Get a pointer to the collection of visible mesh buffer objects
  const VisMeshBufferObjectCollection_cl *pVisibleMeshBuffer = &m_VisibilityObjectCollector.GetMeshBufferObjectCollection();

  // Get a pointer to the collection of visible particle groups
  const VisParticleGroupCollection_cl *pVisibleParticleGroups = &m_VisibilityObjectCollector.GetParticleGroupCollection();

  // Determine which lights have to rendered in the current frame
  DetermineRelevantLights();

  // Render all mesh buffer objects with the render order flag "VRH_PRE_RENDERING".
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_RENDERING, m_bTriggerCallbacks);

  // Render all mesh buffer objects with the render order flag "VRH_PRE_PRIMARY_OPAQUE_PASS_GEOMETRY".
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_PRIMARY_OPAQUE_PASS_GEOMETRY, m_bTriggerCallbacks);

  // Reset tags
  VisStaticGeometryInstance_cl::ResetTags();
  VisBaseEntity_cl::ResetTags();
  
  // Clear temporary collections for geometry that is lit by base pass light, but rendered in additive lighting pass
  m_AdditiveLitGeoInstanceCollection.Clear();
  m_AdditiveLitEntityCollection.Clear();

  // Prepare the initial lighting pass (one light collapsed with base lighting contribution)
  bool bUsesLightClippingVolume = false;
  IVShadowMapComponent *pShadowMap = PrepareLightingPass(m_pBasePassLight, true, bUsesLightClippingVolume);

  // Render lit geometry before actual base pass, whereby the geometry which has been rendered here will be tagged, in order
  // to avoid re-rendering later on. We first render static meshes lit base the base pass light, then static meshes not lit by the base pass light,
  // and then entities (with/without base pass light, respectively).
  {
    RenderLitGeometry(m_pBasePassLight, pShadowMap, true, bUsesLightClippingVolume, false, true);

    // Render all primary opaque pass surface shaders on opaque world geometry
    Vision::RenderLoopHelper.RenderStaticGeometrySurfaceShaders(*pVisibleGeoInstancesPrimaryOpaquePass, VPT_PrimaryOpaquePass, VTF_IGNORE_TAGGED_ENTRIES); 

    // Render all mesh buffer objects with the render order flag "VRH_PRE_PRIMARY_OPAQUE_PASS_ENTITIES".
    RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_PRIMARY_OPAQUE_PASS_ENTITIES, m_bTriggerCallbacks);

    RenderLitGeometry(m_pBasePassLight, pShadowMap, true, bUsesLightClippingVolume, true, false);

    // Render all primary opaque pass shaders on entities (see "DrawEntitiesShaders")
    DrawEntitiesShaders(*pVisibleEntitiesPrimaryOpaquePass, VPT_PrimaryOpaquePass, VTF_IGNORE_TAGGED_ENTRIES);
  }

  // Finalize the initial pass
  FinalizeLightingPass(m_pBasePassLight, bUsesLightClippingVolume);

  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_SECONDARY_OPAQUE_PASS_GEOMETRY, m_bTriggerCallbacks);

  // Render static geometry instances for secondary opaque pass
  Vision::RenderLoopHelper.RenderStaticGeometrySurfaceShaders(*pVisibleGeoInstancesSecondaryOpaquePass, VPT_SecondaryOpaquePass, VTF_IGNORE_TAGGED_ENTRIES);
  
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_SECONDARY_OPAQUE_PASS_ENTITIES, m_bTriggerCallbacks);

  // Render entities for secondary opaque pass
  DrawEntitiesShaders(*pVisibleEntitiesSecondaryOpaquePass, VPT_SecondaryOpaquePass, VTF_IGNORE_TAGGED_ENTRIES);

  // Start the hardware occlusion query. Note that this function always has to be called in render loops.
  // Also, the position of this call in the OnDoRenderLoop is important: The zBuffer contents at this stage of rendering will
  // act as occluders in the hardware occlusion queries.
  Vision::RenderLoopHelper.PerformHardwareOcclusionQuery();

  // Render sky
  Vision::RenderLoopHelper.RenderSky();

  // Render all mesh buffer objects with the render order flag "VRH_PRE_OCCLUSION_TESTS".
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_OCCLUSION_TESTS, m_bTriggerCallbacks);

  Vision::RenderLoopHelper.PerformHardwarePixelCounterQuery();

  // Render all mesh buffer objects with the render order flag "VRH_POST_OCCLUSION_TESTS".
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_POST_OCCLUSION_TESTS, m_bTriggerCallbacks);

  // Draw dynamic light 
  DrawDynamicLight();

  // Render all mesh buffer objects with the render order flag "VRH_PRE_TRANSPARENT_PASS_GEOMETRY".
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_TRANSPARENT_PASS_GEOMETRY, m_bTriggerCallbacks); 
  
  // Render transparent pass surface shaders on translucent lit world primitives
  Vision::RenderLoopHelper.RenderStaticGeometrySurfaceShaders(*pVisibleGeoInstancesTransparentPass, VPT_TransparentPass, VTF_IGNORE_TAGGED_ENTRIES);

  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PRE_TRANSPARENT_PASS_ENTITIES, m_bTriggerCallbacks);

  // Render transparent pass shaders on entities
  DrawEntitiesShaders(*pVisibleEntitiesTransparentPass, VPT_TransparentPass, VTF_IGNORE_TAGGED_ENTRIES);

  // Render all mesh buffer objects with the render order flag "VRH_POST_TRANSPARENT_PASS_GEOMETRY".
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_POST_TRANSPARENT_PASS_GEOMETRY, m_bTriggerCallbacks);

  // Render all mesh buffer objects and particle systems with the render order flag "VRH_DECALS".
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_DECALS, m_bTriggerCallbacks);

  // Render all mesh buffer objects and particle systems with the render order flag "VRH_PARTICLES".
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_PARTICLES, m_bTriggerCallbacks);

  // Render all mesh buffer objects with the render order flag "VRH_ADDITIVE_PARTICLES"
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_ADDITIVE_PARTICLES, m_bTriggerCallbacks);

  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_TRANSLUCENT_VOLUMES, m_bTriggerCallbacks);

  // Render visible foreground entities (see DrawForegroundEntities)
  DrawForegroundEntities(*pVisibleForeGroundEntities);

  // Render all mesh buffer objects with the render order flag "VRH_CORONAS_AND_FLARES"
  RenderHook(*pVisibleMeshBuffer, pVisibleParticleGroups, VRH_CORONAS_AND_FLARES, m_bTriggerCallbacks);

  m_pShaderProvider = NULL;
}
void VCoronaManager::RenderAllVisibleCoronas()
{
#ifdef SUPPORTS_CORONAS
  VisRenderContext_cl* pContext = VisRenderContext_cl::GetCurrentContext();

  // Determine relevant render context and visibility collector
  IVisVisibilityCollector_cl *pVisCollector = pContext->GetVisibilityCollector();
  if (!pVisCollector)
    return;
  VisRenderContext_cl *pOQContext = pVisCollector->GetOcclusionQueryRenderContext();
  if (pOQContext != NULL)
    pContext = pOQContext;


  if ((pContext->GetRenderFlags() & VIS_RENDERCONTEXT_FLAG_USE_PIXELCOUNTER) == 0)
    return;

  if ((pContext->GetRenderFlags() & VIS_RENDERCONTEXT_FLAG_RENDER_CORONAS) == 0)
    return;

  INSERT_PERF_MARKER_SCOPE("VCoronaManager::RenderAllVisibleCoronas");
  VISION_PROFILE_FUNCTION(PROFILING_CORONA_RENDER);

  // Force for the queries to finish so they are available in this frame.
  if (m_bTeleportedLastFrame && m_bForceQueryOnTeleport)
  {
    UpdateCoronas(VCUF_UPDATE | VCUF_FORCE_FETCH | VCUF_USE_OC_CONTEXT);
  }

  // Ensure size of corona state structure.
  int iContextIndex = pContext->GetNumber();
  if (iContextIndex + 1 > m_State.GetSize())
    m_State.SetSize(iContextIndex + 1, -1);
  VCoronaRenderContextState& state = m_State[iContextIndex];
  int iCapacity = m_Instances.GetCapacity();
  state.EnsureSize(iCapacity);

  const int iCoronasToRender = state.m_Candidates.GetSize();

  // Sort candidates by texture?
  
  VTextureObject* pTexture = NULL;

  // Render all corona components
  Vision::RenderLoopHelper.BeginMeshRendering();
  Vision::RenderLoopHelper.AddMeshStreams(m_spBillboardMesh,VERTEX_STREAM_POSITION);

  for (int i=0; i < iCoronasToRender; ++i)
  {
    VCoronaCandidate& coronaCandidate = state.m_Candidates.ElementAt(i);
    if (coronaCandidate.m_fCurrentVisibility > 0.0f)
    {
      RenderCorona (coronaCandidate, pTexture);
    }
  }

  Vision::RenderLoopHelper.EndMeshRendering();

  m_bTeleportedLastFrame = (pContext->GetCamera()->GetLastTeleported() >= pContext->GetLastRenderedFrame());
#endif
}
void VCoronaManager::UpdateCoronas(int iCoronaUpdateFlags)
{
#ifdef SUPPORTS_CORONAS

  VisRenderContext_cl* pContext = VisRenderContext_cl::GetCurrentContext();

  if ((iCoronaUpdateFlags & VCUF_USE_OC_CONTEXT) > 0)
  {
    // Determine relevant render context and visibility collector
    IVisVisibilityCollector_cl *pVisCollector = pContext->GetVisibilityCollector();
    if (!pVisCollector)
      return;
    VisRenderContext_cl *pOQContext = pVisCollector->GetOcclusionQueryRenderContext();
    if (pOQContext != NULL)
      pContext = pOQContext;
  }

  if (pContext == NULL)
    return;

  if ((pContext->GetRenderFlags() & VIS_RENDERCONTEXT_FLAG_USE_PIXELCOUNTER) == 0)
    return;

  if ((pContext->GetRenderFlags() & VIS_RENDERCONTEXT_FLAG_RENDER_CORONAS) == 0)
    return;

  // Get bitmask for this context.
  unsigned int iRenderFilterMask = pContext->GetRenderFilterMask();

  // get the collection of visible lights.
  IVisVisibilityCollector_cl* pVisCollector = VisRenderContext_cl::GetCurrentContext()->GetVisibilityCollector();
  if (pVisCollector == NULL)
    return;

  VISION_PROFILE_FUNCTION(PROFILING_CORONA_UPDATE);

  // Get multi-sampling mode
  unsigned int iTexelsPerPixel = 1;
  VTextureObject* pDepthTex = pContext->GetDepthStencilTarget();
  if(pDepthTex == NULL)
  {
    // If no depth stencil target is available, we might work without a renderer node and we're in the main context
    if(Vision::Renderer.GetCurrentRendererNode() == NULL && pContext == VisRenderContext_cl::GetMainRenderContext())
    {
      // In this case get the multi-sampling type from the video config as it's used to set the actual backbuffer settings
      // where the main context will render to
      iTexelsPerPixel = hkvMath::Max(1, 1 << ((int)Vision::Video.GetCurrentConfig()->m_eMultiSample));     
    }  
  }
  else if (pDepthTex->GetTextureType() == VTextureLoader::Texture2D)
  {
    iTexelsPerPixel = hkvMath::Max(1u, ((VisRenderableTexture_cl*)pDepthTex)->GetConfig()->m_iMultiSampling);
  }
  
  const VisLightSrcCollection_cl* pVisibleLights = pVisCollector->GetVisibleLights();
  int iCandidates = 0;
  if (pVisibleLights != NULL)
    iCandidates = pVisibleLights->GetNumEntries();

  // Ensure size of coronas state structure.
  int iContextIndex = pContext->GetNumber();
  if (iContextIndex + 1 > m_State.GetSize())
    m_State.SetSize(iContextIndex + 1, -1);
  VCoronaRenderContextState& state = m_State[iContextIndex];
  int iCapacity = m_Instances.GetCapacity();
  state.EnsureSize(iCapacity);

  // Add visible lights with a lens flare component to the candidate list for this frame
  if ((iCoronaUpdateFlags & VCUF_ADD) > 0)
  {
    for (int iCandidate = 0; iCandidate < iCandidates; ++iCandidate)
    {
      VisLightSource_cl* pLight = pVisibleLights->GetEntry(iCandidate);
      if (pLight)
      {
        VCoronaComponent *pComponent = pLight->Components().GetComponentOfBaseType<VCoronaComponent>();
        if (pComponent != NULL && pComponent->IsEnabled() && !state.IsBitSet(pComponent->m_iIndex))
        {
          // The component is not in m_Candidates yet, so we check whether it is a valid candidate
          bool bIsLightOnScreen = pComponent->IsValidCandidate(pContext);

          if (bIsLightOnScreen)
          {
            state.SetBit(pComponent->m_iIndex);
            pContext->SetPixelCounterResult(pComponent->m_CoronaPixelCounter.GetNumber(), 0);
            state.m_Candidates.Append(pComponent);
          }
        }
      }
    }
  }
  

  // Forces the retrieval all pending queries.
  pContext->FetchPixelCounterTestResults( (iCoronaUpdateFlags & VCUF_FORCE_FETCH) > 0 );
   
  
  // Retrieve Queries and update status of lens flares
  if ((iCoronaUpdateFlags & VCUF_UPDATE) > 0)
  {
    for (int i=0; i < state.m_Candidates.GetSize(); ++i)
    {
      VCoronaCandidate& coronaCandidate = state.m_Candidates.ElementAt(i);
      VCoronaComponent* pCorona = coronaCandidate.m_pCorona;
      if (!pCorona || !pCorona->IsEnabled())
        continue;

      if (pCorona->GetOwner())
      {
        // Retrieve occlusion results of the last query
        unsigned int iElementIndex = pCorona->m_CoronaPixelCounter.GetNumber();
        bool bRes = !pContext->IsPixelCounterQueryInProgress(iElementIndex);

        // Reschedule query if the old on could be retrieved or if a teleport forces us to re-query everything.
        if (bRes | ((iCoronaUpdateFlags & VCUF_FORCE_SCHEDULE) > 0) )
          pContext->SchedulePixelCounterTest(iElementIndex);

        unsigned int iDrawnPixels = pContext->GetPixelCounterResult(iElementIndex) / iTexelsPerPixel;

        float fVisibility = (float)iDrawnPixels / ((int)pCorona->QueryRadius * (int)pCorona->QueryRadius * 4);

        // ATI fix for random insanely high return values.
        if (iDrawnPixels > ((unsigned int)pCorona->QueryRadius * 2 + 1) * ((unsigned int)pCorona->QueryRadius * 2 + 1))
        {
          fVisibility = coronaCandidate.m_fLastVisibilityQuery;
        }

        if ((iCoronaUpdateFlags & VCUF_FORCE_FETCH) > 0)
        {
          // Force lens flare visibility to the current query value.
          coronaCandidate.m_fCurrentVisibility = fVisibility;
          coronaCandidate.m_fLastVisibilityQuery = fVisibility;
          pCorona->UpdateVisibility(coronaCandidate.m_fLastVisibilityQuery, coronaCandidate.m_fCurrentVisibility);
        }
        else if (!m_bTeleportedLastFrame)
        {
          coronaCandidate.m_fLastVisibilityQuery = fVisibility;
          pCorona->UpdateVisibility(coronaCandidate.m_fLastVisibilityQuery, coronaCandidate.m_fCurrentVisibility);
        }
        else
        {
          // if we were teleported, the last frame's query results must be invalidated
          coronaCandidate.m_fCurrentVisibility = 0.0f;
          coronaCandidate.m_fLastVisibilityQuery = 0.0f;
        }
      }
    }
  }
  
  // Removes coronas that are outside the frustum and no longer visible.
  if ((iCoronaUpdateFlags & VCUF_REMOVE) > 0)
  {
    for (int i=0; i < state.m_Candidates.GetSize();)
    {
      VCoronaCandidate& coronaCandidate = state.m_Candidates.ElementAt(i);
      VCoronaComponent* pCorona = coronaCandidate.m_pCorona;

      unsigned int iElementIndex = pCorona->m_CoronaPixelCounter.GetNumber();
      // If the visibility reached zero and the corona is no longer potentially visible it is removed from the list
      if (!pCorona->IsEnabled() || !pCorona->GetOwner()
        || (pCorona->GetVisibleBitmask() & iRenderFilterMask) == 0
        || (((VisLightSource_cl*)pCorona->GetOwner())->GetVisibleBitmask() & iRenderFilterMask) == 0
        || ( coronaCandidate.m_fCurrentVisibility == 0.0f && !pCorona->IsValidCandidate(pContext) ) )
      {
        state.RemoveBit(pCorona->m_iIndex);
        state.m_Candidates.SetAt(i, state.m_Candidates.GetAt(state.m_Candidates.GetSize()-1) );
        state.m_Candidates.RemoveAt(state.m_Candidates.GetSize() -1);
        // Reset cache to zero, so we don't see the lens flare once it enters the frustum again.
        pContext->SetPixelCounterResult(iElementIndex, 0);
      }
      else
      {
        ++i;
      }
    }
  }

#endif
}