Example #1
0
/**
 * Constructor. Creates a tree of GLActors. Each actor is responsible for displaying insrument components in 3D.
 * Some of the components have "pick ID" assigned to them. Pick IDs can be uniquely converted to a RGB colour value
 * which in turn can be used for picking the component from the screen.
 * @param wsName :: Workspace name
 * @param autoscaling :: True to start with autoscaling option on. If on the min and max of
 *   the colormap scale are defined by the min and max of the data.
 * @param scaleMin :: Minimum value of the colormap scale. Used to assign detector colours. Ignored if autoscaling == true.
 * @param scaleMax :: Maximum value of the colormap scale. Used to assign detector colours. Ignored if autoscaling == true.
 */
InstrumentActor::InstrumentActor(const QString &wsName, bool autoscaling, double scaleMin, double scaleMax):
    m_workspace(AnalysisDataService::Instance().retrieveWS<MatrixWorkspace>(wsName.toStdString())),
    m_ragged(true),
    m_autoscaling(autoscaling),
    m_defaultPos(),
    m_maskedColor(100,100,100),
    m_failedColor(200,200,200)
{
    // settings
    loadSettings();

    auto sharedWorkspace = m_workspace.lock();
    if (!sharedWorkspace)
        throw std::logic_error("InstrumentActor passed a workspace that isn't a MatrixWorkspace");

    // set up the color map
    if (!m_currentColorMapFilename.isEmpty())
    {
        loadColorMap(m_currentColorMapFilename,false);
    }
    m_colorMap.changeScaleType(m_scaleType);

    // set up data ranges and colours
    setUpWorkspace(sharedWorkspace, scaleMin, scaleMax);

    Instrument_const_sptr instrument = getInstrument();

    // If the instrument is empty, maybe only having the sample and source
    const int nelements = instrument->nelements();
    if ( ( nelements == 0 ) ||
            ( nelements == 1 && ( instrument->getSource() || instrument->getSample() ) ) ||
            ( nelements == 2 && instrument->getSource() && instrument->getSample() )
       )
    {
        QMessageBox::warning(NULL,"MantidPlot - Warning","This instrument appears to contain no detectors","OK");
    }

    // this adds actors for all instrument components to the scene and fills in m_detIDs
    m_scene.addActor(new CompAssemblyActor(*this,instrument->getComponentID()));
    setupPickColors();

    if ( !m_showGuides )
    {
        // hide guide and other components
        showGuides( m_showGuides );
    }
}
Example #2
0
  void AnvredCorrection::scale_init(IDetector_const_sptr det, Instrument_const_sptr inst, int& bank, double& L2, double& depth, double& pathlength, std::string bankName)
  {
	bankName = det->getParent()->getParent()->getName();
	std::string bankNameStr = bankName;
	// Take out the "bank" part of the bank name and convert to an int
	bankNameStr.erase(remove_if(bankNameStr.begin(), bankNameStr.end(), not1(std::ptr_fun (::isdigit))), bankNameStr.end());
	Strings::convert(bankNameStr, bank);
	IComponent_const_sptr sample = inst->getSample();
	double cosA = inst->getComponentByName(bankName)->getDistance(*sample) / L2;
	pathlength = depth / cosA;
  }
  void EstimatePDDetectorResolution::retrieveInstrumentParameters()
  {
#if 0
    // Call SolidAngle to get solid angles for all detectors
    Algorithm_sptr calsolidangle = createChildAlgorithm("SolidAngle", -1, -1, true);
    calsolidangle->initialize();

    calsolidangle->setProperty("InputWorkspace", m_inputWS);

    calsolidangle->execute();
    if (!calsolidangle->isExecuted())
      throw runtime_error("Unable to run solid angle. ");

    m_solidangleWS = calsolidangle->getProperty("OutputWorkspace");
    if (!m_solidangleWS)
      throw runtime_error("Unable to get solid angle workspace from SolidAngle(). ");


    size_t numspec = m_solidangleWS->getNumberHistograms();
    for (size_t i = 0; i < numspec; ++i)
      g_log.debug() << "[DB]: " << m_solidangleWS->readY(i)[0] << "\n";
#endif

    // Calculate centre neutron velocity
    Property* cwlproperty = m_inputWS->run().getProperty("LambdaRequest");
    if (!cwlproperty)
      throw runtime_error("Unable to locate property LambdaRequest as central wavelength. ");
    TimeSeriesProperty<double>* cwltimeseries = dynamic_cast<TimeSeriesProperty<double>* >(cwlproperty);
    if (!cwltimeseries)
      throw runtime_error("LambdaReqeust is not a TimeSeriesProperty in double. ");
    if (cwltimeseries->size() != 1)
      throw runtime_error("LambdaRequest should contain 1 and only 1 entry. ");

    double centrewavelength = cwltimeseries->nthValue(0);
    string unit = cwltimeseries->units();
    if (unit.compare("Angstrom") == 0)
      centrewavelength *= 1.0E-10;
    else
      throw runtime_error("Unit is not recognized");

    m_centreVelocity = PhysicalConstants::h/PhysicalConstants::NeutronMass/centrewavelength;
    g_log.notice() << "Centre wavelength = " << centrewavelength << ", Centre neutron velocity = " << m_centreVelocity << "\n";

    // Calcualte L1 sample to source
    Instrument_const_sptr instrument = m_inputWS->getInstrument();
    V3D samplepos = instrument->getSample()->getPos();
    V3D sourcepos = instrument->getSource()->getPos();
    m_L1 = samplepos.distance(sourcepos);
    g_log.notice() << "L1 = " << m_L1 << "\n";

    return;
  }
Example #4
0
/** Method for updating m_waveLength.
 *  If size of m_waveLength is equal to number of data (for a new instance of
 *this
 *  class this vector is empty initially) then don't recalculate it.
 *
 *  @param xValues :: x values
 *  @param nData :: length of xValues
 */
void IkedaCarpenterPV::calWavelengthAtEachDataPoint(const double *xValues,
                                                    const size_t &nData) const {
  // if wavelength vector already have the right size no need for resizing it
  // further we make the assumption that no need to recalculate this vector if
  // it already has the right size

  if (m_waveLength.size() != nData) {
    m_waveLength.resize(nData);

    Mantid::Kernel::Unit_sptr wavelength =
        Mantid::Kernel::UnitFactory::Instance().create("Wavelength");
    for (size_t i = 0; i < nData; i++) {
      m_waveLength[i] = xValues[i];
    }

    // note if a version of convertValue was added which allows a double* as
    // first argument
    // then could avoid copying above plus only have to resize m_wavelength when
    // its size smaller than nData
    API::MatrixWorkspace_const_sptr mws = getMatrixWorkspace();
    if (mws) {
      API::MatrixWorkspace_const_sptr mws = getMatrixWorkspace();
      Instrument_const_sptr instrument = mws->getInstrument();
      Geometry::IComponent_const_sptr sample = instrument->getSample();
      if (sample != nullptr) {
        convertValue(m_waveLength, wavelength, mws, m_workspaceIndex);
      } else {
        g_log.warning()
            << "No sample set for instrument in workspace.\n"
            << "Can't calculate wavelength in IkedaCarpenter.\n"
            << "Default all wavelengths to one.\n"
            << "Solution is to load appropriate instrument into workspace.\n";
        for (size_t i = 0; i < nData; i++)
          m_waveLength[i] = 1.0;
      }
    } else {
      g_log.warning() << "Workspace not set.\n"
                      << "Can't calculate wavelength in IkedaCarpenter.\n"
                      << "Default all wavelengths to one.\n"
                      << "Solution call setMatrixWorkspace() for function.\n";
      for (size_t i = 0; i < nData; i++)
        m_waveLength[i] = 1.0;
    }
  }
}
void EstimateResolutionDiffraction::retrieveInstrumentParameters() {
    double centrewavelength = getWavelength();
    g_log.notice() << "Centre wavelength = " << centrewavelength << " Angstrom\n";
    if (centrewavelength > WAVELENGTH_MAX) {
        throw runtime_error("unphysical wavelength used");
    }

    // Calculate centre neutron velocity
    m_centreVelocity = WAVELENGTH_TO_VELOCITY / centrewavelength;
    g_log.notice() << "Centre neutron velocity = " << m_centreVelocity << "\n";

    // Calculate L1 sample to source
    Instrument_const_sptr instrument = m_inputWS->getInstrument();
    V3D samplepos = instrument->getSample()->getPos();
    V3D sourcepos = instrument->getSource()->getPos();
    m_L1 = samplepos.distance(sourcepos);
    g_log.notice() << "L1 = " << m_L1 << "\n";

    return;
}
void EstimateResolutionDiffraction::estimateDetectorResolution() {
    Instrument_const_sptr instrument = m_inputWS->getInstrument();
    V3D samplepos = instrument->getSample()->getPos();

    size_t numspec = m_inputWS->getNumberHistograms();

    double mintwotheta = 10000;
    double maxtwotheta = 0;

    double mint3 = 1;
    double maxt3 = 0;

    size_t count_nodetsize = 0;

    for (size_t i = 0; i < numspec; ++i) {
        // Get detector
        IDetector_const_sptr det = m_inputWS->getDetector(i);

        double detdim;

        boost::shared_ptr<const Detector> realdet =
            boost::dynamic_pointer_cast<const Detector>(det);
        if (realdet) {
            double dy = realdet->getHeight();
            double dx = realdet->getWidth();
            detdim = sqrt(dx * dx + dy * dy) * 0.5;
        } else {
            // Use detector dimension as 0 as no-information
            detdim = 0;
            ++count_nodetsize;
        }

        // Get the distance from detector to source
        V3D detpos = det->getPos();
        double l2 = detpos.distance(samplepos);
        if (l2 < 0)
            throw runtime_error("L2 is negative");

        // Calculate T
        double centraltof = (m_L1 + l2) / m_centreVelocity;

        // Angle
        double twotheta = m_inputWS->detectorTwoTheta(det);
        double theta = 0.5 * twotheta;

        // double solidangle = m_solidangleWS->readY(i)[0];
        double solidangle = det->solidAngle(samplepos);
        double deltatheta = sqrt(solidangle);

        // Resolution
        double t1 = m_deltaT / centraltof;
        double t2 = detdim / (m_L1 + l2);
        double t3 = deltatheta * (cos(theta) / sin(theta));

        double resolution = sqrt(t1 * t1 + t2 * t2 + t3 * t3);

        m_outputWS->dataX(i)[0] = static_cast<double>(i);
        m_outputWS->dataY(i)[0] = resolution;

        if (twotheta > maxtwotheta)
            maxtwotheta = twotheta;
        else if (twotheta < mintwotheta)
            mintwotheta = twotheta;

        if (fabs(t3) < mint3)
            mint3 = fabs(t3);
        else if (fabs(t3) > maxt3)
            maxt3 = fabs(t3);

        g_log.debug() << det->type() << " " << i << "\t\t" << twotheta
                      << "\t\tdT/T = " << t1 * t1 << "\t\tdL/L = " << t2
                      << "\t\tdTheta*cotTheta = " << t3 << "\n";
    }

    g_log.notice() << "2theta range: " << mintwotheta << ", " << maxtwotheta
                   << "\n";
    g_log.notice() << "t3 range: " << mint3 << ", " << maxt3 << "\n";
    g_log.notice() << "Number of detector having NO size information = "
                   << count_nodetsize << "\n";

    return;
}
/** Executes the algorithm
*
*  @throw runtime_error Thrown if algorithm cannot execute
*/
void DiffractionEventCalibrateDetectors::exec() {
  // Try to retrieve optional properties
  const int maxIterations = getProperty("MaxIterations");
  const double peakOpt = getProperty("LocationOfPeakToOptimize");

  // Get the input workspace
  EventWorkspace_sptr inputW = getProperty("InputWorkspace");

  // retrieve the properties
  const std::string rb_params = getProperty("Params");

  // Get some stuff from the input workspace
  Instrument_const_sptr inst = inputW->getInstrument();

  // Build a list of Rectangular Detectors
  std::vector<boost::shared_ptr<RectangularDetector>> detList;
  // --------- Loading only one bank ----------------------------------
  std::string onebank = getProperty("BankName");
  bool doOneBank = (onebank != "");
  for (int i = 0; i < inst->nelements(); i++) {
    boost::shared_ptr<RectangularDetector> det;
    boost::shared_ptr<ICompAssembly> assem;
    boost::shared_ptr<ICompAssembly> assem2;

    det = boost::dynamic_pointer_cast<RectangularDetector>((*inst)[i]);
    if (det) {
      if (det->getName().compare(onebank) == 0)
        detList.push_back(det);
      if (!doOneBank)
        detList.push_back(det);
    } else {
      // Also, look in the first sub-level for RectangularDetectors (e.g. PG3).
      // We are not doing a full recursive search since that will be very long
      // for lots of pixels.
      assem = boost::dynamic_pointer_cast<ICompAssembly>((*inst)[i]);
      if (assem) {
        for (int j = 0; j < assem->nelements(); j++) {
          det = boost::dynamic_pointer_cast<RectangularDetector>((*assem)[j]);
          if (det) {
            if (det->getName().compare(onebank) == 0)
              detList.push_back(det);
            if (!doOneBank)
              detList.push_back(det);

          } else {
            // Also, look in the second sub-level for RectangularDetectors (e.g.
            // PG3).
            // We are not doing a full recursive search since that will be very
            // long for lots of pixels.
            assem2 = boost::dynamic_pointer_cast<ICompAssembly>((*assem)[j]);
            if (assem2) {
              for (int k = 0; k < assem2->nelements(); k++) {
                det = boost::dynamic_pointer_cast<RectangularDetector>(
                    (*assem2)[k]);
                if (det) {
                  if (det->getName().compare(onebank) == 0)
                    detList.push_back(det);
                  if (!doOneBank)
                    detList.push_back(det);
                }
              }
            }
          }
        }
      }
    }
  }

  // set-up minimizer

  std::string inname = getProperty("InputWorkspace");
  std::string outname = inname + "2"; // getProperty("OutputWorkspace");

  IAlgorithm_sptr algS = createChildAlgorithm("SortEvents");
  algS->setProperty("InputWorkspace", inputW);
  algS->setPropertyValue("SortBy", "X Value");
  algS->executeAsChildAlg();

  // Write DetCal File
  std::string filename = getProperty("DetCalFilename");
  std::fstream outfile;
  outfile.open(filename.c_str(), std::ios::out);

  if (detList.size() > 1) {
    outfile << "#\n";
    outfile << "#  Mantid Optimized .DetCal file for SNAP with TWO detector "
               "panels\n";
    outfile << "#  Old Panel, nominal size and distance at -90 degrees.\n";
    outfile << "#  New Panel, nominal size and distance at +90 degrees.\n";
    outfile << "#\n";
    outfile << "# Lengths are in centimeters.\n";
    outfile << "# Base and up give directions of unit vectors for a local\n";
    outfile << "# x,y coordinate system on the face of the detector.\n";
    outfile << "#\n";
    outfile << "# " << DateAndTime::getCurrentTime().toFormattedString("%c")
            << "\n";
    outfile << "#\n";
    outfile << "6         L1     T0_SHIFT\n";
    IComponent_const_sptr source = inst->getSource();
    IComponent_const_sptr sample = inst->getSample();
    outfile << "7  " << source->getDistance(*sample) * 100 << "            0\n";
    outfile << "4 DETNUM  NROWS  NCOLS  WIDTH   HEIGHT   DEPTH   DETD   "
               "CenterX   CenterY   CenterZ    BaseX    BaseY    BaseZ      "
               "UpX      UpY      UpZ\n";
  }

  Progress prog(this, 0.0, 1.0, detList.size());
  for (int det = 0; det < static_cast<int>(detList.size()); det++) {
    std::string par[6];
    par[0] = detList[det]->getName();
    par[1] = inname;
    par[2] = outname;
    std::ostringstream strpeakOpt;
    strpeakOpt << peakOpt;
    par[3] = strpeakOpt.str();
    par[4] = rb_params;

    // --- Create a GroupingWorkspace for this detector name ------
    CPUTimer tim;
    IAlgorithm_sptr alg2 =
        AlgorithmFactory::Instance().create("CreateGroupingWorkspace", 1);
    alg2->initialize();
    alg2->setProperty("InputWorkspace", inputW);
    alg2->setPropertyValue("GroupNames", detList[det]->getName());
    std::string groupWSName = "group_" + detList[det]->getName();
    alg2->setPropertyValue("OutputWorkspace", groupWSName);
    alg2->executeAsChildAlg();
    par[5] = groupWSName;
    std::cout << tim << " to CreateGroupingWorkspace\n";

    const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
    gsl_multimin_fminimizer *s = nullptr;
    gsl_vector *ss, *x;
    gsl_multimin_function minex_func;

    // finally do the fitting

    int nopt = 6;
    int iter = 0;
    int status = 0;

    /* Starting point */
    x = gsl_vector_alloc(nopt);
    gsl_vector_set(x, 0, 0.0);
    gsl_vector_set(x, 1, 0.0);
    gsl_vector_set(x, 2, 0.0);
    gsl_vector_set(x, 3, 0.0);
    gsl_vector_set(x, 4, 0.0);
    gsl_vector_set(x, 5, 0.0);

    /* Set initial step sizes to 0.1 */
    ss = gsl_vector_alloc(nopt);
    gsl_vector_set_all(ss, 0.1);

    /* Initialize method and iterate */
    minex_func.n = nopt;
    minex_func.f = &Mantid::Algorithms::gsl_costFunction;
    minex_func.params = &par;

    s = gsl_multimin_fminimizer_alloc(T, nopt);
    gsl_multimin_fminimizer_set(s, &minex_func, x, ss);

    do {
      iter++;
      status = gsl_multimin_fminimizer_iterate(s);

      if (status)
        break;

      double size = gsl_multimin_fminimizer_size(s);
      status = gsl_multimin_test_size(size, 1e-2);

    } while (status == GSL_CONTINUE && iter < maxIterations &&
             s->fval != -0.000);

    // Output summary to log file
    if (s->fval != -0.000)
      movedetector(gsl_vector_get(s->x, 0), gsl_vector_get(s->x, 1),
                   gsl_vector_get(s->x, 2), gsl_vector_get(s->x, 3),
                   gsl_vector_get(s->x, 4), gsl_vector_get(s->x, 5), par[0],
                   getProperty("InputWorkspace"));
    else {
      gsl_vector_set(s->x, 0, 0.0);
      gsl_vector_set(s->x, 1, 0.0);
      gsl_vector_set(s->x, 2, 0.0);
      gsl_vector_set(s->x, 3, 0.0);
      gsl_vector_set(s->x, 4, 0.0);
      gsl_vector_set(s->x, 5, 0.0);
    }

    std::string reportOfDiffractionEventCalibrateDetectors =
        gsl_strerror(status);
    if (s->fval == -0.000)
      reportOfDiffractionEventCalibrateDetectors = "No events";

    g_log.information() << "Detector = " << det << "\n"
                        << "Method used = "
                        << "Simplex"
                        << "\n"
                        << "Iteration = " << iter << "\n"
                        << "Status = "
                        << reportOfDiffractionEventCalibrateDetectors << "\n"
                        << "Minimize PeakLoc-" << peakOpt << " = " << s->fval
                        << "\n";
    // Move in cm for small shifts
    g_log.information() << "Move (X)   = " << gsl_vector_get(s->x, 0) * 0.01
                        << "  \n";
    g_log.information() << "Move (Y)   = " << gsl_vector_get(s->x, 1) * 0.01
                        << "  \n";
    g_log.information() << "Move (Z)   = " << gsl_vector_get(s->x, 2) * 0.01
                        << "  \n";
    g_log.information() << "Rotate (X) = " << gsl_vector_get(s->x, 3) << "  \n";
    g_log.information() << "Rotate (Y) = " << gsl_vector_get(s->x, 4) << "  \n";
    g_log.information() << "Rotate (Z) = " << gsl_vector_get(s->x, 5) << "  \n";

    Kernel::V3D CalCenter =
        V3D(gsl_vector_get(s->x, 0) * 0.01, gsl_vector_get(s->x, 1) * 0.01,
            gsl_vector_get(s->x, 2) * 0.01);
    Kernel::V3D Center = detList[det]->getPos() + CalCenter;
    int pixmax = detList[det]->xpixels() - 1;
    int pixmid = (detList[det]->ypixels() - 1) / 2;
    BoundingBox box;
    detList[det]->getAtXY(pixmax, pixmid)->getBoundingBox(box);
    double baseX = box.xMax();
    double baseY = box.yMax();
    double baseZ = box.zMax();
    Kernel::V3D Base = V3D(baseX, baseY, baseZ) + CalCenter;
    pixmid = (detList[det]->xpixels() - 1) / 2;
    pixmax = detList[det]->ypixels() - 1;
    detList[det]->getAtXY(pixmid, pixmax)->getBoundingBox(box);
    double upX = box.xMax();
    double upY = box.yMax();
    double upZ = box.zMax();
    Kernel::V3D Up = V3D(upX, upY, upZ) + CalCenter;
    Base -= Center;
    Up -= Center;
    // Rotate around x
    baseX = Base[0];
    baseY = Base[1];
    baseZ = Base[2];
    double deg2rad = M_PI / 180.0;
    double angle = gsl_vector_get(s->x, 3) * deg2rad;
    Base = V3D(baseX, baseY * cos(angle) - baseZ * sin(angle),
               baseY * sin(angle) + baseZ * cos(angle));
    upX = Up[0];
    upY = Up[1];
    upZ = Up[2];
    Up = V3D(upX, upY * cos(angle) - upZ * sin(angle),
             upY * sin(angle) + upZ * cos(angle));
    // Rotate around y
    baseX = Base[0];
    baseY = Base[1];
    baseZ = Base[2];
    angle = gsl_vector_get(s->x, 4) * deg2rad;
    Base = V3D(baseZ * sin(angle) + baseX * cos(angle), baseY,
               baseZ * cos(angle) - baseX * sin(angle));
    upX = Up[0];
    upY = Up[1];
    upZ = Up[2];
    Up = V3D(upZ * cos(angle) - upX * sin(angle), upY,
             upZ * sin(angle) + upX * cos(angle));
    // Rotate around z
    baseX = Base[0];
    baseY = Base[1];
    baseZ = Base[2];
    angle = gsl_vector_get(s->x, 5) * deg2rad;
    Base = V3D(baseX * cos(angle) - baseY * sin(angle),
               baseX * sin(angle) + baseY * cos(angle), baseZ);
    upX = Up[0];
    upY = Up[1];
    upZ = Up[2];
    Up = V3D(upX * cos(angle) - upY * sin(angle),
             upX * sin(angle) + upY * cos(angle), upZ);
    Base.normalize();
    Up.normalize();
    Center *= 100.0;
    // << det+1  << "  "
    outfile << "5  " << detList[det]->getName().substr(4) << "  "
            << detList[det]->xpixels() << "  " << detList[det]->ypixels()
            << "  " << 100.0 * detList[det]->xsize() << "  "
            << 100.0 * detList[det]->ysize() << "  "
            << "0.2000"
            << "  " << Center.norm() << "  ";
    Center.write(outfile);
    outfile << "  ";
    Base.write(outfile);
    outfile << "  ";
    Up.write(outfile);
    outfile << "\n";

    // clean up dynamically allocated gsl stuff
    gsl_vector_free(x);
    gsl_vector_free(ss);
    gsl_multimin_fminimizer_free(s);

    // Remove the now-unneeded grouping workspace
    AnalysisDataService::Instance().remove(groupWSName);
    prog.report(detList[det]->getName());
  }

  // Closing
  outfile.close();
}
Example #8
0
  /** Execute the algorithm.
   */
  void SaveIsawPeaks::exec()
  {
    // Section header
    std::string header = "2   SEQN    H    K    L     COL      ROW     CHAN        L2   2_THETA        AZ         WL         D      IPK          INTI    SIGI  RFLG";

    std::string filename = getPropertyValue("Filename");
    PeaksWorkspace_sptr ws = getProperty("InputWorkspace");
    std::vector<Peak> peaks = ws->getPeaks();

    // We must sort the peaks first by run, then bank #, and save the list of workspace indices of it
    typedef std::map<int, std::vector<size_t> > bankMap_t;
    typedef std::map<int, bankMap_t> runMap_t;
    std::set<int> uniqueBanks;
    runMap_t runMap;

    for (size_t i=0; i < peaks.size(); ++i)
    {
      Peak & p = peaks[i];
      int run = p.getRunNumber();
      int bank = 0;
      std::string bankName = p.getBankName();
      if (bankName.size() <= 4)
      {
        g_log.information() << "Could not interpret bank number of peak " << i << "(" << bankName << ")\n";
        continue;
      }
      // Take out the "bank" part of the bank name and convert to an int
      bankName = bankName.substr(4, bankName.size()-4);
      Strings::convert(bankName, bank);

      // Save in the map
      runMap[run][bank].push_back(i);
      // Track unique bank numbers
      uniqueBanks.insert(bank);
    }

    Instrument_const_sptr inst = ws->getInstrument();
    if (!inst) throw std::runtime_error("No instrument in PeaksWorkspace. Cannot save peaks file.");

    double l1; V3D beamline; double beamline_norm; V3D samplePos;
    inst->getInstrumentParameters(l1, beamline, beamline_norm, samplePos);

    std::ofstream out;
    bool append = getProperty("AppendFile");
    if (append)
    {
      out.open( filename.c_str(), std::ios::app);
    }
    else
    {
      out.open( filename.c_str());


    out << "Version: 2.0  Facility: SNS " ;
    out <<  " Instrument: " <<  inst->getName() <<  "  Date: " ;

    //TODO: The experiment date might be more useful than the instrument date.
    // For now, this allows the proper instrument to be loaded back after saving.
    Kernel::DateAndTime expDate = inst->getValidFromDate() + 1.0;
    out <<  expDate.to_ISO8601_string() << std::endl;

    out << "6         L1    T0_SHIFT" <<  std::endl;
    out << "7 "<< std::setw( 10 )  ;
    out <<   std::setprecision( 4 ) <<  std::fixed <<  ( l1*100 ) ;
    out << std::setw( 12 ) <<  std::setprecision( 3 ) <<  std::fixed  ;
    // Time offset of 0.00 for now
    out << "0.000" <<  std::endl;


    // ============================== Save .detcal info =========================================
    if (true)
    {
      out <<  "4 DETNUM  NROWS  NCOLS   WIDTH   HEIGHT   DEPTH   DETD   CenterX   CenterY   CenterZ    BaseX    BaseY    BaseZ      UpX      UpY      UpZ"
          <<  std::endl;
      // Here would save each detector...
      std::set<int>::iterator it;
      for (it = uniqueBanks.begin(); it != uniqueBanks.end(); it++)
      {
        // Build up the bank name
        int bank = *it;
        std::ostringstream mess;
        mess << "bank" << bank;
        std::string bankName = mess.str();
        // Retrieve it
        RectangularDetector_const_sptr det = boost::dynamic_pointer_cast<const RectangularDetector>(inst->getComponentByName(bankName));
        if (det)
        {
          // Center of the detector
          V3D center = det->getPos();
          // Distance to center of detector
          double detd = (center - inst->getSample()->getPos()).norm();

          // Base unit vector (along the horizontal, X axis)
          V3D base = det->getAtXY(det->xpixels()-1,0)->getPos() - det->getAtXY(0,0)->getPos();
          base.normalize();
          // Up unit vector (along the vertical, Y axis)
          V3D up = det->getAtXY(0,det->ypixels()-1)->getPos() - det->getAtXY(0,0)->getPos();
          up.normalize();

          // Write the line
          out << "5 "
           << std::setw(6) << std::right << bank << " "
           << std::setw(6) << std::right << det->xpixels() << " "
           << std::setw(6) << std::right << det->ypixels() << " "
           << std::setw(7) << std::right << std::fixed << std::setprecision(4) << 100.0*det->xsize() << " "
           << std::setw(7) << std::right << std::fixed << std::setprecision(4) << 100.0*det->ysize() << " "
           << "  0.2000 "
           << std::setw(6) << std::right << std::fixed << std::setprecision(2) << 100.0*detd << " "
           << std::setw(9) << std::right << std::fixed << std::setprecision(4) << 100.0*center.X() << " "
           << std::setw(9) << std::right << std::fixed << std::setprecision(4) << 100.0*center.Y() << " "
           << std::setw(9) << std::right << std::fixed << std::setprecision(4) << 100.0*center.Z() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << base.X() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << base.Y() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << base.Z() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << up.X() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << up.Y() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << up.Z() << " "
           << std::endl;

        }
      }
    }
    }


    // ============================== Save all Peaks =========================================
    // Sequence number
    int seqNum = 1;

    // Go in order of run numbers
    runMap_t::iterator runMap_it;
    for (runMap_it = runMap.begin(); runMap_it != runMap.end(); runMap_it++)
    {
      // Start of a new run
      int run = runMap_it->first;
      bankMap_t & bankMap = runMap_it->second;

      bankMap_t::iterator bankMap_it;
      for (bankMap_it = bankMap.begin(); bankMap_it != bankMap.end(); bankMap_it++)
      {
        // Start of a new bank.
        int bank = bankMap_it->first;
        std::vector<size_t> & ids = bankMap_it->second;

        if (ids.size() > 0)
        {
          // Write the bank header
          out << "0 NRUN DETNUM    CHI      PHI    OMEGA   MONCNT" << std::endl;
          out <<  "1" <<  std::setw( 5 ) <<  run <<  std::setw( 7 ) <<
              std::right <<  bank;

          // Determine goniometer angles by calculating from the goniometer matrix of a peak in the list
          Goniometer gon(peaks[ids[0]].getGoniometerMatrix());
          std::vector<double> angles = gon.getEulerAngles("yzy");

          double phi = angles[2];
          double chi = angles[1];
          double omega = angles[0];

          out  <<  std::setw( 7 ) <<  std::fixed <<  std::setprecision( 2 )  <<  chi << " ";
          out  <<  std::setw( 7 ) <<  std::fixed <<  std::setprecision( 2 )  <<  phi << " ";
          out  <<  std::setw( 7 ) <<  std::fixed <<  std::setprecision( 2 )  <<  omega << " ";
          out  <<  std::setw( 7 ) <<  (int)( 0 ) <<  std::endl;

          out << header << std::endl;

          // Go through each peak at this run / bank
          for (size_t i=0; i < ids.size(); i++)
          {
            size_t wi = ids[i];
            Peak & p = peaks[wi];

            // Sequence (run) number
            out <<  "3" <<  std::setw( 7 ) << seqNum;

            // HKL is flipped by -1 due to different q convention in ISAW vs mantid.
            out <<  std::setw( 5 ) << Utils::round(-p.getH())
                <<  std::setw( 5 ) << Utils::round(-p.getK())
                <<  std::setw( 5 ) << Utils::round(-p.getL());

            // Row/column
            out <<  std::setw( 8 ) <<  std::fixed << std::setprecision( 2 )
              << static_cast<double>(p.getCol()) << " ";

            out << std::setw( 8 ) << std::fixed << std::setprecision( 2 )
              << static_cast<double>(p.getRow()) << " ";

            out << std::setw( 8 ) << std::fixed << std::setprecision( 0 )
              << p.getTOF() << " ";


            out << std::setw( 9 ) << std::fixed << std::setprecision( 3 )
              << (p.getL2()*100.0) << " ";

            // This is the scattered beam direction
            V3D dir = p.getDetPos() - inst->getSample()->getPos();
            double scattering, azimuth;

            // Two-theta = polar angle = scattering angle = between +Z vector and the scattered beam
            scattering = dir.angle( V3D(0.0, 0.0, 1.0) );

            // "Azimuthal" angle: project the beam onto the XY plane, and measure the angle between that and the +X axis (right-handed)
            azimuth = atan2( dir.Y(), dir.X() );

            out << std::setw( 9 ) << std::fixed << std::setprecision( 5 )
              << scattering << " "; //two-theta scattering

            out << std::setw( 9 ) << std::fixed << std::setprecision( 5 )
              << azimuth << " ";

            out << std::setw( 10 ) << std::fixed << std::setprecision( 6 )
              << p.getWavelength() << " ";

            out << std::setw( 9 ) << std::fixed << std::setprecision( 4 )
              << p.getDSpacing() << " ";

            out << std::setw( 8 ) << std::fixed << int(p.getBinCount()) << std::setw( 10 ) << " "
              << std::fixed << std::setprecision( 2 ) << p.getIntensity() << " ";

            out << std::setw( 7 ) << std::fixed << std::setprecision( 2 )
              << p.getSigmaIntensity() << " ";

            int thisReflag = 310;
            out << std::setw( 5 ) << thisReflag;

            out << std::endl;

            // Count the sequence
            seqNum++;
          }
        }
      }
    }

    out.flush();
    out.close();

//    //REMOVE:
//    std::string line;
//    std::ifstream myfile (filename.c_str());
//    if (myfile.is_open())
//    {
//      while ( myfile.good() )
//      {
//        getline (myfile,line);
//        std::cout << line << std::endl;
//      }
//      myfile.close();
//    }


  }
Example #9
0
void SofQWCentre::exec() {
  using namespace Geometry;

  MatrixWorkspace_const_sptr inputWorkspace = getProperty("InputWorkspace");

  // Do the full check for common binning
  if (!WorkspaceHelpers::commonBoundaries(*inputWorkspace)) {
    g_log.error(
        "The input workspace must have common binning across all spectra");
    throw std::invalid_argument(
        "The input workspace must have common binning across all spectra");
  }

  std::vector<double> verticalAxis;
  MatrixWorkspace_sptr outputWorkspace = setUpOutputWorkspace(
      inputWorkspace, getProperty("QAxisBinning"), verticalAxis);
  setProperty("OutputWorkspace", outputWorkspace);

  // Holds the spectrum-detector mapping
  std::vector<specnum_t> specNumberMapping;
  std::vector<detid_t> detIDMapping;

  m_EmodeProperties.initCachedValues(*inputWorkspace, this);
  int emode = m_EmodeProperties.m_emode;

  // Get a pointer to the instrument contained in the workspace
  Instrument_const_sptr instrument = inputWorkspace->getInstrument();

  // Get the distance between the source and the sample (assume in metres)
  IComponent_const_sptr source = instrument->getSource();
  IComponent_const_sptr sample = instrument->getSample();
  V3D beamDir = sample->getPos() - source->getPos();
  beamDir.normalize();

  try {
    double l1 = source->getDistance(*sample);
    g_log.debug() << "Source-sample distance: " << l1 << '\n';
  } catch (Exception::NotFoundError &) {
    g_log.error("Unable to calculate source-sample distance");
    throw Exception::InstrumentDefinitionError(
        "Unable to calculate source-sample distance",
        inputWorkspace->getTitle());
  }

  // Conversion constant for E->k. k(A^-1) = sqrt(energyToK*E(meV))
  const double energyToK = 8.0 * M_PI * M_PI * PhysicalConstants::NeutronMass *
                           PhysicalConstants::meV * 1e-20 /
                           (PhysicalConstants::h * PhysicalConstants::h);

  // Loop over input workspace bins, reassigning data to correct bin in output
  // qw workspace
  const size_t numHists = inputWorkspace->getNumberHistograms();
  const size_t numBins = inputWorkspace->blocksize();
  Progress prog(this, 0.0, 1.0, numHists);
  for (int64_t i = 0; i < int64_t(numHists); ++i) {
    try {
      // Now get the detector object for this histogram
      IDetector_const_sptr spectrumDet = inputWorkspace->getDetector(i);
      if (spectrumDet->isMonitor())
        continue;

      const double efixed = m_EmodeProperties.getEFixed(*spectrumDet);

      // For inelastic scattering the simple relationship q=4*pi*sinTheta/lambda
      // does not hold. In order to
      // be completely general we must calculate the momentum transfer by
      // calculating the incident and final
      // wave vectors and then use |q| = sqrt[(ki - kf)*(ki - kf)]
      DetectorGroup_const_sptr detGroup =
          boost::dynamic_pointer_cast<const DetectorGroup>(spectrumDet);
      std::vector<IDetector_const_sptr> detectors;
      if (detGroup) {
        detectors = detGroup->getDetectors();
      } else {
        detectors.push_back(spectrumDet);
      }

      const size_t numDets = detectors.size();
      // cache to reduce number of static casts
      const double numDets_d = static_cast<double>(numDets);
      const auto &Y = inputWorkspace->y(i);
      const auto &E = inputWorkspace->e(i);
      const auto &X = inputWorkspace->x(i);

      // Loop over the detectors and for each bin calculate Q
      for (size_t idet = 0; idet < numDets; ++idet) {
        IDetector_const_sptr det = detectors[idet];
        // Calculate kf vector direction and then Q for each energy bin
        V3D scatterDir = (det->getPos() - sample->getPos());
        scatterDir.normalize();
        for (size_t j = 0; j < numBins; ++j) {
          const double deltaE = 0.5 * (X[j] + X[j + 1]);
          // Compute ki and kf wave vectors and therefore q = ki - kf
          double ei(0.0), ef(0.0);
          if (emode == 1) {
            ei = efixed;
            ef = efixed - deltaE;
            if (ef < 0) {
              std::string mess =
                  "Energy transfer requested in Direct mode exceeds incident "
                  "energy.\n Found for det ID: " +
                  std::to_string(idet) + " bin No " + std::to_string(j) +
                  " with Ei=" + boost::lexical_cast<std::string>(efixed) +
                  " and energy transfer: " +
                  boost::lexical_cast<std::string>(deltaE);
              throw std::runtime_error(mess);
            }
          } else {
            ei = efixed + deltaE;
            ef = efixed;
            if (ef < 0) {
              std::string mess =
                  "Incident energy of a neutron is negative. Are you trying to "
                  "process Direct data in Indirect mode?\n Found for det ID: " +
                  std::to_string(idet) + " bin No " + std::to_string(j) +
                  " with efied=" + boost::lexical_cast<std::string>(efixed) +
                  " and energy transfer: " +
                  boost::lexical_cast<std::string>(deltaE);
              throw std::runtime_error(mess);
            }
          }

          if (ei < 0)
            throw std::runtime_error(
                "Negative incident energy. Check binning.");

          const V3D ki = beamDir * sqrt(energyToK * ei);
          const V3D kf = scatterDir * (sqrt(energyToK * (ef)));
          const double q = (ki - kf).norm();

          // Test whether it's in range of the Q axis
          if (q < verticalAxis.front() || q > verticalAxis.back())
            continue;
          // Find which q bin this point lies in
          const MantidVec::difference_type qIndex =
              std::upper_bound(verticalAxis.begin(), verticalAxis.end(), q) -
              verticalAxis.begin() - 1;

          // Add this spectra-detector pair to the mapping
          specNumberMapping.push_back(
              outputWorkspace->getSpectrum(qIndex).getSpectrumNo());
          detIDMapping.push_back(det->getID());

          // And add the data and it's error to that bin, taking into account
          // the number of detectors contributing to this bin
          outputWorkspace->mutableY(qIndex)[j] += Y[j] / numDets_d;
          // Standard error on the average
          outputWorkspace->mutableE(qIndex)[j] =
              sqrt((pow(outputWorkspace->e(qIndex)[j], 2) + pow(E[j], 2)) /
                   numDets_d);
        }
      }

    } catch (Exception::NotFoundError &) {
      // Get to here if exception thrown when calculating distance to detector
      // Presumably, if we get to here the spectrum will be all zeroes anyway
      // (from conversion to E)
      continue;
    }
    prog.report();
  }

  // If the input workspace was a distribution, need to divide by q bin width
  if (inputWorkspace->isDistribution())
    this->makeDistribution(outputWorkspace, verticalAxis);

  // Set the output spectrum-detector mapping
  SpectrumDetectorMapping outputDetectorMap(specNumberMapping, detIDMapping);
  outputWorkspace->updateSpectraUsing(outputDetectorMap);

  // Replace any NaNs in outputWorkspace with zeroes
  if (this->getProperty("ReplaceNaNs")) {
    auto replaceNans = this->createChildAlgorithm("ReplaceSpecialValues");
    replaceNans->setChild(true);
    replaceNans->initialize();
    replaceNans->setProperty("InputWorkspace", outputWorkspace);
    replaceNans->setProperty("OutputWorkspace", outputWorkspace);
    replaceNans->setProperty("NaNValue", 0.0);
    replaceNans->setProperty("InfinityValue", 0.0);
    replaceNans->setProperty("BigNumberThreshold", DBL_MAX);
    replaceNans->execute();
  }
}