Example #1
0
 /// Constructor for cloning e
 CrowdedChess(bool share, CrowdedChess& e)
   : Script(share,e), n(e.n) {
   s.update(*this, share, e.s);
   queens.update(*this, share, e.queens);
   rooks.update(*this, share, e.rooks);
   knights.update(*this, share, e.knights);
 }
Example #2
0
 /// Print solution
 virtual void
 print(std::ostream& os) const {
   bool assigned = true;
   for (int i=0; i<succ.size(); i++) {
     if (!succ[i].assigned()) {
       assigned = false;
       break;
     }
   }
   if (assigned) {
     os << "\tTour: ";
     int i=0;
     do {
       os << i << " -> ";
       i=succ[i].val();
     } while (i != 0);
     os << 0 << std::endl;
     os << "\tCost: " << total << std::endl;
   } else {
     os << "\tTour: " << std::endl;
     for (int i=0; i<succ.size(); i++) {
       os << "\t" << i << " -> " << succ[i] << std::endl;
     }
     os << "\tCost: " << total << std::endl;
   }
 }
Example #3
0
 virtual void print(std::ostream& os) const {
     os << "queens\t";
     for (int i = 0; i < q.size(); i++) {
         os << q[i];
         if ((i+1) % (int)sqrt(q.size()) == 0) {
             os << std::endl << "\t";
         }
     }
     os << std::endl;
 }
 // Constructor for cloning s
 Pandigital(bool share, Pandigital& s) : Script(share,s),
                                         base(s.base) {
   x.update(*this, share, s.x);
   num1.update(*this, share, s.num1);
   num2.update(*this, share, s.num2);
   res.update(*this, share, s.res);
 }
  /// Actual model
  GolombRuler(const SizeOptions& opt)
    : IntMinimizeScript(opt),
      m(*this,opt.size(),0,
        (opt.size() < 31) ? (1 << (opt.size()-1))-1 : Int::Limits::max) {

    // Assume first mark to be zero
    rel(*this, m[0], IRT_EQ, 0);

    // Order marks
    rel(*this, m, IRT_LE);

    // Number of marks and differences
    const int n = m.size();
    const int n_d = (n*n-n)/2;

    // Array of differences
    IntVarArgs d(n_d);

    // Setup difference constraints
    for (int k=0, i=0; i<n-1; i++)
      for (int j=i+1; j<n; j++, k++)
        // d[k] is m[j]-m[i] and must be at least sum of first j-i integers
        rel(*this, d[k] = expr(*this, m[j]-m[i]),
                   IRT_GQ, (j-i)*(j-i+1)/2);

    distinct(*this, d, opt.icl());

    // Symmetry breaking
    if (n > 2)
      rel(*this, d[0], IRT_LE, d[n_d-1]);

    branch(*this, m, INT_VAR_NONE(), INT_VAL_MIN());
  }
 // Constructor for cloning s
 Investments(bool share, Investments& s) : MaximizeScript(share,s) {
   x.update(*this, share, s.x);
   total_persons.update(*this, share, s.total_persons);
   total_budget.update(*this, share, s.total_budget);
   total_projects.update(*this, share, s.total_projects);
   total_values.update(*this, share, s.total_values);
 }
Example #7
0
 /// Print solution
 virtual void
 print(std::ostream& os) const {
   os << "\t";
   for (int i=0; i<x.size(); i++)
     os << "(" << x[i] << "," << y[i] << ") ";
   os << std::endl;
 }
 /// Print solution
 virtual void
 print(std::ostream& os) const {
   const int n = x.size();
   os << "\tx[" << n << "] = {";
   for (int i = 0; i < n-1; i++)
     os << x[i] << "(" << d[i] << "),";
   os << x[n-1] << "}" << std::endl;
 }
Example #9
0
  /// Actual model
  Alpha(const Options& opt) 
    : Script(opt), le(*this,n,1,n) {
    IntVar
      a(le[ 0]), b(le[ 1]), c(le[ 2]), e(le[ 4]), f(le[ 5]),
      g(le[ 6]), h(le[ 7]), i(le[ 8]), j(le[ 9]), k(le[10]),
      l(le[11]), m(le[12]), n(le[13]), o(le[14]), p(le[15]),
      q(le[16]), r(le[17]), s(le[18]), t(le[19]), u(le[20]),
      v(le[21]), w(le[22]), x(le[23]), y(le[24]), z(le[25]);

    rel(*this, b+a+l+l+e+t       == 45,  opt.icl());
    rel(*this, c+e+l+l+o         == 43,  opt.icl());
    rel(*this, c+o+n+c+e+r+t     == 74,  opt.icl());
    rel(*this, f+l+u+t+e         == 30,  opt.icl());
    rel(*this, f+u+g+u+e         == 50,  opt.icl());
    rel(*this, g+l+e+e           == 66,  opt.icl());
    rel(*this, j+a+z+z           == 58,  opt.icl());
    rel(*this, l+y+r+e           == 47,  opt.icl());
    rel(*this, o+b+o+e           == 53,  opt.icl());
    rel(*this, o+p+e+r+a         == 65,  opt.icl());
    rel(*this, p+o+l+k+a         == 59,  opt.icl());
    rel(*this, q+u+a+r+t+e+t     == 50,  opt.icl());
    rel(*this, s+a+x+o+p+h+o+n+e == 134, opt.icl());
    rel(*this, s+c+a+l+e         == 51,  opt.icl());
    rel(*this, s+o+l+o           == 37,  opt.icl());
    rel(*this, s+o+n+g           == 61,  opt.icl());
    rel(*this, s+o+p+r+a+n+o     == 82,  opt.icl());
    rel(*this, t+h+e+m+e         == 72,  opt.icl());
    rel(*this, v+i+o+l+i+n       == 100, opt.icl());
    rel(*this, w+a+l+t+z         == 34,  opt.icl());

    distinct(*this, le, opt.icl());

    switch (opt.branching()) {
    case BRANCH_NONE:
      branch(*this, le, INT_VAR_NONE(), INT_VAL_MIN());
      break;
    case BRANCH_INVERSE:
      branch(*this, le.slice(le.size()-1,-1), INT_VAR_NONE(), INT_VAL_MIN());
      break;
    case BRANCH_SIZE:
      branch(*this, le, INT_VAR_SIZE_MIN(), INT_VAL_MIN());
      break;
    }
  }
Example #10
0
 /// Print solution
 virtual void
 print(std::ostream& os) const {
   os << "\t";
   int a, b;
   a = b = 0;
   for (int i = 0; i < x.size(); i++) {
     a += x[i].val();
     b += x[i].val()*x[i].val();
     os << x[i] << ", ";
   }
   os << " = " << a << ", " << b << std::endl << "\t";
   a = b = 0;
   for (int i = 0; i < y.size(); i++) {
     a += y[i].val();
     b += y[i].val()*y[i].val();
     os << y[i] << ", ";
   }
   os << " = " << a << ", " << b << std::endl;
 }
Example #11
0
void among(Space& space, IntVarArray x, SetVar ss, IntVar a) {
  int n = x.size();

  BoolVarArgs b(space, n, 0, 1);
  for(int i = 0; i < n; i++) {
    rel(space, ss, SRT_SUP, x[i], b[i]);
  }
  rel(space, sum(b) == a);

}
Example #12
0
 /// Print solution
 virtual void
 print(std::ostream& os) const {
   os << "queens\t";
   for (int i = 0; i < q.size(); i++) {
     os << q[i] << ", ";
     if ((i+1) % 10 == 0)
       os << std::endl << "\t";
   }
   os << std::endl;
 }
 /// Print the solution
 virtual void
 print(std::ostream& os) const {
   os << "\tm = " << m << std::endl
      << "\tv[] = {";
   for (int i = 0; i < v.size(); i++) {
     os << v[i] << ", ";
     if ((i+1) % 15 == 0)
       os << std::endl << "\t       ";
   }
   os << "};" << std::endl;
 }
Example #14
0
  /// Actual model
  AllInterval(const SizeOptions& opt) :
    x(*this, opt.size(), 0, opt.size()-1),
    d(*this, opt.size()-1, 1, opt.size()-1) {
    const int n = x.size();

    // Set up variables for distance
    for (int i=0; i<n-1; i++)
      rel(*this, d[i] == abs(x[i+1]-x[i]), opt.icl());

    distinct(*this, x, opt.icl());
    distinct(*this, d, opt.icl());

    // Break mirror symmetry
    rel(*this, x[0], IRT_LE, x[1]);
    // Break symmetry of dual solution
    rel(*this, d[0], IRT_GR, d[n-2]);

    branch(*this, x, INT_VAR_SIZE_MIN(), INT_VAL_SPLIT_MIN());
  }
Example #15
0
  /// Print solution
  virtual void
	print(std::ostream& os) const {
#if 0
		std::ostringstream outputstring1;
#endif
		const int n = x.size();
		os << "\tx[" << n << "] = {";
		outputstring << "(";
		for (int i = 0; i < n-1; i++)
		{
			os << x[i] << "(" << abs(x[i+1].val()-x[i].val()) << "),";
			outputstring << x[i] << " ";
	//			outputstring << x[i] ;
		}
		outputstring  << x[n-1] << ")";
		
		os << x[n-1] << "}" << std::endl;
		
//			  strcpy(result,outputstring.str().c_str());
	}
Example #16
0
 /// The actual problem
 Queens(const SizeOptions& opt)
   : q(*this,opt.size(),0,opt.size()-1) {
   const int n = q.size();
   switch (opt.propagation()) {
   case PROP_BINARY:
     for (int i = 0; i<n; i++)
       for (int j = i+1; j<n; j++) {
         rel(*this, q[i] != q[j]);
         rel(*this, q[i]+i != q[j]+j);
         rel(*this, q[i]-i != q[j]-j);
       }
     break;
   case PROP_MIXED:
     for (int i = 0; i<n; i++)
       for (int j = i+1; j<n; j++) {
         rel(*this, q[i]+i != q[j]+j);
         rel(*this, q[i]-i != q[j]-j);
       }
     distinct(*this, q, opt.icl());
     break;
   case PROP_DISTINCT:
     distinct(*this, IntArgs::create(n,0,1), q, opt.icl());
     distinct(*this, IntArgs::create(n,0,-1), q, opt.icl());
     distinct(*this, q, opt.icl());
     break;
   }
   switch(opt.branching()) {
   case BRANCH_MIN:
       branch(*this, q, INT_VAR_SIZE_MIN(), INT_VAL_MIN());
       break;
   case BRANCH_MID:
     branch(*this, q, INT_VAR_SIZE_MIN(), INT_VAL_MIN());
     break;
   case BRANCH_MAX_MAX:
     branch(*this, q, INT_VAR_SIZE_MAX(), INT_VAL_MIN());
     break;
   case BRANCH_KNIGHT_MOVE:
     branch(*this, q, INT_VAR_MIN_MIN(), INT_VAL_MED());
     break;
   }
 }
Example #17
0
 /// Print solution
 virtual void
 print(std::ostream& os) const {
   os << "\tNumber of Queens: " << q << std::endl;
   os << "\tBoard: " << b << std::endl;
   if (b.assigned()) {
     // Print a nice board
     bool* placed = new bool[n*n];
     for (int i=0; i<n*n; i++)
       placed[i] = false;
     for (int i=0; i<n*n; i++)
       placed[b[i].val()] = true;
     for (int j=0; j<n; j++) {
       std::cout << "\t\t";
       for (int i=0; i<n; i++)
         std::cout << (placed[xy(i,j)] ? 'Q' : '.') << ' ';
       std::cout << std::endl;
     }
     delete [] placed;
   }
   os << std::endl;
 }
  /// Actual model
  AllInterval(const SizeOptions& opt) :
    x(*this, opt.size(), 0, opt.size() - 1) {
    const int n = x.size();

    IntVarArgs d(n-1);

    // Set up variables for distance
    for (int i=0; i<n-1; i++)
      d[i] = expr(*this, abs(x[i+1]-x[i]), opt.icl());

    // Constrain them to be between 1 and n-1
    dom(*this, d, 1, n-1);

    distinct(*this, x, opt.icl());
    distinct(*this, d, opt.icl());

    // Break mirror symmetry
    rel(*this, x[0], IRT_LE, x[1]);
    // Break symmetry of dual solution
    rel(*this, d[0], IRT_GR, d[n-2]);

    branch(*this, x, INT_VAR_SIZE_MIN, INT_VAL_SPLIT_MIN);
  }
Example #19
0
 /// Constructor used during cloning \a s
 Partition(bool share, Partition& s) : Script(share,s) {
   x.update(*this, share, s.x);
   y.update(*this, share, s.y);
 }
Example #20
0
 /// Constructor for cloning \a s
 Photo(bool share, Photo& s) :
   IntMinimizeScript(share,s), spec(s.spec) {
   pos.update(*this, share, s.pos);
   violations.update(*this, share, s.violations);
 }
Example #21
0
 /// Constructor for cloning \a s
 Kakuro(bool share, Kakuro& s) : Script(share,s), w(s.w), h(s.h) {
   f.update(*this, share, s.f);
 }
Example #22
0
 /// Constructor for cloning \a s
 WordSquare(bool share, WordSquare& s) 
   : Script(share,s), w_l(s.w_l) {
   letters.update(*this, share, s.letters);
 }
Example #23
0
  /// Constructor for cloning \a l
  LangfordNumber(bool share, LangfordNumber& l)
    : Script(share, l), k(l.k), n(l.n) {
    y.update(*this, share, l.y);

  }
Example #24
0
  /// Actual model
  AllInterval(const SizeOptions& opt) :
  	Script(opt),
    x(*this, opt.size(), 0, 66) { // 66 or opt.size() - 1
		const int n = x.size();
		
		IntVarArgs d(n-1);
		IntVarArgs dd(66);
		IntVarArgs xx_(n); // pitch class for AllInterval Chords 
		IntVar douze;
        Rnd r(1U);
		
	if ((opt.model() == MODEL_SET) || (opt.model() == MODEL_SET_CHORD) || (opt.model() == MODEL_SSET_CHORD) ||(opt.model() == MODEL_SYMMETRIC_SET)) // Modele original : serie
		{
			// Set up variables for distance
			for (int i=0; i<n-1; i++)
				d[i] = expr(*this, abs(x[i+1]-x[i]), opt.ipl());
			
			// Constrain them to be between 1 and n-1
			dom(*this, d, 1, n-1); 
			dom(*this, x, 0, n-1); 
			
			if((opt.model() == MODEL_SET_CHORD) || (opt.model() == MODEL_SSET_CHORD))
			{
				/*expr(*this,dd[0]==0);
				// Set up variables for distance
				for (int i=0; i<n-1; i++)
				{
					 expr(*this, dd[i+1] == (dd[i]+d[i])%12, opt.icl());
				}
				
				// Constrain them to be between 1 and n-1
				dom(*this, dd,0, n-1); 
				distinct(*this, dd, opt.icl());
				 */
				
				rel(*this, abs(x[0]-x[n-1]) == 6, opt.ipl());
				
				
			}
		 
			
			if(opt.symmetry())
			{
				// Break mirror symmetry (renversement)
				rel(*this, x[0], IRT_LE, x[1]);
				// Break symmetry of dual solution (retrograde de la serie) -> 1928 solutions pour accords de 12 sons
				rel(*this, d[0], IRT_GR, d[n-2]);
			}
			//series symetriques
			if ((opt.model() == MODEL_SYMMETRIC_SET)|| (opt.model() == MODEL_SSET_CHORD))
			{
				rel (*this, d[n/2 - 1] == 6); // pivot = triton
				for (int i=0; i<(n/2)-2; i++)
					rel(*this,d[i]+d[n-i-2]==12);
			}
		}
				
else 			
		{
			for (int j=0; j<n; j++)
				xx_[j] = expr(*this, x[j] % 12);
			
			dom(*this, xx_, 0, 11);
			distinct(*this, xx_, opt.ipl());
			
			//intervalles
			for (int i=0; i<n-1; i++)
				d[i] =  expr(*this,x[i+1] - x[i],opt.ipl());
			dom(*this, d, 1, n-1); 
			
			
			dom(*this, x, 0, n * (n - 1) / 2.); 
			
			//d'autres choses dont on est certain (contraintes redondantes) :
			
			rel(*this, x[0] == 0);
			rel(*this, x[n-1] ==  n * (n - 1) / 2.);
			
			//  break symmetry of dual solution (renversement de l'accord) 
			if(opt.symmetry())
				rel(*this, d[0], IRT_GR, d[n-2]);
			
			//accords symetriques
			if (opt.model() == MODEL_SYMMETRIC_CHORD)
			{
				rel (*this, d[n/2 - 1] == 6); // pivot = triton
				for (int i=0; i<(n/2)-2; i++)
					rel(*this,d[i]+d[n-i-2]==12);
			}
			if (opt.model() == MODEL_PARALLEL_CHORD)
			{
				rel (*this, d[n/2 - 1] == 6); // pivot = triton
				for (int i=0; i<(n/2)-2; i++)
					rel(*this,d[i]+d[n/2 + i]==12);
			}
		}

		distinct(*this, x, opt.ipl());
		distinct(*this, d, opt.ipl());
#if 0		
		//TEST
		IntVarArray counter(*this,12,0,250);
		IntVar testcounter(*this,0,250);
		
		for (int i=1; i<11; i++) {
			count(*this, d, i,IRT_EQ,testcounter,opt.icl()); // OK
		}
		
		count(*this, d, counter,opt.icl()); // OK
#endif
		//END TEST
		
		if(opt.branching() == 0)
			branch(*this, x, INT_VAR_SIZE_MIN(), INT_VAL_SPLIT_MIN());
		else 
			branch(*this, x, INT_VAR_RND(r), INT_VAL_RND(r));		
	}
Example #25
0
 /// Constructor for cloning \a s
 Donald(bool share, Donald& s) : Script(share,s) {
   le.update(*this, share, s.le);
 }
Example #26
0
 /// Constructor for cloning \a e
 AllInterval(AllInterval& e)
   : Script(e) {
   x.update(*this, e.x);
 }
 // Constructor for cloning s
 Speakers(bool share, Speakers& s) : Script(share,s) {
   x.update(*this, share, s.x);
 }
 /// Constructor for cloning \a s
 GraphColor(bool share, GraphColor& s) : IntMinimizeScript(share,s), g(s.g) {
   v.update(*this, share, s.v);
   m.update(*this, share, s.m);
 }
Example #29
0
 /// Constructor for cloning \a s
 OrthoLatinSquare(bool share, OrthoLatinSquare& s)
   : Script(share,s), n(s.n) {
     x1.update(*this, share, s.x1);
     x2.update(*this, share, s.x2);
 }
Example #30
0
 SquarePacking(bool share, SquarePacking& sp) : Script(share, sp) {
     x.update(*this, share, sp.x);
     y.update(*this, share, sp.y);
     s.update(*this, share, sp.s);
 }