Example #1
0
int Jacobi(const Integer &aIn, const Integer &bIn)
{
	assert(bIn.IsOdd());

	Integer b = bIn, a = aIn%bIn;
	int result = 1;

	while (!!a)
	{
		unsigned i=0;
		while (a.GetBit(i)==0)
			i++;
		a>>=i;

		if (i%2==1 && (b%8==3 || b%8==5))
			result = -result;

		if (a%4==3 && b%4==3)
			result = -result;

		std::swap(a, b);
		a %= b;
	}

	return (b==1) ? result : 0;
}
Example #2
0
Integer InvertibleRabinFunction::CalculateInverse(const Integer &in) const
{
	DoQuickSanityCheck();

	Integer cp=in%m_p, cq=in%m_q;

	int jp = Jacobi(cp, m_p);
	int jq = Jacobi(cq, m_q);

	if (jq==-1)
	{
		cp = cp*EuclideanMultiplicativeInverse(m_r, m_p)%m_p;
		cq = cq*EuclideanMultiplicativeInverse(m_r, m_q)%m_q;
	}

	if (jp==-1)
	{
		cp = cp*EuclideanMultiplicativeInverse(m_s, m_p)%m_p;
		cq = cq*EuclideanMultiplicativeInverse(m_s, m_q)%m_q;
	}

	cp = ModularSquareRoot(cp, m_p);
	cq = ModularSquareRoot(cq, m_q);

	if (jp==-1)
		cp = m_p-cp;

	Integer out = CRT(cq, m_q, cp, m_p, m_u);

	if ((jq==-1 && out.IsEven()) || (jq==1 && out.IsOdd()))
		out = m_n-out;

	return out;
}
Example #3
0
Integer InvertibleRabinFunction::CalculateInverse(const Integer &in) const
{
	Integer cp=in%p, cq=in%q;

	int jp = Jacobi(cp, p);
	int jq = Jacobi(cq, q);

	if (jq==-1)
	{
		cp = cp*EuclideanMultiplicativeInverse(r, p)%p;
		cq = cq*EuclideanMultiplicativeInverse(r, q)%q;
	}

	if (jp==-1)
	{
		cp = cp*EuclideanMultiplicativeInverse(s, p)%p;
		cq = cq*EuclideanMultiplicativeInverse(s, q)%q;
	}

	cp = ModularSquareRoot(cp, p);
	cq = ModularSquareRoot(cq, q);

	if (jp==-1)
		cp = p-cp;

	Integer out = CRT(cq, q, cp, p, u);

	if ((jq==-1 && out.IsEven()) || (jq==1 && out.IsOdd()))
		out = n-out;

	return out;
}
Example #4
0
File: ecp.cpp Project: mentat/nnim
bool ECP::ValidateParameters(RandomNumberGenerator &rng) const
{
	Integer p = FieldSize();
	return p.IsOdd() && VerifyPrime(rng, p)
		&& !m_a.IsNegative() && m_a<p && !m_b.IsNegative() && m_b<p
		&& ((4*m_a*m_a*m_a+27*m_b*m_b)%p).IsPositive();
}
Example #5
0
Integer RabinFunction::ApplyFunction(const Integer &in) const
{
	Integer out = in.Squared()%n;
	if (in.IsOdd())
		out = out*r%n;
	if (Jacobi(in, n)==-1)
		out = out*s%n;
	return out;
}
Example #6
0
Integer RabinFunction::ApplyFunction(const Integer &in) const
{
	DoQuickSanityCheck();

	Integer out = in.Squared()%m_n;
	if (in.IsOdd())
		out = out*m_r%m_n;
	if (Jacobi(in, m_n)==-1)
		out = out*m_s%m_n;
	return out;
}
Example #7
0
bool ECP::ValidateParameters(RandomNumberGenerator &rng, unsigned int level) const
{
	Integer p = FieldSize();

	bool pass = p.IsOdd();
	pass = pass && !m_a.IsNegative() && m_a<p && !m_b.IsNegative() && m_b<p;

	if (level >= 1)
		pass = pass && ((4*m_a*m_a*m_a+27*m_b*m_b)%p).IsPositive();

	if (level >= 2)
		pass = pass && VerifyPrime(rng, p);

	return pass;
}
Example #8
0
Integer InvertibleRabinFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &in) const
{
	DoQuickSanityCheck();

	ModularArithmetic modn(m_n);
	Integer r(rng, Integer::One(), m_n - Integer::One());
	r = modn.Square(r);
	Integer r2 = modn.Square(r);
	Integer c = modn.Multiply(in, r2);		// blind

	Integer cp=c%m_p, cq=c%m_q;

	int jp = Jacobi(cp, m_p);
	int jq = Jacobi(cq, m_q);

	if (jq==-1)
	{
		cp = cp*EuclideanMultiplicativeInverse(m_r, m_p)%m_p;
		cq = cq*EuclideanMultiplicativeInverse(m_r, m_q)%m_q;
	}

	if (jp==-1)
	{
		cp = cp*EuclideanMultiplicativeInverse(m_s, m_p)%m_p;
		cq = cq*EuclideanMultiplicativeInverse(m_s, m_q)%m_q;
	}

	cp = ModularSquareRoot(cp, m_p);
	cq = ModularSquareRoot(cq, m_q);

	if (jp==-1)
		cp = m_p-cp;

	Integer out = CRT(cq, m_q, cp, m_p, m_u);

	out = modn.Divide(out, r);	// unblind

	if ((jq==-1 && out.IsEven()) || (jq==1 && out.IsOdd()))
		out = m_n-out;

	return out;
}
Example #9
0
bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod)
{
	assert(!equiv.IsNegative() && equiv < mod);

	Integer gcd = GCD(equiv, mod);
	if (gcd != Integer::One())
	{
		// the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
		if (p <= gcd && gcd <= max && IsPrime(gcd))
		{
			p = gcd;
			return true;
		}
		else
			return false;
	}

	BuildPrimeTable();

	if (p <= primeTable[primeTableSize-1])
	{
		word *pItr;

		--p;
		if (p.IsPositive())
			pItr = std::upper_bound(primeTable, primeTable+primeTableSize, p.ConvertToLong());
		else
			pItr = primeTable;

		while (pItr < primeTable+primeTableSize && *pItr%mod != equiv)
			++pItr;

		if (pItr < primeTable+primeTableSize)
		{
			p = *pItr;
			return p <= max;
		}

		p = primeTable[primeTableSize-1]+1;
	}

	assert(p > primeTable[primeTableSize-1]);

	if (mod.IsOdd())
		return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1);

	p += (equiv-p)%mod;

	if (p>max)
		return false;

	PrimeSieve sieve(p, max, mod);

	while (sieve.NextCandidate(p))
	{
		if (FastProbablePrimeTest(p) && IsPrime(p))
			return true;
	}

	return false;
}
Example #10
0
bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
{
	assert(!equiv.IsNegative() && equiv < mod);

	Integer gcd = GCD(equiv, mod);
	if (gcd != Integer::One())
	{
		// the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
		if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
		{
			p = gcd;
			return true;
		}
		else
			return false;
	}

	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	if (p <= primeTable[primeTableSize-1])
	{
		const word16 *pItr;

		--p;
		if (p.IsPositive())
			pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
		else
			pItr = primeTable;

		while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
			++pItr;

		if (pItr < primeTable+primeTableSize)
		{
			p = *pItr;
			return p <= max;
		}

		p = primeTable[primeTableSize-1]+1;
	}

	assert(p > primeTable[primeTableSize-1]);

	if (mod.IsOdd())
		return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);

	p += (equiv-p)%mod;

	if (p>max)
		return false;

	PrimeSieve sieve(p, max, mod);

	while (sieve.NextCandidate(p))
	{
		if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
			return true;
	}

	return false;
}