Example #1
0
void
JSONSpewer::spewLIR(MIRGraph *mir)
{
    if (!fp_)
        return;

    beginObjectProperty("lir");
    beginListProperty("blocks");

    for (MBasicBlockIterator i(mir->begin()); i != mir->end(); i++) {
        LBlock *block = i->lir();
        if (!block)
            continue;

        beginObject();
        integerProperty("number", i->id());

        beginListProperty("instructions");
        for (size_t p = 0; p < block->numPhis(); p++)
            spewLIns(block->getPhi(p));
        for (LInstructionIterator ins(block->begin()); ins != block->end(); ins++)
            spewLIns(*ins);
        endList();

        endObject();
    }

    endList();
    endObject();
}
bool
RegisterAllocator::init()
{
    if (!insData.init(mir, graph.numInstructions()))
        return false;

    if (!entryPositions.reserve(graph.numBlocks()) || !exitPositions.reserve(graph.numBlocks()))
        return false;

    for (size_t i = 0; i < graph.numBlocks(); i++) {
        LBlock* block = graph.getBlock(i);
        for (LInstructionIterator ins = block->begin(); ins != block->end(); ins++)
            insData[ins->id()] = *ins;
        for (size_t j = 0; j < block->numPhis(); j++) {
            LPhi* phi = block->getPhi(j);
            insData[phi->id()] = phi;
        }

        CodePosition entry = block->numPhis() != 0
                             ? CodePosition(block->getPhi(0)->id(), CodePosition::INPUT)
                             : inputOf(block->firstInstructionWithId());
        CodePosition exit = outputOf(block->lastInstructionWithId());

        MOZ_ASSERT(block->mir()->id() == i);
        entryPositions.infallibleAppend(entry);
        exitPositions.infallibleAppend(exit);
    }

    return true;
}
void
JSONSpewer::spewIntervals(LinearScanAllocator *regalloc)
{
    if (!fp_)
        return;

    beginObjectProperty("intervals");
    beginListProperty("blocks");

    for (size_t bno = 0; bno < regalloc->graph.numBlocks(); bno++) {
        beginObject();
        integerProperty("number", bno);
        beginListProperty("vregs");

        LBlock *lir = regalloc->graph.getBlock(bno);
        for (LInstructionIterator ins = lir->begin(); ins != lir->end(); ins++) {
            for (size_t k = 0; k < ins->numDefs(); k++) {
                VirtualRegister *vreg = &regalloc->vregs[ins->getDef(k)->virtualRegister()];

                beginObject();
                integerProperty("vreg", vreg->reg());
                beginListProperty("intervals");

                for (size_t i = 0; i < vreg->numIntervals(); i++) {
                    LiveInterval *live = vreg->getInterval(i);

                    if (live->numRanges()) {
                        beginObject();
                        property("allocation");
                        fprintf(fp_, "\"");
                        LAllocation::PrintAllocation(fp_, live->getAllocation());
                        fprintf(fp_, "\"");
                        beginListProperty("ranges");

                        for (size_t j = 0; j < live->numRanges(); j++) {
                            beginObject();
                            integerProperty("start", live->getRange(j)->from.pos());
                            integerProperty("end", live->getRange(j)->to.pos());
                            endObject();
                        }

                        endList();
                        endObject();
                    }
                }

                endList();
                endObject();
            }
        }

        endList();
        endObject();
    }

    endList();
    endObject();
}
bool
LiveRangeAllocator<VREG>::init()
{
    if (!RegisterAllocator::init())
        return false;

    liveIn = lir->mir()->allocate<BitSet*>(graph.numBlockIds());
    if (!liveIn)
        return false;

    // Initialize fixed intervals.
    for (size_t i = 0; i < AnyRegister::Total; i++) {
        AnyRegister reg = AnyRegister::FromCode(i);
        LiveInterval *interval = new LiveInterval(0);
        interval->setAllocation(LAllocation(reg));
        fixedIntervals[i] = interval;
    }

    fixedIntervalsUnion = new LiveInterval(0);

    if (!vregs.init(lir->mir(), graph.numVirtualRegisters()))
        return false;

    // Build virtual register objects
    for (size_t i = 0; i < graph.numBlocks(); i++) {
        if (mir->shouldCancel("LSRA create data structures (main loop)"))
            return false;

        LBlock *block = graph.getBlock(i);
        for (LInstructionIterator ins = block->begin(); ins != block->end(); ins++) {
            for (size_t j = 0; j < ins->numDefs(); j++) {
                LDefinition *def = ins->getDef(j);
                if (def->policy() != LDefinition::PASSTHROUGH) {
                    uint32_t reg = def->virtualRegister();
                    if (!vregs[reg].init(reg, block, *ins, def, /* isTemp */ false))
                        return false;
                }
            }

            for (size_t j = 0; j < ins->numTemps(); j++) {
                LDefinition *def = ins->getTemp(j);
                if (def->isBogusTemp())
                    continue;
                if (!vregs[def].init(def->virtualRegister(), block, *ins, def, /* isTemp */ true))
                    return false;
            }
        }
        for (size_t j = 0; j < block->numPhis(); j++) {
            LPhi *phi = block->getPhi(j);
            LDefinition *def = phi->getDef(0);
            if (!vregs[def].init(phi->id(), block, phi, def, /* isTemp */ false))
                return false;
        }
    }

    return true;
}
Example #5
0
void
C1Spewer::spewIntervals(FILE *fp, MBasicBlock *block, LinearScanAllocator *regalloc, size_t &nextId)
{
    LBlock *lir = block->lir();
    if (!lir)
        return;

    for (size_t i = 0; i < lir->numPhis(); i++)
        spewIntervals(fp, regalloc, lir->getPhi(i), nextId);

    for (LInstructionIterator ins = lir->begin(); ins != lir->end(); ins++)
        spewIntervals(fp, regalloc, *ins, nextId);
}
Example #6
0
void
C1Spewer::spewRanges(GenericPrinter& out, MBasicBlock* block, BacktrackingAllocator* regalloc)
{
    LBlock* lir = block->lir();
    if (!lir)
        return;

    for (size_t i = 0; i < lir->numPhis(); i++)
        spewRanges(out, regalloc, lir->getPhi(i));

    for (LInstructionIterator ins = lir->begin(); ins != lir->end(); ins++)
        spewRanges(out, regalloc, *ins);
}
Example #7
0
bool
StupidAllocator::init()
{
    if (!RegisterAllocator::init())
        return false;

    if (!virtualRegisters.reserve(graph.numVirtualRegisters()))
        return false;
    for (size_t i = 0; i < graph.numVirtualRegisters(); i++)
        virtualRegisters.infallibleAppend(NULL);

    for (size_t i = 0; i < graph.numBlocks(); i++) {
        LBlock *block = graph.getBlock(i);
        for (LInstructionIterator ins = block->begin(); ins != block->end(); ins++) {
            for (size_t j = 0; j < ins->numDefs(); j++) {
                LDefinition *def = ins->getDef(j);
                if (def->policy() != LDefinition::PASSTHROUGH)
                    virtualRegisters[def->virtualRegister()] = def;
            }

            for (size_t j = 0; j < ins->numTemps(); j++) {
                LDefinition *def = ins->getTemp(j);
                if (def->isBogusTemp())
                    continue;
                virtualRegisters[def->virtualRegister()] = def;
            }
        }
        for (size_t j = 0; j < block->numPhis(); j++) {
            LPhi *phi = block->getPhi(j);
            LDefinition *def = phi->getDef(0);
            uint32 vreg = def->virtualRegister();

            virtualRegisters[vreg] = def;
        }
    }

    // Assign physical registers to the tracked allocation.
    {
        registerCount = 0;
        RegisterSet remainingRegisters(allRegisters_);
        while (!remainingRegisters.empty(/* float = */ false))
            registers[registerCount++].reg = AnyRegister(remainingRegisters.takeGeneral());
        while (!remainingRegisters.empty(/* float = */ true))
            registers[registerCount++].reg = AnyRegister(remainingRegisters.takeFloat());
        JS_ASSERT(registerCount <= MAX_REGISTERS);
    }

    return true;
}
Example #8
0
bool
StupidAllocator::init()
{
    if (!RegisterAllocator::init())
        return false;

    if (!virtualRegisters.appendN((LDefinition*)nullptr, graph.numVirtualRegisters()))
        return false;

    for (size_t i = 0; i < graph.numBlocks(); i++) {
        LBlock* block = graph.getBlock(i);
        for (LInstructionIterator ins = block->begin(); ins != block->end(); ins++) {
            for (size_t j = 0; j < ins->numDefs(); j++) {
                LDefinition* def = ins->getDef(j);
                virtualRegisters[def->virtualRegister()] = def;
            }

            for (size_t j = 0; j < ins->numTemps(); j++) {
                LDefinition* def = ins->getTemp(j);
                if (def->isBogusTemp())
                    continue;
                virtualRegisters[def->virtualRegister()] = def;
            }
        }
        for (size_t j = 0; j < block->numPhis(); j++) {
            LPhi* phi = block->getPhi(j);
            LDefinition* def = phi->getDef(0);
            uint32_t vreg = def->virtualRegister();

            virtualRegisters[vreg] = def;
        }
    }

    // Assign physical registers to the tracked allocation.
    {
        registerCount = 0;
        LiveRegisterSet remainingRegisters(allRegisters_.asLiveSet());
        while (!remainingRegisters.emptyGeneral())
            registers[registerCount++].reg = AnyRegister(remainingRegisters.takeAnyGeneral());

        while (!remainingRegisters.emptyFloat())
            registers[registerCount++].reg = AnyRegister(remainingRegisters.takeAnyFloat());

        MOZ_ASSERT(registerCount <= MAX_REGISTERS);
    }

    return true;
}
Example #9
0
void
JSONSpewer::spewRanges(BacktrackingAllocator* regalloc)
{
    if (!fp_)
        return;

    beginObjectProperty("ranges");
    beginListProperty("blocks");

    for (size_t bno = 0; bno < regalloc->graph.numBlocks(); bno++) {
        beginObject();
        integerProperty("number", bno);
        beginListProperty("vregs");

        LBlock* lir = regalloc->graph.getBlock(bno);
        for (LInstructionIterator ins = lir->begin(); ins != lir->end(); ins++) {
            for (size_t k = 0; k < ins->numDefs(); k++) {
                uint32_t id = ins->getDef(k)->virtualRegister();
                VirtualRegister* vreg = &regalloc->vregs[id];

                beginObject();
                integerProperty("vreg", id);
                beginListProperty("ranges");

                for (LiveRange::RegisterLinkIterator iter = vreg->rangesBegin(); iter; iter++) {
                    LiveRange* range = LiveRange::get(*iter);

                    beginObject();
                    property("allocation");
                    fprintf(fp_, "\"%s\"", range->bundle()->allocation().toString());
                    integerProperty("start", range->from().bits());
                    integerProperty("end", range->to().bits());
                    endObject();
                }

                endList();
                endObject();
            }
        }

        endList();
        endObject();
    }

    endList();
    endObject();
}
Example #10
0
bool
RegisterAllocator::init()
{
    if (!insData.init(mir, graph.numInstructions()))
        return false;

    for (size_t i = 0; i < graph.numBlocks(); i++) {
        LBlock* block = graph.getBlock(i);
        for (LInstructionIterator ins = block->begin(); ins != block->end(); ins++)
            insData[ins->id()] = *ins;
        for (size_t j = 0; j < block->numPhis(); j++) {
            LPhi* phi = block->getPhi(j);
            insData[phi->id()] = phi;
        }
    }

    return true;
}
Example #11
0
bool
RegisterAllocator::init()
{
    if (!insData.init(lir->mir(), graph.numInstructions()))
        return false;

    for (size_t i = 0; i < graph.numBlocks(); i++) {
        LBlock *block = graph.getBlock(i);
        for (LInstructionIterator ins = block->begin(); ins != block->end(); ins++)
            insData[*ins].init(*ins, block);
        for (size_t j = 0; j < block->numPhis(); j++) {
            LPhi *phi = block->getPhi(j);
            insData[phi].init(phi, block);
        }
    }

    return true;
}
bool
StupidAllocator::go()
{
    // This register allocator is intended to be as simple as possible, while
    // still being complicated enough to share properties with more complicated
    // allocators. Namely, physical registers may be used to carry virtual
    // registers across LIR instructions, but not across basic blocks.
    //
    // This algorithm does not pay any attention to liveness. It is performed
    // as a single forward pass through the basic blocks in the program. As
    // virtual registers and temporaries are defined they are assigned physical
    // registers, evicting existing allocations in an LRU fashion.

    // For virtual registers not carried in a register, a canonical spill
    // location is used. Each vreg has a different spill location; since we do
    // not track liveness we cannot determine that two vregs have disjoint
    // lifetimes. Thus, the maximum stack height is the number of vregs (scaled
    // by two on 32 bit platforms to allow storing double values).
    graph.setLocalSlotCount(DefaultStackSlot(graph.numVirtualRegisters() - 1) + 1);

    if (!init())
        return false;

    for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
        LBlock *block = graph.getBlock(blockIndex);
        JS_ASSERT(block->mir()->id() == blockIndex);

        for (size_t i = 0; i < registerCount; i++)
            registers[i].set(MISSING_ALLOCATION);

        for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
            LInstruction *ins = *iter;

            if (ins == *block->rbegin())
                syncForBlockEnd(block, ins);

            allocateForInstruction(ins);
        }
    }

    return true;
}
// Scan all instructions inside the loop. If any instruction has a use of a
// definition that is defined outside its containing loop, then stack space
// for that definition must be reserved ahead of time. Otherwise, we could
// re-use storage that has been temporarily allocated - see bug 694481.
bool
GreedyAllocator::findLoopCarriedUses(LBlock *backedge)
{
    Vector<LBlock *, 4, SystemAllocPolicy> worklist;
    MBasicBlock *mheader = backedge->mir()->loopHeaderOfBackedge();
    uint32 upperBound = backedge->lastId();
    uint32 lowerBound = mheader->lir()->firstId();

    IonSpew(IonSpew_RegAlloc, "  Finding loop-carried uses.");

    for (size_t i = 0; i < mheader->numContainedInLoop(); i++) {
        LBlock *block = mheader->getContainedInLoop(i)->lir();

        for (LInstructionIterator i = block->begin(); i != block->end(); i++)
            findLoopCarriedUses(*i, lowerBound, upperBound);
        for (size_t i = 0; i < block->numPhis(); i++)
            findLoopCarriedUses(block->getPhi(i), lowerBound, upperBound);
    }

    IonSpew(IonSpew_RegAlloc, "  Done finding loop-carried uses.");

    return true;
}
Example #14
0
bool
AllocationIntegrityState::check(bool populateSafepoints)
{
    MOZ_ASSERT(!instructions.empty());

#ifdef DEBUG
    if (JitSpewEnabled(JitSpew_RegAlloc))
        dump();

    for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
        LBlock* block = graph.getBlock(blockIndex);

        // Check that all instruction inputs and outputs have been assigned an allocation.
        for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
            LInstruction* ins = *iter;

            for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next())
                MOZ_ASSERT(!alloc->isUse());

            for (size_t i = 0; i < ins->numDefs(); i++) {
                LDefinition* def = ins->getDef(i);
                MOZ_ASSERT(!def->output()->isUse());

                LDefinition oldDef = instructions[ins->id()].outputs[i];
                MOZ_ASSERT_IF(oldDef.policy() == LDefinition::MUST_REUSE_INPUT,
                              *def->output() == *ins->getOperand(oldDef.getReusedInput()));
            }

            for (size_t i = 0; i < ins->numTemps(); i++) {
                LDefinition* temp = ins->getTemp(i);
                MOZ_ASSERT_IF(!temp->isBogusTemp(), temp->output()->isRegister());

                LDefinition oldTemp = instructions[ins->id()].temps[i];
                MOZ_ASSERT_IF(oldTemp.policy() == LDefinition::MUST_REUSE_INPUT,
                              *temp->output() == *ins->getOperand(oldTemp.getReusedInput()));
            }
        }
    }
#endif

    // Check that the register assignment and move groups preserve the original
    // semantics of the virtual registers. Each virtual register has a single
    // write (owing to the SSA representation), but the allocation may move the
    // written value around between registers and memory locations along
    // different paths through the script.
    //
    // For each use of an allocation, follow the physical value which is read
    // backward through the script, along all paths to the value's virtual
    // register's definition.
    for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
        LBlock* block = graph.getBlock(blockIndex);
        for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
            LInstruction* ins = *iter;
            const InstructionInfo& info = instructions[ins->id()];

            LSafepoint* safepoint = ins->safepoint();
            if (safepoint) {
                for (size_t i = 0; i < ins->numTemps(); i++) {
                    if (ins->getTemp(i)->isBogusTemp())
                        continue;
                    uint32_t vreg = info.temps[i].virtualRegister();
                    LAllocation* alloc = ins->getTemp(i)->output();
                    if (!checkSafepointAllocation(ins, vreg, *alloc, populateSafepoints))
                        return false;
                }
                MOZ_ASSERT_IF(ins->isCall() && !populateSafepoints,
                              safepoint->liveRegs().emptyFloat() &&
                              safepoint->liveRegs().emptyGeneral());
            }

            size_t inputIndex = 0;
            for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) {
                LAllocation oldInput = info.inputs[inputIndex++];
                if (!oldInput.isUse())
                    continue;

                uint32_t vreg = oldInput.toUse()->virtualRegister();

                if (safepoint && !oldInput.toUse()->usedAtStart()) {
                    if (!checkSafepointAllocation(ins, vreg, **alloc, populateSafepoints))
                        return false;
                }

                // Start checking at the previous instruction, in case this
                // instruction reuses its input register for an output.
                LInstructionReverseIterator riter = block->rbegin(ins);
                riter++;
                checkIntegrity(block, *riter, vreg, **alloc, populateSafepoints);

                while (!worklist.empty()) {
                    IntegrityItem item = worklist.popCopy();
                    checkIntegrity(item.block, *item.block->rbegin(), item.vreg, item.alloc, populateSafepoints);
                }
            }
        }
    }

    return true;
}
Example #15
0
void
RegisterAllocator::dumpInstructions()
{
#ifdef DEBUG
    fprintf(stderr, "Instructions:\n");

    for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
        LBlock* block = graph.getBlock(blockIndex);
        MBasicBlock* mir = block->mir();

        fprintf(stderr, "\nBlock %lu", static_cast<unsigned long>(blockIndex));
        for (size_t i = 0; i < mir->numSuccessors(); i++)
            fprintf(stderr, " [successor %u]", mir->getSuccessor(i)->id());
        fprintf(stderr, "\n");

        for (size_t i = 0; i < block->numPhis(); i++) {
            LPhi* phi = block->getPhi(i);

            fprintf(stderr, "[%u,%u Phi] [def %s]",
                    inputOf(phi).bits(),
                    outputOf(phi).bits(),
                    phi->getDef(0)->toString());
            for (size_t j = 0; j < phi->numOperands(); j++)
                fprintf(stderr, " [use %s]", phi->getOperand(j)->toString());
            fprintf(stderr, "\n");
        }

        for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
            LInstruction* ins = *iter;

            fprintf(stderr, "[");
            if (ins->id() != 0)
                fprintf(stderr, "%u,%u ", inputOf(ins).bits(), outputOf(ins).bits());
            fprintf(stderr, "%s]", ins->opName());

            if (ins->isMoveGroup()) {
                LMoveGroup* group = ins->toMoveGroup();
                for (int i = group->numMoves() - 1; i >= 0; i--) {
                    // Use two printfs, as LAllocation::toString is not reentant.
                    fprintf(stderr, " [%s", group->getMove(i).from()->toString());
                    fprintf(stderr, " -> %s]", group->getMove(i).to()->toString());
                }
                fprintf(stderr, "\n");
                continue;
            }

            for (size_t i = 0; i < ins->numDefs(); i++)
                fprintf(stderr, " [def %s]", ins->getDef(i)->toString());

            for (size_t i = 0; i < ins->numTemps(); i++) {
                LDefinition* temp = ins->getTemp(i);
                if (!temp->isBogusTemp())
                    fprintf(stderr, " [temp %s]", temp->toString());
            }

            for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) {
                if (!alloc->isBogus())
                    fprintf(stderr, " [use %s]", alloc->toString());
            }

            fprintf(stderr, "\n");
        }
    }
    fprintf(stderr, "\n");
#endif // DEBUG
}
Example #16
0
void
AllocationIntegrityState::dump()
{
#ifdef DEBUG
    fprintf(stderr, "Register Allocation Integrity State:\n");

    for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
        LBlock* block = graph.getBlock(blockIndex);
        MBasicBlock* mir = block->mir();

        fprintf(stderr, "\nBlock %lu", static_cast<unsigned long>(blockIndex));
        for (size_t i = 0; i < mir->numSuccessors(); i++)
            fprintf(stderr, " [successor %u]", mir->getSuccessor(i)->id());
        fprintf(stderr, "\n");

        for (size_t i = 0; i < block->numPhis(); i++) {
            const InstructionInfo& info = blocks[blockIndex].phis[i];
            LPhi* phi = block->getPhi(i);
            CodePosition input(block->getPhi(0)->id(), CodePosition::INPUT);
            CodePosition output(block->getPhi(block->numPhis() - 1)->id(), CodePosition::OUTPUT);

            fprintf(stderr, "[%u,%u Phi] [def %s] ",
                    input.bits(),
                    output.bits(),
                    phi->getDef(0)->toString());
            for (size_t j = 0; j < phi->numOperands(); j++)
                fprintf(stderr, " [use %s]", info.inputs[j].toString());
            fprintf(stderr, "\n");
        }

        for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
            LInstruction* ins = *iter;
            const InstructionInfo& info = instructions[ins->id()];

            CodePosition input(ins->id(), CodePosition::INPUT);
            CodePosition output(ins->id(), CodePosition::OUTPUT);

            fprintf(stderr, "[");
            if (input != CodePosition::MIN)
                fprintf(stderr, "%u,%u ", input.bits(), output.bits());
            fprintf(stderr, "%s]", ins->opName());

            if (ins->isMoveGroup()) {
                LMoveGroup* group = ins->toMoveGroup();
                for (int i = group->numMoves() - 1; i >= 0; i--) {
                    // Use two printfs, as LAllocation::toString is not reentrant.
                    fprintf(stderr, " [%s", group->getMove(i).from()->toString());
                    fprintf(stderr, " -> %s]", group->getMove(i).to()->toString());
                }
                fprintf(stderr, "\n");
                continue;
            }

            for (size_t i = 0; i < ins->numDefs(); i++)
                fprintf(stderr, " [def %s]", ins->getDef(i)->toString());

            for (size_t i = 0; i < ins->numTemps(); i++) {
                LDefinition* temp = ins->getTemp(i);
                if (!temp->isBogusTemp())
                    fprintf(stderr, " [temp v%u %s]", info.temps[i].virtualRegister(),
                           temp->toString());
            }

            size_t index = 0;
            for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) {
                fprintf(stderr, " [use %s", info.inputs[index++].toString());
                if (!alloc->isConstant())
                    fprintf(stderr, " %s", alloc->toString());
                fprintf(stderr, "]");
            }

            fprintf(stderr, "\n");
        }
    }

    // Print discovered allocations at the ends of blocks, in the order they
    // were discovered.

    Vector<IntegrityItem, 20, SystemAllocPolicy> seenOrdered;
    seenOrdered.appendN(IntegrityItem(), seen.count());

    for (IntegrityItemSet::Enum iter(seen); !iter.empty(); iter.popFront()) {
        IntegrityItem item = iter.front();
        seenOrdered[item.index] = item;
    }

    if (!seenOrdered.empty()) {
        fprintf(stderr, "Intermediate Allocations:\n");

        for (size_t i = 0; i < seenOrdered.length(); i++) {
            IntegrityItem item = seenOrdered[i];
            fprintf(stderr, "  block %u reg v%u alloc %s\n",
                   item.block->mir()->id(), item.vreg, item.alloc.toString());
        }
    }

    fprintf(stderr, "\n");
#endif
}
Example #17
0
bool
AllocationIntegrityState::record()
{
    // Ignore repeated record() calls.
    if (!instructions.empty())
        return true;

    if (!instructions.appendN(InstructionInfo(), graph.numInstructions()))
        return false;

    if (!virtualRegisters.appendN((LDefinition*)nullptr, graph.numVirtualRegisters()))
        return false;

    if (!blocks.reserve(graph.numBlocks()))
        return false;
    for (size_t i = 0; i < graph.numBlocks(); i++) {
        blocks.infallibleAppend(BlockInfo());
        LBlock* block = graph.getBlock(i);
        MOZ_ASSERT(block->mir()->id() == i);

        BlockInfo& blockInfo = blocks[i];
        if (!blockInfo.phis.reserve(block->numPhis()))
            return false;

        for (size_t j = 0; j < block->numPhis(); j++) {
            blockInfo.phis.infallibleAppend(InstructionInfo());
            InstructionInfo& info = blockInfo.phis[j];
            LPhi* phi = block->getPhi(j);
            MOZ_ASSERT(phi->numDefs() == 1);
            uint32_t vreg = phi->getDef(0)->virtualRegister();
            virtualRegisters[vreg] = phi->getDef(0);
            if (!info.outputs.append(*phi->getDef(0)))
                return false;
            for (size_t k = 0, kend = phi->numOperands(); k < kend; k++) {
                if (!info.inputs.append(*phi->getOperand(k)))
                    return false;
            }
        }

        for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
            LInstruction* ins = *iter;
            InstructionInfo& info = instructions[ins->id()];

            for (size_t k = 0; k < ins->numTemps(); k++) {
                if (!ins->getTemp(k)->isBogusTemp()) {
                    uint32_t vreg = ins->getTemp(k)->virtualRegister();
                    virtualRegisters[vreg] = ins->getTemp(k);
                }
                if (!info.temps.append(*ins->getTemp(k)))
                    return false;
            }
            for (size_t k = 0; k < ins->numDefs(); k++) {
                if (!ins->getDef(k)->isBogusTemp()) {
                    uint32_t vreg = ins->getDef(k)->virtualRegister();
                    virtualRegisters[vreg] = ins->getDef(k);
                }
                if (!info.outputs.append(*ins->getDef(k)))
                    return false;
            }
            for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) {
                if (!info.inputs.append(**alloc))
                    return false;
            }
        }
    }

    return seen.init();
}