// Returns if item is an int constant that can be represented by a simm13
static bool is_simm13(LIR_Opr item) {
  if (item->is_constant() && item->type() == T_INT) {
    return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
  } else {
    return false;
  }
}
 // Version that _does_ generate a load of the previous value from addr.
 // addr (the address of the field to be read) must be a LIR_Address
 // pre_val (a temporary register) must be a register;
 G1PreBarrierStub(LIR_Opr addr, LIR_Opr pre_val, LIR_PatchCode patch_code, CodeEmitInfo* info) :
   _addr(addr), _pre_val(pre_val), _do_load(true),
   _patch_code(patch_code), _info(info)
 {
   assert(_pre_val->is_register(), "should be temporary register");
   assert(_addr->is_address(), "should be the address of the field");
 }
Example #3
0
FrameMap::FrameMap(ciMethod* method, int monitors, int reserved_argument_area_size) {
  assert(_init_done, "should already be completed");

  _framesize = -1;
  _num_spills = -1;

  assert(monitors >= 0, "not set");
  _num_monitors = monitors;
  assert(reserved_argument_area_size >= 0, "not set");
  _reserved_argument_area_size = MAX2(4, reserved_argument_area_size) * BytesPerWord;

  _argcount = method->arg_size();
  _argument_locations = new intArray(_argcount, -1);
  _incoming_arguments = java_calling_convention(signature_type_array_for(method), false);
  _oop_map_arg_count = _incoming_arguments->reserved_stack_slots();

  int java_index = 0;
  for (int i = 0; i < _incoming_arguments->length(); i++) {
    LIR_Opr opr = _incoming_arguments->at(i);
    if (opr->is_address()) {
      LIR_Address* address = opr->as_address_ptr();
      _argument_locations->at_put(java_index, address->disp() - STACK_BIAS);
      _incoming_arguments->args()->at_put(i, LIR_OprFact::stack(java_index, as_BasicType(as_ValueType(address->type()))));
    }
    java_index += type2size[opr->type()];
  }

}
void LIR_Assembler::roundfp_op(LIR_Opr src, LIR_Opr tmp, LIR_Opr dest, bool pop_fpu_stack) {
    assert((src->is_single_fpu() && dest->is_single_stack()) ||
           (src->is_double_fpu() && dest->is_double_stack()),
           "round_fp: rounds register -> stack location");

    reg2stack (src, dest, src->type(), pop_fpu_stack);
}
bool LocalMapping::is_cache_reg(LIR_Opr opr) const {
  if (opr->is_register()) {
    return is_cache_reg(opr->rinfo());
  } else {
    return false;
  }
}
Example #6
0
void LIRItem::load_nonconstant() {
  LIR_Opr r = value()->operand();
  if (r->is_constant()) {
    _result = r;
  } else {
    load_item();
  }
}
 void  set_result(Value x, LIR_Opr opr)           {
   assert(opr->is_valid(), "must set to valid value");
   assert(x->operand()->is_illegal(), "operand should never change");
   assert(!opr->is_register() || opr->is_virtual(), "should never set result to a physical register");
   x->set_operand(opr);
   assert(opr == x->operand(), "must be");
   if (opr->is_virtual()) {
     _instruction_for_operand.at_put_grow(opr->vreg_number(), x, NULL);
   }
 }
Example #8
0
void LIRGenerator::do_If(If* x) {
  assert(x->number_of_sux() == 2, "inconsistency");
  ValueTag tag = x->x()->type()->tag();
  bool is_safepoint = x->is_safepoint();

  If::Condition cond = x->cond();

  LIRItem xitem(x->x(), this);
  LIRItem yitem(x->y(), this);
  LIRItem* xin = &xitem;
  LIRItem* yin = &yitem;

  if (tag == longTag) {
    // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
    // mirror for other conditions
    if (cond == If::gtr || cond == If::leq) {
      cond = Instruction::mirror(cond);
      xin = &yitem;
      yin = &xitem;
    }
    xin->set_destroys_register();
  }
  xin->load_item();
  if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
    // inline long zero
    yin->dont_load_item();
  } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
    // longs cannot handle constants at right side
    yin->load_item();
  } else {
    yin->dont_load_item();
  }

  // add safepoint before generating condition code so it can be recomputed
  if (x->is_safepoint()) {
    // increment backedge counter if needed
    increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
    __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
  }
  set_no_result(x);

  LIR_Opr left = xin->result();
  LIR_Opr right = yin->result();
  __ cmp(lir_cond(cond), left, right);
  // Generate branch profiling. Profiling code doesn't kill flags.
  profile_branch(x, cond);
  move_to_phi(x->state());
  if (x->x()->type()->is_float_kind()) {
    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  } else {
    __ branch(lir_cond(cond), right->type(), x->tsux());
  }
  assert(x->default_sux() == x->fsux(), "wrong destination above");
  __ jump(x->default_sux());
}
void LIRItem::load_nonconstant() {
  LIR_Opr r = value()->operand();
  if (_gen->can_inline_as_constant(value())) {
    if (!r->is_constant()) {
      r = LIR_OprFact::value_type(value()->type());
    }
    _result = r;
  } else {
    load_item();
  }
}
  LIR_Opr result()             {
assert(_destroys_register==not_destroyed||(!_result->is_register()||_result->is_virtual()),
           "shouldn't use set_destroys_register with physical regsiters");
if(_destroys_register==awaiting_copy&&_result->is_register()){
LIR_Opr new_result=_gen->new_register(type())->set_destroyed();
      gen()->lir()->move(_result, new_result);
      _destroys_register = destroyed;
_result=new_result;
    }
    return _result;
  }
Example #11
0
LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
  assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");

  int stack_offset = tos_offset(opr);
  if (opr->is_single_fpu()) {
    return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
  } else {
    assert(opr->is_double_fpu(), "shouldn't call this otherwise");
    return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
  }
}
Example #12
0
LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
  assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
  assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");

  int stack_offset = 0;
  if (opr->is_single_fpu()) {
    return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
  } else {
    assert(opr->is_double_fpu(), "shouldn't call this otherwise");
    return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
  }
}
// Handle fanout of fpu registers: return false if no fanout;
// If fanout than, we copy the value of float register into a new one,
// so that the new FPU register has ref-count 1
bool LIRGenerator::fpu_fanout_handled() {
  if (result()->is_register() && (value()->type()->is_float_kind())) {
    // The item is float or double register with a use_count > 1
    LIR_Opr reg = rlock(value());
    emit()->copy_fpu_item(reg->rinfo(), result());

    set_result(value(), reg);
    return true;
  } else {
    return false;
  }
}
Example #14
0
void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
  int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
  while (sim()->stack_size() > result_stack_size) {
    assert(!sim()->slot_is_empty(0), "not allowed");

    if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
      insert_free(0);
    } else {
      // move "preserve" to bottom of stack so that all other stack slots can be popped
      insert_exchange(sim()->stack_size() - 1);
    }
  }
}
// for  _ladd, _lmul, _lsub, _ldiv, _lrem
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
  switch (x->op()) {
  case Bytecodes::_lrem:
  case Bytecodes::_lmul:
  case Bytecodes::_ldiv: {

    if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
      LIRItem right(x->y(), this);
      right.load_item();

      CodeEmitInfo* info = state_for(x);
      LIR_Opr item = right.result();
      assert(item->is_register(), "must be");
      __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
      __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
    }

    address entry;
    switch (x->op()) {
    case Bytecodes::_lrem:
      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
      break; // check if dividend is 0 is done elsewhere
    case Bytecodes::_ldiv:
      entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
      break; // check if dividend is 0 is done elsewhere
    case Bytecodes::_lmul:
      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
      break;
    default:
      ShouldNotReachHere();
    }

    // order of arguments to runtime call is reversed.
    LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
    set_result(x, result);
    break;
  }
  case Bytecodes::_ladd:
  case Bytecodes::_lsub: {
    LIRItem left(x->x(), this);
    LIRItem right(x->y(), this);
    left.load_item();
    right.load_item();
    rlock_result(x);

    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
    break;
  }
  default: ShouldNotReachHere();
  }
}
Example #16
0
// Item will be loaded into a byte register; Intel only
void LIRItem::load_byte_item() {
  load_item();
  LIR_Opr res = result();

  if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
    // make sure that it is a byte register
    assert(!value()->type()->is_float() && !value()->type()->is_double(),
           "can't load floats in byte register");
    LIR_Opr reg = _gen->rlock_byte(T_BYTE);
    __ move(res, reg);

    _result = reg;
  }
}
Example #17
0
 LIR_Opr result()             {
   assert(!_destroys_register || (!_result->is_register() || _result->is_virtual()),
          "shouldn't use set_destroys_register with physical regsiters");
   if (_destroys_register && _result->is_register()) {
     if (_new_result->is_illegal()) {
       _new_result = _gen->new_register(type());
       gen()->lir()->move(_result, _new_result);
     }
     return _new_result;
   } else {
     return _result;
   }
   return _result;
 }
Example #18
0
 virtual void visit(LIR_OpVisitState* visitor) {
     visitor->do_slow_case(_info);
     visitor->do_input(_klass_reg);
     visitor->do_input(_length);
     assert(_result->is_valid(), "must be valid");
     visitor->do_output(_result);
 }
void LocalMapping::print() const {
  tty->print("cached");
  for (int i = 0 ; i < length(); i++) {
    RInfo reg = get_cache_reg(i);
    if (reg.is_valid()) {
      if (reg.is_double() || reg.is_long()) {
        tty->print(" [dbl_stack:%d]=", i);
      } else {
        tty->print(" [stack:%d]=", i);
      }
      LIR_Opr opr = LIR_OprFact::rinfo(reg);
      opr->print();
    }
  }
  tty->cr();
}
Example #20
0
void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
  LIR_Opr res = opCall->result_opr();

  // clear fpu-stack before call
  // it may contain dead values that could not have been remved by previous operations
  clear_fpu_stack(LIR_OprFact::illegalOpr);
  assert(sim()->is_empty(), "fpu stack must be empty now");

  // compute debug information before (possible) fpu result is pushed
  compute_debug_information(opCall);

  if (res->is_fpu_register() && !res->is_xmm_register()) {
    do_push(res);
    opCall->set_result_opr(to_fpu_stack_top(res));
  }
}
Example #21
0
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  LIR_Opr opr;
  switch (type->tag()) {
    case intTag:     opr = FrameMap::rax_opr;          break;
    case objectTag:  opr = FrameMap::rax_oop_opr;      break;
    case longTag:    opr = FrameMap::long0_opr;        break;
    case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
    case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;

    case addressTag:
    default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  }

  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  return opr;
}
Example #22
0
void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
                                     BasicType type, bool is_volatile) {
  if (is_volatile && type == T_LONG) {
    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
    LIR_Opr tmp = new_register(T_DOUBLE);
    LIR_Opr spill = new_register(T_DOUBLE);
    set_vreg_flag(spill, must_start_in_memory);
    __ move(data, spill);
    __ move(spill, tmp);
    __ move(tmp, addr);
  } else {
    LIR_Address* addr = new LIR_Address(src, offset, type);
    bool is_obj = (type == T_ARRAY || type == T_OBJECT);
    if (is_obj) {
      // Do the pre-write barrier, if any.
      pre_barrier(LIR_OprFact::address(addr), false, NULL);
      __ move(data, addr);
      assert(src->is_register(), "must be register");
      // Seems to be a precise address
      post_barrier(LIR_OprFact::address(addr), data);
    } else {
      __ move(data, addr);
    }
  }
}
Example #23
0
CallingConvention* FrameMap::c_calling_convention(const BasicTypeArray* signature) {
  // compute the size of the arguments first.  The signature array
  // that java_calling_convention takes includes a T_VOID after double
  // work items but our signatures do not.
  int i;
  int sizeargs = 0;
  for (i = 0; i < signature->length(); i++) {
    sizeargs += type2size[signature->at(i)];
  }

  BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, sizeargs);
  VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sizeargs);
  int sig_index = 0;
  for (i = 0; i < sizeargs; i++, sig_index++) {
    sig_bt[i] = signature->at(sig_index);
    if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
      sig_bt[i + 1] = T_VOID;
      i++;
    }
  }

  intptr_t out_preserve = SharedRuntime::c_calling_convention(sig_bt, regs, NULL, sizeargs);
  LIR_OprList* args = new LIR_OprList(signature->length());
  for (i = 0; i < sizeargs;) {
    BasicType t = sig_bt[i];
    assert(t != T_VOID, "should be skipping these");

    // C calls are always outgoing
    bool outgoing = true;
    LIR_Opr opr = map_to_opr(t, regs + i, outgoing);
    // they might be of different types if for instance floating point
    // values are passed in cpu registers, but the sizes must match.
    assert(type2size[opr->type()] == type2size[t], "type mismatch");
    args->append(opr);
    if (opr->is_address()) {
      LIR_Address* addr = opr->as_address_ptr();
      out_preserve = MAX2(out_preserve, (intptr_t)(addr->disp() - STACK_BIAS) / 4);
    }
    i += type2size[t];
  }
  assert(args->length() == signature->length(), "size mismatch");
  out_preserve += SharedRuntime::out_preserve_stack_slots();
  update_reserved_argument_area_size(out_preserve * BytesPerWord);
  return new CallingConvention(args, out_preserve);
}
Example #24
0
void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
  assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
  assert(tos_offset(opr) == 0, "can only pop stack top");

  if (opr->is_last_use()) {
    op->set_fpu_pop_count(1);
    sim()->pop();
  }
}
Example #25
0
CallingConvention* FrameMap::java_calling_convention(const BasicTypeArray* signature, bool outgoing) {
  // compute the size of the arguments first.  The signature array
  // that java_calling_convention takes includes a T_VOID after double
  // work items but our signatures do not.
  int i;
  int sizeargs = 0;
  for (i = 0; i < signature->length(); i++) {
    sizeargs += type2size[signature->at(i)];
  }

  BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, sizeargs);
  VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sizeargs);
  int sig_index = 0;
  for (i = 0; i < sizeargs; i++, sig_index++) {
    sig_bt[i] = signature->at(sig_index);
    if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
      sig_bt[i + 1] = T_VOID;
      i++;
    }
  }

  intptr_t out_preserve = SharedRuntime::java_calling_convention(sig_bt, regs, sizeargs, outgoing);
  LIR_OprList* args = new LIR_OprList(signature->length());
  for (i = 0; i < sizeargs;) {
    BasicType t = sig_bt[i];
    assert(t != T_VOID, "should be skipping these");
    LIR_Opr opr = map_to_opr(t, regs + i, outgoing);
    args->append(opr);
    if (opr->is_address()) {
      LIR_Address* addr = opr->as_address_ptr();
      assert(addr->disp() == (int)addr->disp(), "out of range value");
      out_preserve = MAX2(out_preserve, (intptr_t)(addr->disp() - STACK_BIAS) / 4);
    }
    i += type2size[t];
  }
  assert(args->length() == signature->length(), "size mismatch");
  out_preserve += SharedRuntime::out_preserve_stack_slots();

  if (outgoing) {
    // update the space reserved for arguments.
    update_reserved_argument_area_size(out_preserve * BytesPerWord);
  }
  return new CallingConvention(args, out_preserve);
}
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
  BasicType t = item->type();
  LIR_Opr sp_opr = FrameMap::SP_opr;
  if ((t == T_LONG || t == T_DOUBLE) &&
      ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
    __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
  } else {
    __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
  }
}
void LIR_OopMapGenerator::clear_all(LIR_Opr cache_reg) {
  for (int i = local_mapping()->local_names_begin();
       i < local_mapping()->local_names_end(); i++) {
    if (local_mapping()->is_local_name_cached_in_reg(i, cache_reg)) {
      clear(i);
      if (cache_reg->is_double_word()) {
        clear(1 + i);
      }
    }
  }
}
 void traverse(BlockBegin* bb, LIR_OpList* inst) {
   int length = inst->length();
   for (int i = 0; i < length; i++) {
     LIR_Op* op = inst->at(i);
     _state.visit(op);
     for (LIR_OpVisitState::OprMode mode = LIR_OpVisitState::firstMode;
          mode < LIR_OpVisitState::numModes;
          mode = (LIR_OpVisitState::OprMode)(mode + 1)) {
       for (int i = 0; i < _state.opr_count(mode); i++) {
         LIR_Opr opr = _state.opr_at(mode, i);
         if (opr->is_register()) {
           _info->lock(opr->as_rinfo());
         }
       }
     }
     
     if (_state.has_call()) {
       _had_call = true;
     }
   }
 }
Example #29
0
void LIRGenerator::do_Convert(Convert* x) {
  // flags that vary for the different operations and different SSE-settings
  bool fixed_input, fixed_result, round_result, needs_stub;

  switch (x->op()) {
    case Bytecodes::_i2l: // fall through
    case Bytecodes::_l2i: // fall through
    case Bytecodes::_i2b: // fall through
    case Bytecodes::_i2c: // fall through
    case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;

    case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
    case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
    case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
    case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
    case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
    case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
    case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
    case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
    case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
    case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
    default: ShouldNotReachHere();
  }

  LIRItem value(x->value(), this);
  value.load_item();
  LIR_Opr input = value.result();
  LIR_Opr result = rlock(x);

  // arguments of lir_convert
  LIR_Opr conv_input = input;
  LIR_Opr conv_result = result;
  ConversionStub* stub = NULL;

  if (fixed_input) {
    conv_input = fixed_register_for(input->type());
    __ move(input, conv_input);
  }

  assert(fixed_result == false || round_result == false, "cannot set both");
  if (fixed_result) {
    conv_result = fixed_register_for(result->type());
  } else if (round_result) {
    result = new_register(result->type());
    set_vreg_flag(result, must_start_in_memory);
  }

  if (needs_stub) {
    stub = new ConversionStub(x->op(), conv_input, conv_result);
  }

  __ convert(x->op(), conv_input, conv_result, stub);

  if (result != conv_result) {
    __ move(conv_result, result);
  }

  assert(result->is_virtual(), "result must be virtual register");
  set_result(x, result);
}
void C1_MacroAssembler::build_frame(FrameMap* frame_map) {
  // offset from the expected fixed sp within the method
  int sp_offset = in_bytes(frame_map->framesize_in_bytes()) - 8; // call pushed the return IP
  if( frame_map->num_callee_saves() > 0 ) {
    int callee_save_num = frame_map->num_callee_saves()-1;
    int callee_saves    = frame_map->callee_saves(); // bitmap
    for (int i=LinearScan::nof_cpu_regs-1; i>=0; i--) {
      if ((callee_saves & 1<<i) != 0) {
        int wanted_sp_offset = frame_map->address_for_callee_save(callee_save_num)._disp;
        assert0( sp_offset-8 == wanted_sp_offset );
        push((Register)i);
        sp_offset -= 8;
        callee_save_num--;
        assert0( callee_save_num >= -1 );
      }
    }
#ifdef ASSERT
for(int i=0;i<LinearScan::nof_xmm_regs;i++){
      int reg = LinearScan::nof_cpu_regs+i;
      assert ((callee_saves & 1<<reg) == 0, "Unexpected callee save XMM register");
    }
#endif
  }
  if (sp_offset != 0) {
    // make sp equal expected sp for method
    if (sp_offset == 8) push  (RCX);            // push reg as smaller encoding than sub8i
    else                sub8i (RSP, sp_offset );
  }
  if( should_verify_oop(MacroAssembler::OopVerify_IncomingArgument) ) {
    int args_len = frame_map->incoming_arguments()->length();
    for(int i=0; i < args_len; i++) {
      LIR_Opr arg = frame_map->incoming_arguments()->at(i);
      if (arg->is_valid() && arg->is_oop()) {
        VOopReg::VR oop = frame_map->oopregname(arg);
        verify_oop(oop, MacroAssembler::OopVerify_IncomingArgument);
      }
    }
  }
}